library(rio)
data1=import("dataPeru.xlsx")
str(data1)
## 'data.frame': 25 obs. of 8 variables:
## $ DEPARTAMENTO : chr "AMAZONAS" "ÁNCASH" "APURÍMAC" "AREQUIPA" ...
## $ UBIGEO : chr "010000" "020000" "030000" "040000" ...
## $ buenEstado : num 18.6 13.9 8.7 27.4 17 18 33.8 11.9 10.1 15.6 ...
## $ contribuyentesSunat: num 75035 302906 103981 585628 151191 ...
## $ peaOcupada : num 130019 387976 140341 645001 235857 ...
## $ pobUrbana : num 205976 806065 243354 1383694 444473 ...
## $ PobRural : num 211389 333050 180905 76739 206467 ...
## $ pobTotal : num 417365 1139115 424259 1460433 650940 ...
Al querer probar la hipotesis que los locales escolares en buen
estado dependen del porcentaje de la poblacion que contribuye a la
SUNAT; y del porcentaje de la PEA que está laborando; se llega a
comprobar que (con una significancia del 0.05):
str(data1$buenEstado)
## num [1:25] 18.6 13.9 8.7 27.4 17 18 33.8 11.9 10.1 15.6 ...
modelo1=formula(buenEstado~contribuyentesSunat+peaOcupada)
rg1=lm(modelo1, data = data1)
summary(rg1)
##
## Call:
## lm(formula = modelo1, data = data1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.589 -3.966 -1.347 1.907 21.518
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.865e+01 2.694e+00 6.922 5.98e-07 ***
## contribuyentesSunat 1.786e-05 2.060e-05 0.867 0.395
## peaOcupada -1.596e-05 2.241e-05 -0.712 0.484
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.925 on 22 degrees of freedom
## Multiple R-squared: 0.1561, Adjusted R-squared: 0.07939
## F-statistic: 2.035 on 2 and 22 DF, p-value: 0.1546
Al querer probar la hipotesis que la cantidad de PEA ocupada
dependen de la cantidad de contribuyentes a la SUNAT ; y del porcentaje
de locales escolares en buen estado; se llega a comprobar que (con una
significancia del 0.05):
modelo2=formula(peaOcupada~contribuyentesSunat+buenEstado)
rg2=lm(modelo2, data = data1)
summary(rg2)
##
## Call:
## lm(formula = modelo2, data = data1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -91867 -58573 -11166 46174 155851
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.155e+05 3.787e+04 3.049 0.00588 **
## contribuyentesSunat 9.206e-01 1.741e-02 52.872 < 2e-16 ***
## buenEstado -1.412e+03 1.983e+03 -0.712 0.48395
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 74540 on 22 degrees of freedom
## Multiple R-squared: 0.9932, Adjusted R-squared: 0.9926
## F-statistic: 1603 on 2 and 22 DF, p-value: < 2.2e-16