setwd("C:/Users/n422/Desktop/parcial")
“DEPARTAMENTO” : Departamento del Peru “UBIGEO”: Ubigeo del departamento “buenEstado”: Porcentaje de locales escolares en buen estado “contribuyentesSunat”: Cantidad de contribuyentes a la SUNAT (PEA) “peaOcupada”: Cantidad de PEA ocupada “pobUrbana”: poblacion urbana (PEA) “PobRural”: poblacion rural (PEA) “pobTotal” Poblacion total (PEA)
library(rio)
data=import("dataPeru.xlsx")
str(data)
## 'data.frame': 25 obs. of 8 variables:
## $ DEPARTAMENTO : chr "AMAZONAS" "ÁNCASH" "APURÍMAC" "AREQUIPA" ...
## $ UBIGEO : chr "010000" "020000" "030000" "040000" ...
## $ buenEstado : num 18.6 13.9 8.7 27.4 17 18 33.8 11.9 10.1 15.6 ...
## $ contribuyentesSunat: num 75035 302906 103981 585628 151191 ...
## $ peaOcupada : num 130019 387976 140341 645001 235857 ...
## $ pobUrbana : num 205976 806065 243354 1383694 444473 ...
## $ PobRural : num 211389 333050 180905 76739 206467 ...
## $ pobTotal : num 417365 1139115 424259 1460433 650940 ...
library(knitr)
library(magrittr)
library(kableExtra)
library(DescTools)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:kableExtra':
##
## group_rows
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
modelo1=formula(buenEstado~contribuyentesSunat+peaOcupada )
modelo1
## buenEstado ~ contribuyentesSunat + peaOcupada
regr1=lm(modelo1, data=data)
summary(regr1)
##
## Call:
## lm(formula = modelo1, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.589 -3.966 -1.347 1.907 21.518
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.865e+01 2.694e+00 6.922 5.98e-07 ***
## contribuyentesSunat 1.786e-05 2.060e-05 0.867 0.395
## peaOcupada -1.596e-05 2.241e-05 -0.712 0.484
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.925 on 22 degrees of freedom
## Multiple R-squared: 0.1561, Adjusted R-squared: 0.07939
## F-statistic: 2.035 on 2 and 22 DF, p-value: 0.1546
#porcentaje de la pea que labora
data$peaOcu_pct=data$peaOcupada/data$pobTotal
modelo1.2=formula(buenEstado~peaOcu_pct + contribuyentesSunat)
regre1.2=lm(modelo1.2,data = data)
summary(regre1.2)
##
## Call:
## lm(formula = modelo1.2, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.4595 -3.6279 -0.2737 4.2711 12.1148
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.367e+01 1.078e+01 -2.196 0.038936 *
## peaOcu_pct 1.118e+02 2.925e+01 3.822 0.000931 ***
## contribuyentesSunat 1.222e-06 1.449e-06 0.843 0.408093
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.214 on 22 degrees of freedom
## Multiple R-squared: 0.4811, Adjusted R-squared: 0.434
## F-statistic: 10.2 on 2 and 22 DF, p-value: 0.0007338
#buenEstado sí esta en porcentaje aquí
modelo2=formula(peaOcupada~contribuyentesSunat+buenEstado)
modelo2
## peaOcupada ~ contribuyentesSunat + buenEstado
regre2=lm(modelo2,data = data)
summary(regre2)
##
## Call:
## lm(formula = modelo2, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -91867 -58573 -11166 46174 155851
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.155e+05 3.787e+04 3.049 0.00588 **
## contribuyentesSunat 9.206e-01 1.741e-02 52.872 < 2e-16 ***
## buenEstado -1.412e+03 1.983e+03 -0.712 0.48395
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 74540 on 22 degrees of freedom
## Multiple R-squared: 0.9932, Adjusted R-squared: 0.9926
## F-statistic: 1603 on 2 and 22 DF, p-value: < 2.2e-16