library(rio)
data1=import("dataPeru.xlsx")
str(data1)
## 'data.frame':    25 obs. of  8 variables:
##  $ DEPARTAMENTO       : chr  "AMAZONAS" "ÁNCASH" "APURÍMAC" "AREQUIPA" ...
##  $ UBIGEO             : chr  "010000" "020000" "030000" "040000" ...
##  $ buenEstado         : num  18.6 13.9 8.7 27.4 17 18 33.8 11.9 10.1 15.6 ...
##  $ contribuyentesSunat: num  75035 302906 103981 585628 151191 ...
##  $ peaOcupada         : num  130019 387976 140341 645001 235857 ...
##  $ pobUrbana          : num  205976 806065 243354 1383694 444473 ...
##  $ PobRural           : num  211389 333050 180905 76739 206467 ...
##  $ pobTotal           : num  417365 1139115 424259 1460433 650940 ...

Al querer probar la hipotesis que los locales escolares en buen estado dependen del porcentaje de la poblacion que contribuye a la SUNAT; y del porcentaje de la PEA que está laborando; se llega a comprobar que (con una significancia del 0.05):

str(data1$buenEstado)
##  num [1:25] 18.6 13.9 8.7 27.4 17 18 33.8 11.9 10.1 15.6 ...
modelo1=formula(buenEstado~contribuyentesSunat+peaOcupada)
rg1=lm(modelo1, data = data1)
summary(rg1)
## 
## Call:
## lm(formula = modelo1, data = data1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.589  -3.966  -1.347   1.907  21.518 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.865e+01  2.694e+00   6.922 5.98e-07 ***
## contribuyentesSunat  1.786e-05  2.060e-05   0.867    0.395    
## peaOcupada          -1.596e-05  2.241e-05  -0.712    0.484    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.925 on 22 degrees of freedom
## Multiple R-squared:  0.1561, Adjusted R-squared:  0.07939 
## F-statistic: 2.035 on 2 and 22 DF,  p-value: 0.1546

Al querer probar la hipotesis que la cantidad de PEA ocupada dependen de la cantidad de contribuyentes a la SUNAT ; y del porcentaje de locales escolares en buen estado; se llega a comprobar que (con una significancia del 0.05):

modelo2=formula(peaOcupada~contribuyentesSunat+buenEstado)
rg2=lm(modelo2, data = data1)
summary(rg2)
## 
## Call:
## lm(formula = modelo2, data = data1)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -91867 -58573 -11166  46174 155851 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          1.155e+05  3.787e+04   3.049  0.00588 ** 
## contribuyentesSunat  9.206e-01  1.741e-02  52.872  < 2e-16 ***
## buenEstado          -1.412e+03  1.983e+03  -0.712  0.48395    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 74540 on 22 degrees of freedom
## Multiple R-squared:  0.9932, Adjusted R-squared:  0.9926 
## F-statistic:  1603 on 2 and 22 DF,  p-value: < 2.2e-16