library(readxl)
dataPeru <- read_excel("dataPeru.xlsx")
str(dataPeru)
## tibble [25 × 8] (S3: tbl_df/tbl/data.frame)
##  $ DEPARTAMENTO       : chr [1:25] "AMAZONAS" "ÁNCASH" "APURÍMAC" "AREQUIPA" ...
##  $ UBIGEO             : chr [1:25] "010000" "020000" "030000" "040000" ...
##  $ buenEstado         : num [1:25] 18.6 13.9 8.7 27.4 17 18 33.8 11.9 10.1 15.6 ...
##  $ contribuyentesSunat: num [1:25] 75035 302906 103981 585628 151191 ...
##  $ peaOcupada         : num [1:25] 130019 387976 140341 645001 235857 ...
##  $ pobUrbana          : num [1:25] 205976 806065 243354 1383694 444473 ...
##  $ PobRural           : num [1:25] 211389 333050 180905 76739 206467 ...
##  $ pobTotal           : num [1:25] 417365 1139115 424259 1460433 650940 ...
modelo1=formula(buenEstado~contribuyentesSunat+peaOcupada)
reg1=lm(modelo1,data=dataPeru)
summary(reg1)
## 
## Call:
## lm(formula = modelo1, data = dataPeru)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.589  -3.966  -1.347   1.907  21.518 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.865e+01  2.694e+00   6.922 5.98e-07 ***
## contribuyentesSunat  1.786e-05  2.060e-05   0.867    0.395    
## peaOcupada          -1.596e-05  2.241e-05  -0.712    0.484    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.925 on 22 degrees of freedom
## Multiple R-squared:  0.1561, Adjusted R-squared:  0.07939 
## F-statistic: 2.035 on 2 and 22 DF,  p-value: 0.1546
library(modelsummary)
## Warning: package 'modelsummary' was built under R version 4.3.3
## `modelsummary` 2.0.0 now uses `tinytable` as its default table-drawing
##   backend. Learn more at: https://vincentarelbundock.github.io/tinytable/
## 
## Revert to `kableExtra` for one session:
## 
##   options(modelsummary_factory_default = 'kableExtra')
## 
## Change the default backend persistently:
## 
##   config_modelsummary(factory_default = 'gt')
## 
## Silence this message forever:
## 
##   config_modelsummary(startup_message = FALSE)
model1=list('Locales BE (I)'=reg1)
modelsummary(model1, title = "Regresion: modelo 1",
             stars = TRUE,
             output = "kableExtra")
Regresion: modelo 1
 Locales BE (I)
(Intercept) 18.646***
(2.694)
contribuyentesSunat 0.000
(0.000)
peaOcupada 0.000
(0.000)
Num.Obs. 25
R2 0.156
R2 Adj. 0.079
AIC 179.3
BIC 184.1
Log.Lik. -85.626
F 2.035
RMSE 7.43
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Pregunta 2:

h1=formula(peaOcupada~contribuyentesSunat+buenEstado)
rl1=lm(h1, data = dataPeru)
model1=list('PEA ocupada (I)'=rl1)
modelsummary(model1, title = "Resumen de Regresion Lineal",
             stars = TRUE,
             output = "kableExtra")
Resumen de Regresion Lineal
 PEA ocupada (I)
(Intercept) 115468.390**
(37869.931)
contribuyentesSunat 0.921***
(0.017)
buenEstado -1411.649
(1982.682)
Num.Obs. 25
R2 0.993
R2 Adj. 0.993
AIC 636.7
BIC 641.6
Log.Lik. -314.354
F 1603.130
RMSE 69927.80
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001