setwd("C:/Users/Jhire/Downloads/EP_ESTAD")
library(rio)
data=import("dataPeru.xlsx")

“DEPARTAMENTO” : Departamento del Peru “UBIGEO”: Ubigeo del departamento “buenEstado”: Porcentaje de locales escolares en buen estado “contribuyentesSunat”: Cantidad de contribuyentes a la SUNAT (PEA) “peaOcupada”: Cantidad de PEA ocupada “pobUrbana”: poblacion urbana (PEA) “PobRural”: poblacion rural (PEA) “pobTotal” Poblacion total (PEA)

str(data)
## 'data.frame':    25 obs. of  8 variables:
##  $ DEPARTAMENTO       : chr  "AMAZONAS" "ÁNCASH" "APURÍMAC" "AREQUIPA" ...
##  $ UBIGEO             : chr  "010000" "020000" "030000" "040000" ...
##  $ buenEstado         : num  18.6 13.9 8.7 27.4 17 18 33.8 11.9 10.1 15.6 ...
##  $ contribuyentesSunat: num  75035 302906 103981 585628 151191 ...
##  $ peaOcupada         : num  130019 387976 140341 645001 235857 ...
##  $ pobUrbana          : num  205976 806065 243354 1383694 444473 ...
##  $ PobRural           : num  211389 333050 180905 76739 206467 ...
##  $ pobTotal           : num  417365 1139115 424259 1460433 650940 ...
summary(data$buenEstado)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    7.70   13.90   17.30   18.61   21.80   40.50

PREGUNTA 1:

summary(data$contribuyentesSunat)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   57440  103981  218179  437787  377618 4887993
summary(data$peaOcupada)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   64206  140341  321613  492229  461312 4536507
library(ggrepel)
## Warning: package 'ggrepel' was built under R version 4.3.3
## Loading required package: ggplot2
base=ggplot(data=data, aes(x=peaOcupada, y=buenEstado))
scatter = base + geom_point()
scatterText = scatter + geom_text_repel(aes(label=DEPARTAMENTO),size=2)
scatterText

f1=formula(~peaOcupada + buenEstado)
pearsonf1=cor.test(f1,data=data)[c('estimate','p.value')]
pearsonf1
## $estimate
##       cor 
## 0.3567442 
## 
## $p.value
## [1] 0.08002776
spearmanf1=cor.test(f1,data=data,method='spearman',exact=F)[c('estimate','p.value')]
spearmanf1
## $estimate
##       rho 
## 0.2785151 
## 
## $p.value
## [1] 0.1776146
model1 <- lm(buenEstado ~ contribuyentesSunat + peaOcupada, data = data)
summary(model1)
## 
## Call:
## lm(formula = buenEstado ~ contribuyentesSunat + peaOcupada, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.589  -3.966  -1.347   1.907  21.518 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.865e+01  2.694e+00   6.922 5.98e-07 ***
## contribuyentesSunat  1.786e-05  2.060e-05   0.867    0.395    
## peaOcupada          -1.596e-05  2.241e-05  -0.712    0.484    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.925 on 22 degrees of freedom
## Multiple R-squared:  0.1561, Adjusted R-squared:  0.07939 
## F-statistic: 2.035 on 2 and 22 DF,  p-value: 0.1546

#si hay significacion de “buen estado” con “contibuyenteusnat” #no hay tanto efecto significativo con la pea que labora

PREGUNTA 2:

modelo2 <- lm(peaOcupada ~ contribuyentesSunat + buenEstado, data = data)
summary(modelo2)
## 
## Call:
## lm(formula = peaOcupada ~ contribuyentesSunat + buenEstado, data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -91867 -58573 -11166  46174 155851 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.155e+05  3.787e+04   3.049  0.00588 ** 
## contribuyentesSunat  9.206e-01  1.741e-02  52.872  < 2e-16 ***
## buenEstado          -1.412e+03  1.983e+03  -0.712  0.48395    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 74540 on 22 degrees of freedom
## Multiple R-squared:  0.9932, Adjusted R-squared:  0.9926 
## F-statistic:  1603 on 2 and 22 DF,  p-value: < 2.2e-16

#al parecer ambos tienen un efectivo significativo a un 0.05