Introducing a machine learning project centered on employee attrition prediction using the Python programming language. Employees are the backbone of any organization, directly impacting its success or failure. Consequently, when trained, skilled, and experienced employees depart for better opportunities, it poses significant challenges for the organization to address. To get the current working directory, we use the below command using r language.
What is Employee Attrition Prediction?
Employee attrition is downsizing in any organization where employees resign. Employees are valuable assets of any organization. It is necessary to know whether the employees are dissatisfied or whether there are other reasons for leaving their respective jobs.
Nowadays, for better opportunities, employees are eager to move from one organization to another. But if they quit their jobs unexpectedly, it can result in a huge loss for the organization. A new hire will consume money and time, and newly hired employees will also take time to make the respective organization profitable.
Retaining skilled and hardworking employees is one of the most critical challenges many organizations face. Therefore, by improving employee satisfaction and providing a desirable working environment, we can certainly reduce this problem significantly. # Machine Learning Project on Employee Attrition Prediction with R In this section, I will take you through a Machine Learning project on predicting Employee Attrition prediction with R programming language. I will start this task by importing the necessary R libraries that we need for this task:
current_directory <- getwd()
We can import the required packages and modules,Here..
if (!require("ggplot2")) install.packages("ggplot2")
## Loading required package: ggplot2
if (!require("gridExtra")) install.packages("gridExtra")
## Loading required package: gridExtra
if (!require("psych")) install.packages("psych")
## Loading required package: psych
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
if (!require("stats")) install.packages("stats")
if (!require("caTools")) install.packages("caTools")
## Loading required package: caTools
if (!require("randomForest")) install.packages("randomForest")
## Loading required package: randomForest
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:psych':
##
## outlier
## The following object is masked from 'package:gridExtra':
##
## combine
## The following object is masked from 'package:ggplot2':
##
## margin
if (!require("ggcorrplot")) install.packages("ggcorrplot")
## Loading required package: ggcorrplot
if (!require("caret")) install.packages("caret")
## Loading required package: caret
## Loading required package: lattice
if (!require("gam")) install.packages("gam")
## Loading required package: gam
## Loading required package: splines
## Loading required package: foreach
## Loaded gam 1.22-3
library(ggplot2)
library(gridExtra)
library(psych)
library(stats)
library(caTools)
library(ggcorrplot)
library(caret)
library(randomForest)
library(gam)
Importing HR Employee Attrition data in to variable ‘data’.
data <- read.csv("C:\\Users\\BIJILI MADHU\\OneDrive\\Desktop\\paper\\HR-Employee-Attrition.csv")
head(data)
dimensions=dim(data)
print(dimensions)
## [1] 1470 35
we can get the number of columns using the command ncol()
number_of_columns=ncol(data)
cat("\nNumber of columns=",number_of_columns)
##
## Number of columns= 35
similarly we can see the number of rows in the data using nrow(data)
number_of_rows=nrow(data)
cat("\nNumber of rows=",number_of_rows)
##
## Number of rows= 1470
Let’s see all the features in the data using ‘names(data)’
names(data)
## [1] "Age" "Attrition"
## [3] "BusinessTravel" "DailyRate"
## [5] "Department" "DistanceFromHome"
## [7] "Education" "EducationField"
## [9] "EmployeeCount" "EmployeeNumber"
## [11] "EnvironmentSatisfaction" "Gender"
## [13] "HourlyRate" "JobInvolvement"
## [15] "JobLevel" "JobRole"
## [17] "JobSatisfaction" "MaritalStatus"
## [19] "MonthlyIncome" "MonthlyRate"
## [21] "NumCompaniesWorked" "Over18"
## [23] "OverTime" "PercentSalaryHike"
## [25] "PerformanceRating" "RelationshipSatisfaction"
## [27] "StandardHours" "StockOptionLevel"
## [29] "TotalWorkingYears" "TrainingTimesLastYear"
## [31] "WorkLifeBalance" "YearsAtCompany"
## [33] "YearsInCurrentRole" "YearsSinceLastPromotion"
## [35] "YearsWithCurrManager"
lets see, how is the Attrition outcomes are distributed.
attributes_count=table(data$Attrition)
print(attributes_count)
##
## No Yes
## 1233 237
To see the nature of the data
describe(data)
#Unique values of every feature
char_cols=sapply(data,is.character)
unique_vals=lapply(data[,char_cols],unique)
for (i in seq_along(unique_vals)){
cat("unique values of feature: ", names(unique_vals)[i],"\n")
print(unique_vals[i])
}
## unique values of feature: Attrition
## $Attrition
## [1] "Yes" "No"
##
## unique values of feature: BusinessTravel
## $BusinessTravel
## [1] "Travel_Rarely" "Travel_Frequently" "Non-Travel"
##
## unique values of feature: Department
## $Department
## [1] "Sales" "Research & Development" "Human Resources"
##
## unique values of feature: EducationField
## $EducationField
## [1] "Life Sciences" "Other" "Medical" "Marketing"
## [5] "Technical Degree" "Human Resources"
##
## unique values of feature: Gender
## $Gender
## [1] "Female" "Male"
##
## unique values of feature: JobRole
## $JobRole
## [1] "Sales Executive" "Research Scientist"
## [3] "Laboratory Technician" "Manufacturing Director"
## [5] "Healthcare Representative" "Manager"
## [7] "Sales Representative" "Research Director"
## [9] "Human Resources"
##
## unique values of feature: MaritalStatus
## $MaritalStatus
## [1] "Single" "Married" "Divorced"
##
## unique values of feature: Over18
## $Over18
## [1] "Y"
##
## unique values of feature: OverTime
## $OverTime
## [1] "Yes" "No"
From the above information, we can conclude that the target variabe “Attrition” is binary data type which is classification type. ## converting the binary Yes, No values into 1s and 0s
#converting categorical binary values into numerical binary values
data$Attrition=ifelse(data$Attrition=="Yes",1,0)
unique(data$Attrition)
## [1] 1 0
data$OverTime=ifelse(data$OverTime=="Yes",1,0)
unique(data$OverTime)
## [1] 1 0
data$Gender=ifelse(data$Gender=="Male",1,0)
unique(data$Gender)
## [1] 0 1
str(data)
## 'data.frame': 1470 obs. of 35 variables:
## $ Age : int 41 49 37 33 27 32 59 30 38 36 ...
## $ Attrition : num 1 0 1 0 0 0 0 0 0 0 ...
## $ BusinessTravel : chr "Travel_Rarely" "Travel_Frequently" "Travel_Rarely" "Travel_Frequently" ...
## $ DailyRate : int 1102 279 1373 1392 591 1005 1324 1358 216 1299 ...
## $ Department : chr "Sales" "Research & Development" "Research & Development" "Research & Development" ...
## $ DistanceFromHome : int 1 8 2 3 2 2 3 24 23 27 ...
## $ Education : int 2 1 2 4 1 2 3 1 3 3 ...
## $ EducationField : chr "Life Sciences" "Life Sciences" "Other" "Life Sciences" ...
## $ EmployeeCount : int 1 1 1 1 1 1 1 1 1 1 ...
## $ EmployeeNumber : int 1 2 4 5 7 8 10 11 12 13 ...
## $ EnvironmentSatisfaction : int 2 3 4 4 1 4 3 4 4 3 ...
## $ Gender : num 0 1 1 0 1 1 0 1 1 1 ...
## $ HourlyRate : int 94 61 92 56 40 79 81 67 44 94 ...
## $ JobInvolvement : int 3 2 2 3 3 3 4 3 2 3 ...
## $ JobLevel : int 2 2 1 1 1 1 1 1 3 2 ...
## $ JobRole : chr "Sales Executive" "Research Scientist" "Laboratory Technician" "Research Scientist" ...
## $ JobSatisfaction : int 4 2 3 3 2 4 1 3 3 3 ...
## $ MaritalStatus : chr "Single" "Married" "Single" "Married" ...
## $ MonthlyIncome : int 5993 5130 2090 2909 3468 3068 2670 2693 9526 5237 ...
## $ MonthlyRate : int 19479 24907 2396 23159 16632 11864 9964 13335 8787 16577 ...
## $ NumCompaniesWorked : int 8 1 6 1 9 0 4 1 0 6 ...
## $ Over18 : chr "Y" "Y" "Y" "Y" ...
## $ OverTime : num 1 0 1 1 0 0 1 0 0 0 ...
## $ PercentSalaryHike : int 11 23 15 11 12 13 20 22 21 13 ...
## $ PerformanceRating : int 3 4 3 3 3 3 4 4 4 3 ...
## $ RelationshipSatisfaction: int 1 4 2 3 4 3 1 2 2 2 ...
## $ StandardHours : int 80 80 80 80 80 80 80 80 80 80 ...
## $ StockOptionLevel : int 0 1 0 0 1 0 3 1 0 2 ...
## $ TotalWorkingYears : int 8 10 7 8 6 8 12 1 10 17 ...
## $ TrainingTimesLastYear : int 0 3 3 3 3 2 3 2 2 3 ...
## $ WorkLifeBalance : int 1 3 3 3 3 2 2 3 3 2 ...
## $ YearsAtCompany : int 6 10 0 8 2 7 1 1 9 7 ...
## $ YearsInCurrentRole : int 4 7 0 7 2 7 0 0 7 7 ...
## $ YearsSinceLastPromotion : int 0 1 0 3 2 3 0 0 1 7 ...
## $ YearsWithCurrManager : int 5 7 0 0 2 6 0 0 8 7 ...
finding the relation between input variables and Target variale to observe the data distribution and relation between them.
#categorical variables
categorical_vars <- c("BusinessTravel", "Department",
"EducationField", "Gender", "JobRole",
"MaritalStatus", "OverTime")
#F-test to know the co-relation between categorical variables and target variable
for(var in categorical_vars) {
cat("fisher test for", var, ":\n")
result=fisher.test(table(data$Attrition, data[[var]]),simulate.p.value = TRUE)
print(result)
}
## fisher test for BusinessTravel :
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: table(data$Attrition, data[[var]])
## p-value = 0.0004998
## alternative hypothesis: two.sided
##
## fisher test for Department :
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: table(data$Attrition, data[[var]])
## p-value = 0.004998
## alternative hypothesis: two.sided
##
## fisher test for EducationField :
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: table(data$Attrition, data[[var]])
## p-value = 0.01049
## alternative hypothesis: two.sided
##
## fisher test for Gender :
##
## Fisher's Exact Test for Count Data
##
## data: table(data$Attrition, data[[var]])
## p-value = 0.2778
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.8775556 1.5933584
## sample estimates:
## odds ratio
## 1.179913
##
## fisher test for JobRole :
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: table(data$Attrition, data[[var]])
## p-value = 0.0004998
## alternative hypothesis: two.sided
##
## fisher test for MaritalStatus :
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: table(data$Attrition, data[[var]])
## p-value = 0.0004998
## alternative hypothesis: two.sided
##
## fisher test for OverTime :
##
## Fisher's Exact Test for Count Data
##
## data: table(data$Attrition, data[[var]])
## p-value < 2.2e-16
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 2.799096 5.078460
## sample estimates:
## odds ratio
## 3.767353
#continous variaables
continuous_vars <- c("Age", "DailyRate","DistanceFromHome","Education","EnvironmentSatisfaction",
"HourlyRate","JobInvolvement","JobLevel","JobSatisfaction","NumCompaniesWorked",
"MonthlyIncome", "MonthlyRate", "PercentSalaryHike","PerformanceRating",
"RelationshipSatisfaction","StockOptionLevel",
"TotalWorkingYears","TrainingTimesLastYear","WorkLifeBalance",
"YearsAtCompany", "YearsInCurrentRole", "YearsSinceLastPromotion",
"YearsWithCurrManager")
#T-test to know the relation between continous variables and target variable
for(var in continuous_vars) {
cat("T-test for", var, ":\n")
res=t.test(data[data$Attrition == 1, var], data[data$Attrition == 0, var])
print(res)
}
## T-test for Age :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = -5.828, df = 316.93, p-value = 1.38e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -5.288346 -2.618930
## sample estimates:
## mean of x mean of y
## 33.60759 37.56123
##
## T-test for DailyRate :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = -2.1789, df = 333.76, p-value = 0.03004
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -118.243100 -6.040083
## sample estimates:
## mean of x mean of y
## 750.3629 812.5045
##
## T-test for DistanceFromHome :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = 2.8882, df = 322.72, p-value = 0.004137
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.5475146 2.8870025
## sample estimates:
## mean of x mean of y
## 10.632911 8.915653
##
## T-test for Education :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = -1.2177, df = 336.95, p-value = 0.2242
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.22843290 0.05374319
## sample estimates:
## mean of x mean of y
## 2.839662 2.927007
##
## T-test for EnvironmentSatisfaction :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = -3.7513, df = 316.62, p-value = 0.0002092
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.468253 -0.146056
## sample estimates:
## mean of x mean of y
## 2.464135 2.771290
##
## T-test for HourlyRate :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = -0.26477, df = 335.98, p-value = 0.7914
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.188891 2.432272
## sample estimates:
## mean of x mean of y
## 65.57384 65.95215
##
## T-test for JobInvolvement :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = -4.6602, df = 312.81, p-value = 4.681e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.3576727 -0.1453097
## sample estimates:
## mean of x mean of y
## 2.518987 2.770479
##
## T-test for JobLevel :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = -7.3859, df = 376.25, p-value = 9.845e-13
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.6443231 -0.3733861
## sample estimates:
## mean of x mean of y
## 1.637131 2.145985
##
## T-test for JobSatisfaction :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = -3.9261, df = 328.59, p-value = 0.0001052
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.4656797 -0.1547890
## sample estimates:
## mean of x mean of y
## 2.468354 2.778589
##
## T-test for NumCompaniesWorked :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = 1.5747, df = 317.14, p-value = 0.1163
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.07367926 0.66437603
## sample estimates:
## mean of x mean of y
## 2.940928 2.645580
##
## T-test for MonthlyIncome :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = -7.4826, df = 412.74, p-value = 4.434e-13
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2583.050 -1508.244
## sample estimates:
## mean of x mean of y
## 4787.093 6832.740
##
## T-test for MonthlyRate :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = 0.5755, df = 330.1, p-value = 0.5653
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -709.8084 1296.8656
## sample estimates:
## mean of x mean of y
## 14559.31 14265.78
##
## T-test for PercentSalaryHike :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = -0.50424, df = 326.11, p-value = 0.6144
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.6572652 0.3890709
## sample estimates:
## mean of x mean of y
## 15.09705 15.23114
##
## T-test for PerformanceRating :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = 0.10999, df = 331.22, p-value = 0.9125
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.04784086 0.05350780
## sample estimates:
## mean of x mean of y
## 3.156118 3.153285
##
## T-test for RelationshipSatisfaction :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = -1.7019, df = 323.54, p-value = 0.08973
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.29067575 0.02102367
## sample estimates:
## mean of x mean of y
## 2.599156 2.733982
##
## T-test for StockOptionLevel :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = -5.2442, df = 329.67, p-value = 2.812e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.4368288 -0.1985054
## sample estimates:
## mean of x mean of y
## 0.5274262 0.8450933
##
## T-test for TotalWorkingYears :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = -7.0192, df = 350.88, p-value = 1.16e-11
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4.632019 -2.604401
## sample estimates:
## mean of x mean of y
## 8.244726 11.862936
##
## T-test for TrainingTimesLastYear :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = -2.3305, df = 339.56, p-value = 0.02036
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.38439273 -0.03251776
## sample estimates:
## mean of x mean of y
## 2.624473 2.832928
##
## T-test for WorkLifeBalance :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = -2.1742, df = 302.49, p-value = 0.03047
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.23393357 -0.01165453
## sample estimates:
## mean of x mean of y
## 2.658228 2.781022
##
## T-test for YearsAtCompany :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = -5.2826, df = 338.21, p-value = 2.286e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.071629 -1.404805
## sample estimates:
## mean of x mean of y
## 5.130802 7.369019
##
## T-test for YearsInCurrentRole :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = -6.8471, df = 366.57, p-value = 3.187e-11
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.035355 -1.127107
## sample estimates:
## mean of x mean of y
## 2.902954 4.484185
##
## T-test for YearsSinceLastPromotion :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = -1.2879, df = 338.49, p-value = 0.1987
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.7309843 0.1525043
## sample estimates:
## mean of x mean of y
## 1.945148 2.234388
##
## T-test for YearsWithCurrManager :
##
## Welch Two Sample t-test
##
## data: data[data$Attrition == 1, var] and data[data$Attrition == 0, var]
## t = -6.6334, df = 365.1, p-value = 1.185e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.964223 -1.065929
## sample estimates:
## mean of x mean of y
## 2.852321 4.367397
From the above F-test and T-test results, there are some input features which are not significant to the target variable. So, eliminating those input features from the data set as they are not showing any relation with teaget variable “Attrition”.
req_data <- subset(data, select = -c(Gender, Education,EmployeeCount, StandardHours, Over18, HourlyRate, NumCompaniesWorked,
MonthlyRate, PercentSalaryHike, EmployeeNumber, PerformanceRating,
RelationshipSatisfaction, YearsSinceLastPromotion))
SELECTED FEATURES AND DIMENTION OF THE REQUIRED DATA FOR MODELING
names(req_data)
## [1] "Age" "Attrition"
## [3] "BusinessTravel" "DailyRate"
## [5] "Department" "DistanceFromHome"
## [7] "EducationField" "EnvironmentSatisfaction"
## [9] "JobInvolvement" "JobLevel"
## [11] "JobRole" "JobSatisfaction"
## [13] "MaritalStatus" "MonthlyIncome"
## [15] "OverTime" "StockOptionLevel"
## [17] "TotalWorkingYears" "TrainingTimesLastYear"
## [19] "WorkLifeBalance" "YearsAtCompany"
## [21] "YearsInCurrentRole" "YearsWithCurrManager"
dim(req_data)
## [1] 1470 22
# Add data labels on top of each bar
text(
x=barplot(attributes_count,names.arg = c("No","Yes"), xlab = "Attrition Values",
ylab = "Number of people", col = c("GREEN","RED"),
main = "Distribution of Attrition values",
ylim = c(0, max(attributes_count) * 1.2)),
y = attributes_count + 1, labels = attributes_count, pos = 3, cex = 1.2, col = "black"
)
## Relation between Attrition vs Age
# Create the plot
p <- ggplot(data, aes(x = Age, y = factor(Attrition))) +
geom_violin() +
labs(x = "Age", y = "Attrition") +
ggtitle("Attrition vs Age") +
theme_minimal()
# Add rectangular region to highlight
p + annotate("rect", xmin = 25, xmax = 35, ymin = 1.5, ymax = 2.5, fill = "red", alpha = 0.3)+annotate("rect", xmin = 25, xmax = 45, ymin = 0.5, ymax = 1.5, fill = "lightgreen", alpha = 0.3)
Attrition Vs Business_travell
ggplot(data, aes(x = Attrition, y = factor(BusinessTravel))) +
geom_violin() +
labs(y = "BusinessTravel", x = "Attrition") +
ggtitle("Attrition vs BusinessTravel") +
theme_minimal()
Attrition Vs Environment Satisfaction
ggplot(data, aes(x = EnvironmentSatisfaction, y = factor(Attrition))) +
geom_violin() +
labs(y = "Environment Satisfaction", x = "Attrition") +
ggtitle("Attrition vs Environment Satisfaction") +
theme_minimal()
ggplot(data, aes(x = EnvironmentSatisfaction, fill = Attrition)) +
geom_bar(position = "stack") +
labs(x = "Environment Satisfaction", y = "Count") +
ggtitle("Stacked Bar Plot of Attrition vs EnvironmentSatisfaction") +
theme_minimal()
## Warning: The following aesthetics were dropped during statistical transformation: fill.
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
Attrition Vs Education Field
ggplot(data, aes(x = Attrition, fill = EducationField)) +
geom_bar(position = "stack") +
labs(x = "Attrition", y = "Count") +
ggtitle("Stacked Bar Plot of Attrition vs Education Field") +
theme_minimal()
Daily Rate
drp<-ggplot(data, aes(x = DailyRate, y = factor(Attrition))) +
geom_violin() +
labs(x = "DailyRate", y = "Attrition") +
ggtitle("Attrition vs DailyRate") +
theme_minimal()
# Add rectangular region to highlight
drp + annotate("rect", xmin = 150, xmax = 600, ymin = 1.5, ymax = 2.5, fill = "red", alpha = 0.3)+annotate("rect", xmin = 750, xmax = 1500, ymin = 0.5, ymax = 1.5, fill = "lightgreen", alpha = 0.3)
ggplot(data, aes(x = factor(Attrition), y = DailyRate, color = factor(Attrition))) +
geom_jitter(position = position_jitter(width = 0.2), alpha = 0.7) +
labs(x = "Attrition", y = "DailyRate") +
ggtitle("Attrition vs DailyRate") +
theme_minimal()
ggplot(data, aes(x = Attrition, fill = Department)) +
geom_bar(position = "stack") +
labs(x = "Attrition", y = "Count") +
ggtitle("Stacked Bar Plot of Attrition vs Department") +
theme_minimal()
##Distance from Home
ggplot(data, aes(x = DistanceFromHome, y = factor(Attrition))) +
geom_violin() +
labs(x = "DistanceFromHome", y = "Attrition") +
ggtitle("Attrition vs Distance From Home") +
theme_minimal()
ggplot(data, aes(x = Attrition, fill = Gender)) +
geom_bar(position = "dodge", width = 0.7) +
labs(x = "Attrition", y = "Count") +
ggtitle("Grouped Bar Plot of Attrition vs Gender") +
theme_minimal()
## Warning: The following aesthetics were dropped during statistical transformation: fill.
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
Our data is not good to proceed because as we know that out data has
yes:no=1:5 so it is not good to go with the data here we can upscale the
diminishing feature of the output by up sampling methods like 1. ordered
list 2. item 2 + Upsampling Minority Class + Downsampling Majority Class
+ Generate Synthetic Data + Combine Upsampling & Downsampling
Techniques + Balanced Class Weight We used Upsampling Minority
Class method,which is better fit for our data. #Random Forest
##Upsampling
indices_1 <- which(req_data$Attrition == 1)
# Get the rows with 1s
rows_with_1s <- req_data[indices_1, ]
# Duplicate rows with 1s
duplicated_rows <- rows_with_1s[rep(1:nrow(rows_with_1s), times =4 ), ]
##Random Forest Model
# Combine original data with duplicated rows
req_data1 <- rbind(req_data, duplicated_rows)
# Shuffle the rows
req_data1 <- req_data1[sample(nrow(req_data1)), ]
# Reset row names
rownames(req_data1) <- NULL
split=sample.split(req_data1,SplitRatio = 0.80)
dim(split)
## NULL
train=subset(req_data1,split=="TRUE")
names(train)
## [1] "Age" "Attrition"
## [3] "BusinessTravel" "DailyRate"
## [5] "Department" "DistanceFromHome"
## [7] "EducationField" "EnvironmentSatisfaction"
## [9] "JobInvolvement" "JobLevel"
## [11] "JobRole" "JobSatisfaction"
## [13] "MaritalStatus" "MonthlyIncome"
## [15] "OverTime" "StockOptionLevel"
## [17] "TotalWorkingYears" "TrainingTimesLastYear"
## [19] "WorkLifeBalance" "YearsAtCompany"
## [21] "YearsInCurrentRole" "YearsWithCurrManager"
test=subset(req_data1,split=="FALSE")
names(test)
## [1] "Age" "Attrition"
## [3] "BusinessTravel" "DailyRate"
## [5] "Department" "DistanceFromHome"
## [7] "EducationField" "EnvironmentSatisfaction"
## [9] "JobInvolvement" "JobLevel"
## [11] "JobRole" "JobSatisfaction"
## [13] "MaritalStatus" "MonthlyIncome"
## [15] "OverTime" "StockOptionLevel"
## [17] "TotalWorkingYears" "TrainingTimesLastYear"
## [19] "WorkLifeBalance" "YearsAtCompany"
## [21] "YearsInCurrentRole" "YearsWithCurrManager"
nrow(test)
## [1] 550
set.seed(120)
train$Attrition <- factor(train$Attrition)
classifier_RF= randomForest(x=train[-2],
y=train$Attrition,
ntree=900)
classifier_RF
##
## Call:
## randomForest(x = train[-2], y = train$Attrition, ntree = 900)
## Type of random forest: classification
## Number of trees: 900
## No. of variables tried at each split: 4
##
## OOB estimate of error rate: 2.73%
## Confusion matrix:
## 0 1 class.error
## 0 890 49 0.052183174
## 1 2 927 0.002152853
Predictions
y_pred=predict(classifier_RF,newdata=test[-2])
y_pred
## 1 5 9 10 16 23 27 31 32 38 45 49 53 54 60 67
## 1 0 1 1 0 0 1 0 0 0 0 0 1 1 1 0
## 71 75 76 82 89 93 97 98 104 111 115 119 120 126 133 137
## 0 0 1 1 1 0 1 0 0 1 0 0 0 1 1 1
## 141 142 148 155 159 163 164 170 177 181 185 186 192 199 203 207
## 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0
## 208 214 221 225 229 230 236 243 247 251 252 258 265 269 273 274
## 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1
## 280 287 291 295 296 302 309 313 317 318 324 331 335 339 340 346
## 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1
## 353 357 361 362 368 375 379 383 384 390 397 401 405 406 412 419
## 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1
## 423 427 428 434 441 445 449 450 456 463 467 471 472 478 485 489
## 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0
## 493 494 500 507 511 515 516 522 529 533 537 538 544 551 555 559
## 1 1 0 0 1 1 1 1 0 0 1 0 0 0 1 0
## 560 566 573 577 581 582 588 595 599 603 604 610 617 621 625 626
## 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 0
## 632 639 643 647 648 654 661 665 669 670 676 683 687 691 692 698
## 1 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1
## 705 709 713 714 720 727 731 735 736 742 749 753 757 758 764 771
## 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 1
## 775 779 780 786 793 797 801 802 808 815 819 823 824 830 837 841
## 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1
## 845 846 852 859 863 867 868 874 881 885 889 890 896 903 907 911
## 1 1 1 0 0 0 0 0 0 1 1 0 1 0 1 1
## 912 918 925 929 933 934 940 947 951 955 956 962 969 973 977 978
## 1 0 1 1 1 0 0 0 0 0 1 1 0 0 1 1
## 984 991 995 999 1000 1006 1013 1017 1021 1022 1028 1035 1039 1043 1044 1050
## 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
## 1057 1061 1065 1066 1072 1079 1083 1087 1088 1094 1101 1105 1109 1110 1116 1123
## 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1
## 1127 1131 1132 1138 1145 1149 1153 1154 1160 1167 1171 1175 1176 1182 1189 1193
## 1 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0
## 1197 1198 1204 1211 1215 1219 1220 1226 1233 1237 1241 1242 1248 1255 1259 1263
## 0 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1
## 1264 1270 1277 1281 1285 1286 1292 1299 1303 1307 1308 1314 1321 1325 1329 1330
## 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1
## 1336 1343 1347 1351 1352 1358 1365 1369 1373 1374 1380 1387 1391 1395 1396 1402
## 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0
## 1409 1413 1417 1418 1424 1431 1435 1439 1440 1446 1453 1457 1461 1462 1468 1475
## 0 1 1 0 0 1 1 1 1 0 0 1 0 0 1 0
## 1479 1483 1484 1490 1497 1501 1505 1506 1512 1519 1523 1527 1528 1534 1541 1545
## 0 0 1 1 1 1 1 0 1 0 0 0 0 0 1 1
## 1549 1550 1556 1563 1567 1571 1572 1578 1585 1589 1593 1594 1600 1607 1611 1615
## 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1
## 1616 1622 1629 1633 1637 1638 1644 1651 1655 1659 1660 1666 1673 1677 1681 1682
## 0 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0
## 1688 1695 1699 1703 1704 1710 1717 1721 1725 1726 1732 1739 1743 1747 1748 1754
## 1 1 0 0 0 1 0 0 0 1 1 1 0 0 1 0
## 1761 1765 1769 1770 1776 1783 1787 1791 1792 1798 1805 1809 1813 1814 1820 1827
## 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0
## 1831 1835 1836 1842 1849 1853 1857 1858 1864 1871 1875 1879 1880 1886 1893 1897
## 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 0
## 1901 1902 1908 1915 1919 1923 1924 1930 1937 1941 1945 1946 1952 1959 1963 1967
## 0 1 1 1 0 1 0 0 0 0 1 1 1 1 0 1
## 1968 1974 1981 1985 1989 1990 1996 2003 2007 2011 2012 2018 2025 2029 2033 2034
## 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
## 2040 2047 2051 2055 2056 2062 2069 2073 2077 2078 2084 2091 2095 2099 2100 2106
## 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0
## 2113 2117 2121 2122 2128 2135 2139 2143 2144 2150 2157 2161 2165 2166 2172 2179
## 0 0 1 0 1 0 0 1 1 1 0 1 1 0 0 0
## 2183 2187 2188 2194 2201 2205 2209 2210 2216 2223 2227 2231 2232 2238 2245 2249
## 0 1 1 1 0 1 0 0 1 0 0 1 0 0 0 1
## 2253 2254 2260 2267 2271 2275 2276 2282 2289 2293 2297 2298 2304 2311 2315 2319
## 1 1 1 0 0 1 0 0 0 1 1 1 1 1 1 1
## 2320 2326 2333 2337 2341 2342 2348 2355 2359 2363 2364 2370 2377 2381 2385 2386
## 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1
## 2392 2399 2403 2407 2408 2414
## 0 1 1 1 1 1
## Levels: 0 1
confusion_mtx=table(test[,2],y_pred)
confusion_mtx
## y_pred
## 0 1
## 0 279 15
## 1 0 256
plot(classifier_RF)
importance(classifier_RF)
## MeanDecreaseGini
## Age 76.89543
## BusinessTravel 18.30494
## DailyRate 73.20719
## Department 15.51714
## DistanceFromHome 55.71008
## EducationField 26.62398
## EnvironmentSatisfaction 39.06212
## JobInvolvement 29.24384
## JobLevel 32.42759
## JobRole 39.07922
## JobSatisfaction 37.76589
## MaritalStatus 26.73549
## MonthlyIncome 96.04783
## OverTime 67.11484
## StockOptionLevel 43.87606
## TotalWorkingYears 57.32128
## TrainingTimesLastYear 33.23878
## WorkLifeBalance 27.47825
## YearsAtCompany 56.15705
## YearsInCurrentRole 38.70397
## YearsWithCurrManager 41.58885
varImpPlot(classifier_RF)
##Accuracy of Random forest model
TP <- confusion_mtx[2, 2]
TN <- confusion_mtx[1, 1]
FP <- confusion_mtx[1, 2]
FN <- confusion_mtx[2, 1]
# Calculate accuracy
accuracy <- (TP + TN) / sum(confusion_mtx)
# Calculate precision
precision <- TP / (TP + FP)
# Calculate recall (sensitivity)
recall <- TP / (TP + FN)
# Calculate F1-score
f1_score <- 2 * (precision * recall) / (precision + recall)
# Print the calculated metrics
print(paste("Accuracy:", round(accuracy, 4)))
## [1] "Accuracy: 0.9727"
print(paste("Precision:", round(precision, 4)))
## [1] "Precision: 0.9446"
print(paste("Recall:", round(recall, 4)))
## [1] "Recall: 1"
print(paste("F1-score:", round(f1_score, 4)))
## [1] "F1-score: 0.9715"
#printing confusion matrix
# Define row and column names for the confusion matrix
rownames(confusion_mtx) <- c("Actual 0", "Actual 1")
colnames(confusion_mtx) <- c("Predicted 0", "Predicted 1")
# Plot the confusion matrix as a heatmap
heatmap(confusion_mtx,
col = heat.colors(10),
scale = "column",
margins = c(15,15),
main = "Confusion Matrix",
xlab = "Predicted",
ylab = "Actual"
)
# ANN Model
#Building ANN-Model
#Label encoding for categorical values, deleting unnecessary features
names(req_data)
## [1] "Age" "Attrition"
## [3] "BusinessTravel" "DailyRate"
## [5] "Department" "DistanceFromHome"
## [7] "EducationField" "EnvironmentSatisfaction"
## [9] "JobInvolvement" "JobLevel"
## [11] "JobRole" "JobSatisfaction"
## [13] "MaritalStatus" "MonthlyIncome"
## [15] "OverTime" "StockOptionLevel"
## [17] "TotalWorkingYears" "TrainingTimesLastYear"
## [19] "WorkLifeBalance" "YearsAtCompany"
## [21] "YearsInCurrentRole" "YearsWithCurrManager"
names(req_data)
## [1] "Age" "Attrition"
## [3] "BusinessTravel" "DailyRate"
## [5] "Department" "DistanceFromHome"
## [7] "EducationField" "EnvironmentSatisfaction"
## [9] "JobInvolvement" "JobLevel"
## [11] "JobRole" "JobSatisfaction"
## [13] "MaritalStatus" "MonthlyIncome"
## [15] "OverTime" "StockOptionLevel"
## [17] "TotalWorkingYears" "TrainingTimesLastYear"
## [19] "WorkLifeBalance" "YearsAtCompany"
## [21] "YearsInCurrentRole" "YearsWithCurrManager"
req_data$BusinessTravel = as.integer(factor(req_data$BusinessTravel, levels = unique(req_data$BusinessTravel)))
req_data$Department = as.integer(factor(req_data$Department, levels = unique(req_data$Department)))
req_data$EducationField = as.integer(factor(req_data$EducationField, levels = unique(req_data$EducationField)))
req_data$JobRole = as.integer(factor(req_data$JobRole, levels = unique(req_data$JobRole)))
req_data$MaritalStatus = as.integer(factor(req_data$MaritalStatus, levels = unique(req_data$MaritalStatus)))
print(req_data)
## Age Attrition BusinessTravel DailyRate Department DistanceFromHome
## 1 41 1 1 1102 1 1
## 2 49 0 2 279 2 8
## 3 37 1 1 1373 2 2
## 4 33 0 2 1392 2 3
## 5 27 0 1 591 2 2
## 6 32 0 2 1005 2 2
## 7 59 0 1 1324 2 3
## 8 30 0 1 1358 2 24
## 9 38 0 2 216 2 23
## 10 36 0 1 1299 2 27
## 11 35 0 1 809 2 16
## 12 29 0 1 153 2 15
## 13 31 0 1 670 2 26
## 14 34 0 1 1346 2 19
## 15 28 1 1 103 2 24
## 16 29 0 1 1389 2 21
## 17 32 0 1 334 2 5
## 18 22 0 3 1123 2 16
## 19 53 0 1 1219 1 2
## 20 38 0 1 371 2 2
## 21 24 0 3 673 2 11
## 22 36 1 1 1218 1 9
## 23 34 0 1 419 2 7
## 24 21 0 1 391 2 15
## 25 34 1 1 699 2 6
## 26 53 0 1 1282 2 5
## 27 32 1 2 1125 2 16
## 28 42 0 1 691 1 8
## 29 44 0 1 477 2 7
## 30 46 0 1 705 1 2
## 31 33 0 1 924 2 2
## 32 44 0 1 1459 2 10
## 33 30 0 1 125 2 9
## 34 39 1 1 895 1 5
## 35 24 1 1 813 2 1
## 36 43 0 1 1273 2 2
## 37 50 1 1 869 1 3
## 38 35 0 1 890 1 2
## 39 36 0 1 852 2 5
## 40 33 0 2 1141 1 1
## 41 35 0 1 464 2 4
## 42 27 0 1 1240 2 2
## 43 26 1 1 1357 2 25
## 44 27 0 2 994 1 8
## 45 30 0 2 721 2 1
## 46 41 1 1 1360 2 12
## 47 34 0 3 1065 1 23
## 48 37 0 1 408 2 19
## 49 46 0 2 1211 1 5
## 50 35 0 1 1229 2 8
## 51 48 1 1 626 2 1
## 52 28 1 1 1434 2 5
## 53 44 0 1 1488 1 1
## 54 35 0 3 1097 2 11
## 55 26 0 1 1443 1 23
## 56 33 0 2 515 2 1
## 57 35 0 2 853 1 18
## 58 35 0 1 1142 2 23
## 59 31 0 1 655 2 7
## 60 37 0 1 1115 2 1
## 61 32 0 1 427 2 1
## 62 38 0 2 653 2 29
## 63 50 0 1 989 2 7
## 64 59 0 1 1435 1 25
## 65 36 0 1 1223 2 8
## 66 55 0 1 836 2 8
## 67 36 0 2 1195 2 11
## 68 45 0 1 1339 2 7
## 69 35 0 2 664 2 1
## 70 36 1 1 318 2 9
## 71 59 0 2 1225 1 1
## 72 29 0 1 1328 2 2
## 73 31 0 1 1082 2 1
## 74 32 0 1 548 2 1
## 75 36 0 1 132 2 6
## 76 31 0 1 746 2 8
## 77 35 0 1 776 1 1
## 78 45 0 1 193 2 6
## 79 37 0 1 397 2 7
## 80 46 0 1 945 3 5
## 81 30 0 1 852 2 1
## 82 35 0 1 1214 2 1
## 83 55 0 1 111 1 1
## 84 38 0 3 573 2 6
## 85 34 0 1 1153 2 1
## 86 56 0 1 1400 2 7
## 87 23 0 1 541 1 2
## 88 51 0 1 432 2 9
## 89 30 0 1 288 2 2
## 90 46 1 1 669 1 9
## 91 40 0 2 530 2 1
## 92 51 0 1 632 1 21
## 93 30 0 1 1334 1 4
## 94 46 0 2 638 2 1
## 95 32 0 1 1093 1 6
## 96 54 0 1 1217 2 2
## 97 24 0 1 1353 1 3
## 98 28 0 3 120 1 4
## 99 58 0 1 682 1 10
## 100 44 0 3 489 2 23
## 101 37 1 1 807 3 6
## 102 32 0 1 827 2 1
## 103 20 1 2 871 2 6
## 104 34 0 1 665 2 6
## 105 37 0 3 1040 2 2
## 106 59 0 3 1420 3 2
## 107 50 0 2 1115 2 1
## 108 25 1 1 240 1 5
## 109 25 0 1 1280 2 7
## 110 22 0 1 534 2 15
## 111 51 0 2 1456 2 1
## 112 34 1 2 658 2 7
## 113 54 0 3 142 3 26
## 114 24 0 1 1127 2 18
## 115 34 0 1 1031 2 6
## 116 37 0 1 1189 1 3
## 117 34 0 1 1354 2 5
## 118 36 0 2 1467 1 11
## 119 36 0 1 922 2 3
## 120 43 0 2 394 1 26
## 121 30 0 2 1312 2 23
## 122 33 0 3 750 1 22
## 123 56 1 1 441 2 14
## 124 51 0 1 684 2 6
## 125 31 1 1 249 1 6
## 126 26 0 1 841 2 6
## 127 58 1 1 147 2 23
## 128 19 1 1 528 1 22
## 129 22 0 1 594 2 2
## 130 49 0 1 470 2 20
## 131 43 0 2 957 2 28
## 132 50 0 2 809 1 12
## 133 31 1 1 542 1 20
## 134 41 0 1 802 1 9
## 135 26 0 1 1355 3 25
## 136 36 0 1 216 2 6
## 137 51 1 2 1150 2 8
## 138 39 0 1 1329 1 4
## 139 25 0 1 959 1 28
## 140 30 0 1 1240 3 9
## 141 32 1 1 1033 2 9
## 142 45 0 1 1316 2 29
## 143 38 0 1 364 2 3
## 144 30 0 1 438 2 18
## 145 32 0 2 689 1 9
## 146 30 0 1 201 2 5
## 147 30 0 1 1427 2 2
## 148 41 0 2 857 2 10
## 149 41 0 1 933 2 9
## 150 19 0 1 1181 2 3
## 151 40 0 2 1395 2 26
## 152 35 0 1 662 1 1
## 153 53 0 1 1436 1 6
## 154 45 0 1 194 2 9
## 155 32 0 2 967 1 8
## 156 29 0 3 1496 2 1
## 157 51 0 1 1169 2 7
## 158 58 0 1 1145 2 9
## 159 40 0 1 630 1 4
## 160 34 0 2 303 1 2
## 161 22 0 1 1256 2 19
## 162 27 0 3 691 2 9
## 163 28 0 1 440 2 21
## 164 57 0 1 334 2 24
## 165 27 0 3 1450 2 3
## 166 50 0 1 1452 2 11
## 167 41 0 1 465 2 14
## 168 30 0 1 1339 1 5
## 169 38 0 1 702 1 1
## 170 32 0 1 120 2 6
## 171 27 0 1 1157 2 17
## 172 19 1 2 602 1 1
## 173 36 0 2 1480 2 3
## 174 30 0 3 111 2 9
## 175 45 0 1 1268 1 4
## 176 56 0 1 713 2 8
## 177 33 0 1 134 2 2
## 178 19 1 1 303 2 2
## 179 46 0 1 526 1 1
## 180 38 0 1 1380 2 9
## 181 31 0 1 140 2 12
## 182 34 0 1 629 2 27
## 183 41 1 1 1356 1 20
## 184 50 0 1 328 2 1
## 185 53 0 1 1084 2 13
## 186 33 0 1 931 2 14
## 187 40 0 1 989 2 4
## 188 55 0 1 692 2 14
## 189 34 0 2 1069 2 2
## 190 51 0 1 313 2 3
## 191 52 0 1 699 2 1
## 192 27 0 1 894 2 9
## 193 35 1 1 556 2 23
## 194 43 0 3 1344 2 7
## 195 45 0 3 1195 2 2
## 196 37 0 1 290 2 21
## 197 35 0 2 138 2 2
## 198 42 0 3 926 2 21
## 199 38 0 1 1261 2 2
## 200 38 0 1 1084 2 29
## 201 27 0 2 472 2 1
## 202 49 0 3 1002 2 18
## 203 34 0 2 878 2 10
## 204 40 0 1 905 2 19
## 205 38 1 1 1180 2 29
## 206 29 1 1 121 1 27
## 207 22 0 1 1136 2 5
## 208 36 0 2 635 2 18
## 209 40 0 3 1151 2 9
## 210 46 0 1 644 2 1
## 211 32 1 1 1045 1 4
## 212 30 0 3 829 2 1
## 213 27 0 2 1242 1 20
## 214 51 0 1 1469 2 8
## 215 30 1 1 1005 2 3
## 216 41 0 1 896 1 6
## 217 30 1 2 334 1 26
## 218 29 1 1 992 2 1
## 219 45 0 3 1052 1 6
## 220 54 0 1 1147 1 3
## 221 36 0 1 1396 2 5
## 222 33 0 1 147 2 4
## 223 37 0 2 663 2 11
## 224 38 0 1 119 1 3
## 225 31 0 3 979 2 1
## 226 59 0 1 142 2 3
## 227 37 0 2 319 1 4
## 228 29 0 2 1413 1 1
## 229 35 0 2 944 1 1
## 230 29 1 1 896 2 18
## 231 52 0 1 1323 2 2
## 232 42 0 1 532 2 4
## 233 59 0 1 818 3 6
## 234 50 0 1 854 1 1
## 235 33 1 1 813 2 14
## 236 43 0 1 1034 1 16
## 237 33 1 1 465 2 2
## 238 52 0 3 771 1 2
## 239 32 0 1 1401 1 4
## 240 32 1 1 515 2 1
## 241 39 0 1 1431 2 1
## 242 32 0 3 976 1 26
## 243 41 0 1 1411 2 19
## 244 40 0 1 1300 2 24
## 245 45 0 1 252 2 1
## 246 31 0 2 1327 2 3
## 247 33 0 1 832 2 5
## 248 34 0 1 470 2 2
## 249 37 0 1 1017 2 1
## 250 45 0 2 1199 2 7
## 251 37 1 2 504 2 10
## 252 39 0 2 505 2 2
## 253 29 0 1 665 2 15
## 254 42 0 1 916 2 17
## 255 29 0 1 1247 1 20
## 256 25 0 1 685 2 1
## 257 42 0 1 269 2 2
## 258 40 0 1 1416 2 2
## 259 51 0 1 833 2 1
## 260 31 1 2 307 2 29
## 261 32 0 2 1311 2 7
## 262 38 0 3 1327 1 2
## 263 32 0 1 128 2 2
## 264 46 0 1 488 1 2
## 265 28 1 1 529 2 2
## 266 29 0 1 1210 1 2
## 267 31 0 1 1463 2 23
## 268 25 0 3 675 2 5
## 269 45 0 1 1385 2 20
## 270 36 0 1 1403 2 6
## 271 55 0 1 452 2 1
## 272 47 1 3 666 2 29
## 273 28 0 1 1158 2 9
## 274 37 0 1 228 1 6
## 275 21 0 1 996 2 3
## 276 37 0 3 728 2 1
## 277 35 0 1 1315 2 22
## 278 38 0 1 322 1 7
## 279 26 0 2 1479 2 1
## 280 50 0 1 797 2 4
## 281 53 0 1 1070 2 3
## 282 42 0 1 635 1 1
## 283 29 0 2 442 1 2
## 284 55 0 1 147 2 20
## 285 26 0 2 496 2 11
## 286 37 0 1 1372 2 1
## 287 44 1 2 920 2 24
## 288 38 0 1 688 2 23
## 289 26 1 1 1449 2 16
## 290 28 0 1 1117 2 8
## 291 49 0 2 636 2 10
## 292 36 0 1 506 2 3
## 293 31 0 2 444 1 5
## 294 26 1 1 950 1 4
## 295 37 0 2 889 2 9
## 296 42 0 2 555 1 26
## 297 18 1 1 230 2 3
## 298 35 0 1 1232 1 16
## 299 36 0 2 566 2 18
## 300 51 0 1 1302 2 2
## 301 41 0 1 334 1 2
## 302 18 0 1 812 1 10
## 303 28 0 1 1476 2 16
## 304 31 0 1 218 1 7
## 305 39 0 1 1132 2 1
## 306 36 0 3 1105 2 24
## 307 32 0 1 906 1 7
## 308 38 0 1 849 2 25
## 309 58 0 3 390 2 1
## 310 31 0 1 691 2 5
## 311 31 0 1 106 3 2
## 312 45 0 2 1249 2 7
## 313 31 0 1 192 2 2
## 314 33 0 2 553 2 5
## 315 39 0 1 117 2 10
## 316 43 0 2 185 2 10
## 317 49 0 1 1091 2 1
## 318 52 1 1 723 2 8
## 319 27 0 1 1220 2 5
## 320 32 0 1 588 1 8
## 321 27 0 1 1377 1 2
## 322 31 0 1 691 1 7
## 323 32 0 1 1018 2 2
## 324 28 1 1 1157 2 2
## 325 30 0 1 1275 2 28
## 326 31 0 2 798 2 7
## 327 39 0 2 672 2 7
## 328 39 1 1 1162 1 3
## 329 33 0 2 508 1 10
## 330 47 0 1 1482 2 5
## 331 43 0 2 559 2 10
## 332 27 0 3 210 1 1
## 333 54 0 2 928 2 20
## 334 43 0 1 1001 2 7
## 335 45 0 1 549 2 8
## 336 40 0 1 1124 1 1
## 337 29 1 1 318 2 8
## 338 29 0 1 738 2 9
## 339 30 0 1 570 1 5
## 340 27 0 1 1130 1 8
## 341 37 0 1 1192 2 5
## 342 38 0 1 343 2 15
## 343 31 0 1 1232 2 7
## 344 29 0 1 144 1 10
## 345 35 0 1 1296 2 5
## 346 23 0 1 1309 2 26
## 347 41 0 1 483 2 6
## 348 47 0 2 1309 1 4
## 349 42 0 1 810 2 23
## 350 29 0 3 746 1 2
## 351 42 0 1 544 3 2
## 352 32 0 1 1062 2 2
## 353 48 0 1 530 1 29
## 354 37 0 1 1319 2 6
## 355 30 0 3 641 1 25
## 356 26 0 1 933 1 1
## 357 42 0 1 1332 2 2
## 358 21 1 2 756 1 1
## 359 36 0 3 845 1 1
## 360 36 0 2 541 1 3
## 361 57 0 1 593 2 1
## 362 40 0 1 1171 2 10
## 363 21 0 3 895 1 9
## 364 33 1 1 350 1 5
## 365 37 0 1 921 2 10
## 366 46 0 3 1144 2 7
## 367 41 1 2 143 1 4
## 368 50 0 1 1046 2 10
## 369 40 1 1 575 1 22
## 370 31 0 1 408 2 9
## 371 21 1 1 156 1 12
## 372 29 0 1 1283 2 23
## 373 35 0 1 755 2 9
## 374 27 0 1 1469 2 1
## 375 28 0 1 304 1 9
## 376 49 0 1 1261 2 7
## 377 51 0 1 1178 1 14
## 378 36 0 1 329 2 2
## 379 34 1 3 1362 1 19
## 380 55 0 1 1311 2 2
## 381 24 0 1 1371 1 10
## 382 30 0 1 202 1 2
## 383 26 1 2 575 2 3
## 384 22 0 1 253 2 11
## 385 36 0 1 164 1 2
## 386 30 1 2 464 2 4
## 387 37 0 1 1107 2 14
## 388 40 0 1 759 1 2
## 389 42 0 1 201 2 1
## 390 37 0 1 1305 2 10
## 391 43 0 1 982 2 12
## 392 40 0 1 555 2 2
## 393 54 0 1 821 2 5
## 394 34 0 3 1381 1 4
## 395 31 0 1 480 2 7
## 396 43 0 2 313 2 21
## 397 43 0 1 1473 2 8
## 398 25 0 1 891 1 4
## 399 37 0 3 1063 2 25
## 400 31 0 1 329 2 1
## 401 39 0 2 1218 2 1
## 402 56 0 2 906 1 6
## 403 30 0 1 1082 1 12
## 404 41 0 1 645 1 1
## 405 28 0 1 1300 2 17
## 406 25 1 1 688 2 3
## 407 52 0 1 319 2 3
## 408 45 0 1 192 2 10
## 409 52 0 1 1490 2 4
## 410 42 0 2 532 2 29
## 411 30 0 1 317 2 2
## 412 60 0 1 422 2 7
## 413 46 0 1 1485 2 18
## 414 42 0 2 1368 2 28
## 415 24 1 1 1448 1 1
## 416 34 1 2 296 1 6
## 417 38 0 2 1490 2 2
## 418 40 0 1 1398 1 2
## 419 26 0 1 1349 2 23
## 420 30 0 3 1400 2 3
## 421 29 0 1 986 2 3
## 422 29 1 1 408 2 25
## 423 19 1 1 489 3 2
## 424 30 0 3 1398 1 22
## 425 57 0 1 210 1 29
## 426 50 0 1 1099 2 29
## 427 30 0 3 1116 2 2
## 428 60 0 2 1499 1 28
## 429 47 0 1 983 2 2
## 430 46 0 1 1009 2 2
## 431 35 0 1 144 2 22
## 432 54 0 1 548 2 8
## 433 34 0 1 1303 2 2
## 434 46 0 1 1125 1 10
## 435 31 0 1 1274 2 9
## 436 33 1 1 1277 2 15
## 437 33 1 1 587 2 10
## 438 30 0 1 413 1 7
## 439 35 0 1 1276 2 16
## 440 31 1 2 534 2 20
## 441 34 1 2 988 3 23
## 442 42 0 2 1474 2 5
## 443 36 0 3 635 1 10
## 444 22 1 2 1368 2 4
## 445 48 0 1 163 1 2
## 446 55 0 1 1117 1 18
## 447 41 0 3 267 1 10
## 448 35 0 1 619 1 1
## 449 40 0 1 302 2 6
## 450 39 0 2 443 2 8
## 451 31 0 1 828 1 2
## 452 42 0 1 319 2 24
## 453 45 0 1 561 1 2
## 454 26 1 2 426 3 17
## 455 29 0 1 232 2 19
## 456 33 0 1 922 2 1
## 457 31 0 1 688 1 7
## 458 18 1 2 1306 1 5
## 459 40 0 3 1094 1 28
## 460 41 0 3 509 2 2
## 461 26 0 1 775 1 29
## 462 35 0 1 195 1 1
## 463 34 0 1 258 1 21
## 464 26 1 1 471 2 24
## 465 37 0 1 799 2 1
## 466 46 0 2 1034 2 18
## 467 41 0 1 1276 1 2
## 468 37 0 3 142 1 9
## 469 52 0 1 956 2 6
## 470 32 1 3 1474 1 11
## 471 24 0 2 535 1 24
## 472 38 0 1 1495 2 10
## 473 37 0 1 446 2 1
## 474 49 0 1 1245 2 18
## 475 24 0 1 691 2 23
## 476 26 0 1 703 1 28
## 477 24 0 1 823 2 17
## 478 50 0 2 1246 3 3
## 479 25 0 1 622 1 13
## 480 24 1 2 1287 2 7
## 481 30 1 2 448 1 12
## 482 34 0 1 254 2 1
## 483 31 1 1 1365 1 13
## 484 35 0 1 538 2 25
## 485 31 0 1 525 1 6
## 486 27 0 1 798 2 6
## 487 37 0 1 558 1 2
## 488 20 0 1 959 2 1
## 489 42 0 1 622 2 2
## 490 43 0 1 782 2 6
## 491 38 0 1 362 2 1
## 492 43 0 2 1001 2 9
## 493 48 0 1 1236 2 1
## 494 44 0 1 1112 3 1
## 495 34 0 1 204 1 14
## 496 27 1 1 1420 1 2
## 497 21 0 1 1343 1 22
## 498 44 0 1 1315 2 3
## 499 22 0 1 604 2 6
## 500 33 0 1 1216 1 8
## 501 32 0 1 646 2 9
## 502 30 0 2 160 2 3
## 503 53 0 1 238 1 1
## 504 34 0 1 1397 2 1
## 505 45 1 2 306 1 26
## 506 26 0 1 991 2 6
## 507 37 0 1 482 2 3
## 508 29 0 1 1176 1 3
## 509 35 0 1 1017 2 6
## 510 33 0 2 1296 2 6
## 511 54 0 1 397 3 19
## 512 36 0 1 913 2 9
## 513 27 0 1 1115 2 3
## 514 20 1 1 1362 2 10
## 515 33 1 2 1076 2 3
## 516 35 0 3 727 2 3
## 517 23 0 1 885 2 4
## 518 25 0 1 810 1 8
## 519 38 0 1 243 1 7
## 520 29 0 2 806 2 1
## 521 48 0 1 817 1 2
## 522 27 0 2 1410 1 3
## 523 37 0 1 1225 2 10
## 524 50 0 1 1207 2 28
## 525 34 0 1 1442 2 9
## 526 24 1 1 693 1 3
## 527 39 0 1 408 2 2
## 528 32 0 1 929 1 10
## 529 50 1 2 562 1 8
## 530 38 0 1 827 2 1
## 531 27 0 1 608 2 1
## 532 32 0 1 1018 2 3
## 533 47 0 1 703 1 14
## 534 40 0 2 580 1 5
## 535 53 0 1 970 2 7
## 536 41 0 1 427 3 10
## 537 60 0 1 1179 1 16
## 538 27 0 2 294 2 10
## 539 41 0 1 314 3 1
## 540 50 0 1 316 1 8
## 541 28 1 1 654 2 1
## 542 36 0 3 427 2 8
## 543 38 0 1 168 2 1
## 544 44 0 3 381 2 24
## 545 47 0 2 217 1 3
## 546 30 0 1 501 1 27
## 547 29 0 1 1396 1 10
## 548 42 1 2 933 2 19
## 549 43 0 2 775 1 15
## 550 34 0 1 970 2 8
## 551 23 0 1 650 2 9
## 552 39 0 1 141 3 3
## 553 56 0 1 832 2 9
## 554 40 0 1 804 2 2
## 555 27 0 1 975 2 7
## 556 29 0 1 1090 1 10
## 557 53 0 1 346 2 6
## 558 35 0 3 1225 2 2
## 559 32 0 2 430 2 24
## 560 38 0 1 268 2 2
## 561 34 0 1 167 2 8
## 562 52 0 1 621 1 3
## 563 33 1 1 527 2 1
## 564 25 0 1 883 1 26
## 565 45 0 1 954 1 2
## 566 23 0 1 310 2 10
## 567 47 1 2 719 1 27
## 568 34 0 1 304 1 2
## 569 55 1 1 725 2 2
## 570 36 0 3 1434 1 8
## 571 52 0 3 715 2 19
## 572 26 0 2 575 2 1
## 573 29 0 1 657 2 27
## 574 26 1 1 1146 1 8
## 575 34 0 1 182 2 1
## 576 54 0 1 376 2 19
## 577 27 0 2 829 1 8
## 578 37 0 1 571 2 10
## 579 38 0 2 240 2 2
## 580 34 0 1 121 2 2
## 581 35 0 1 384 1 8
## 582 30 0 1 921 2 1
## 583 40 0 2 791 2 2
## 584 34 0 1 1111 1 8
## 585 42 0 2 570 2 8
## 586 23 1 1 1243 2 6
## 587 24 0 3 1092 2 9
## 588 52 0 1 1325 2 11
## 589 50 0 1 691 2 2
## 590 29 1 1 805 2 1
## 591 33 0 1 213 2 7
## 592 33 1 1 118 1 16
## 593 47 0 1 202 2 2
## 594 36 0 1 676 2 1
## 595 29 0 1 1252 2 23
## 596 58 1 1 286 2 2
## 597 35 0 1 1258 2 1
## 598 42 0 1 932 2 1
## 599 28 1 1 890 2 2
## 600 36 0 1 1041 3 13
## 601 32 0 1 859 2 4
## 602 40 0 2 720 2 16
## 603 30 0 1 946 2 2
## 604 45 0 1 252 2 2
## 605 42 0 1 933 2 29
## 606 38 0 2 471 2 12
## 607 34 0 2 702 2 16
## 608 49 1 1 1184 1 11
## 609 55 1 1 436 1 2
## 610 43 0 1 589 2 14
## 611 27 0 1 269 2 5
## 612 35 0 1 950 2 7
## 613 28 0 1 760 1 2
## 614 34 0 1 829 3 3
## 615 26 1 2 887 2 5
## 616 27 0 3 443 2 3
## 617 51 0 1 1318 1 26
## 618 44 0 1 625 2 4
## 619 25 0 1 180 2 2
## 620 33 0 1 586 1 1
## 621 35 0 1 1343 2 27
## 622 36 0 1 928 1 1
## 623 32 0 1 117 1 13
## 624 30 0 2 1012 2 5
## 625 53 0 1 661 1 7
## 626 45 0 1 930 1 9
## 627 32 0 1 638 2 8
## 628 52 0 2 890 2 25
## 629 37 0 1 342 1 16
## 630 28 0 1 1169 3 8
## 631 22 0 1 1230 2 1
## 632 44 0 1 986 2 8
## 633 42 0 2 1271 2 2
## 634 36 0 1 1278 3 8
## 635 25 0 1 141 1 3
## 636 35 0 1 607 2 9
## 637 35 1 2 130 2 25
## 638 32 0 3 300 2 1
## 639 25 0 1 583 1 4
## 640 49 0 1 1418 2 1
## 641 24 0 3 1269 2 4
## 642 32 0 2 379 1 5
## 643 38 0 1 395 1 9
## 644 42 0 1 1265 2 3
## 645 31 0 1 1222 2 11
## 646 29 1 1 341 1 1
## 647 53 0 1 868 1 8
## 648 35 0 1 672 2 25
## 649 37 0 2 1231 1 21
## 650 53 0 1 102 2 23
## 651 43 0 2 422 2 1
## 652 47 0 1 249 1 2
## 653 37 0 3 1252 1 19
## 654 50 0 3 881 2 2
## 655 39 0 1 1383 3 2
## 656 33 0 1 1075 3 3
## 657 32 1 1 374 2 25
## 658 29 0 1 1086 2 7
## 659 44 0 1 661 2 9
## 660 28 0 1 821 1 5
## 661 58 1 2 781 2 2
## 662 43 0 1 177 2 8
## 663 20 1 1 500 1 2
## 664 21 1 1 1427 2 18
## 665 36 0 1 1425 2 14
## 666 47 0 1 1454 1 2
## 667 22 1 1 617 2 3
## 668 41 1 1 1085 2 2
## 669 28 0 1 995 2 9
## 670 39 1 1 1122 2 6
## 671 27 0 1 618 2 4
## 672 34 0 1 546 2 10
## 673 42 0 1 462 1 14
## 674 33 0 1 1198 2 1
## 675 58 0 1 1272 2 5
## 676 31 0 1 154 1 7
## 677 35 0 1 1137 2 21
## 678 49 0 1 527 2 8
## 679 48 0 1 1469 2 20
## 680 31 0 3 1188 1 20
## 681 36 0 1 188 2 7
## 682 38 0 1 1333 2 1
## 683 32 0 3 1184 2 1
## 684 25 1 1 867 1 19
## 685 40 0 1 658 1 10
## 686 26 0 2 1283 1 1
## 687 41 0 1 263 2 6
## 688 36 0 1 938 2 2
## 689 19 1 1 419 1 21
## 690 20 1 1 129 2 4
## 691 31 0 1 616 2 12
## 692 40 0 2 1469 2 9
## 693 32 0 1 498 2 3
## 694 36 1 1 530 1 3
## 695 33 0 1 1069 2 1
## 696 37 1 1 625 1 1
## 697 45 0 3 805 2 4
## 698 29 0 2 1404 1 20
## 699 35 0 1 1219 1 18
## 700 52 0 1 1053 2 1
## 701 58 1 1 289 2 2
## 702 53 0 1 1376 1 2
## 703 30 0 1 231 1 8
## 704 38 0 3 152 1 10
## 705 35 0 1 882 1 3
## 706 39 0 1 903 1 2
## 707 40 1 3 1479 1 24
## 708 47 0 2 1379 2 16
## 709 36 0 3 1229 1 8
## 710 31 1 3 335 2 9
## 711 33 0 3 722 1 17
## 712 29 1 1 906 2 10
## 713 33 0 1 461 2 13
## 714 45 0 1 974 2 1
## 715 50 0 1 1126 2 1
## 716 33 0 2 827 2 1
## 717 41 0 2 840 2 9
## 718 27 0 1 1134 2 16
## 719 45 0 3 248 2 23
## 720 47 0 1 955 1 4
## 721 30 1 1 138 2 22
## 722 50 0 1 939 2 24
## 723 38 0 2 1391 2 10
## 724 46 0 1 566 2 7
## 725 24 0 1 1206 2 17
## 726 35 1 1 622 2 14
## 727 31 0 2 853 2 1
## 728 18 0 3 287 2 5
## 729 54 0 1 1441 2 17
## 730 35 0 1 583 2 25
## 731 30 0 1 153 2 8
## 732 20 1 1 1097 2 11
## 733 30 1 2 109 2 5
## 734 26 0 1 1066 2 2
## 735 22 0 1 217 2 8
## 736 48 0 1 277 2 6
## 737 48 0 1 1355 2 4
## 738 41 0 1 549 2 7
## 739 39 0 1 466 2 1
## 740 27 0 1 1055 2 2
## 741 35 0 1 802 2 10
## 742 42 0 1 265 1 5
## 743 50 0 1 804 2 9
## 744 59 0 1 715 2 2
## 745 37 1 1 1141 2 11
## 746 55 0 2 135 2 18
## 747 41 0 3 247 2 7
## 748 38 0 1 1035 1 3
## 749 26 1 3 265 1 29
## 750 52 1 1 266 1 2
## 751 44 0 1 1448 1 28
## 752 50 0 3 145 1 1
## 753 36 1 1 885 2 16
## 754 39 0 2 945 2 22
## 755 33 0 3 1038 1 8
## 756 45 0 1 1234 1 11
## 757 32 0 3 1109 2 29
## 758 34 0 1 216 1 1
## 759 59 0 1 1089 1 1
## 760 45 0 1 788 3 24
## 761 53 0 2 124 1 2
## 762 36 1 1 660 2 15
## 763 26 1 2 342 2 2
## 764 34 0 1 1333 1 10
## 765 28 0 1 1144 1 10
## 766 38 0 2 1186 2 3
## 767 50 0 1 1464 2 2
## 768 37 0 1 124 2 3
## 769 40 0 1 300 1 26
## 770 26 0 2 921 2 1
## 771 46 0 1 430 2 1
## 772 54 0 1 1082 1 2
## 773 56 0 2 1240 2 9
## 774 36 0 1 796 2 12
## 775 55 0 3 444 2 2
## 776 43 0 1 415 1 25
## 777 20 1 2 769 1 9
## 778 21 1 1 1334 2 10
## 779 46 0 1 1003 2 8
## 780 51 1 1 1323 2 4
## 781 28 1 3 1366 2 24
## 782 26 0 1 192 2 1
## 783 30 0 1 1176 2 20
## 784 41 0 1 509 2 7
## 785 38 0 1 330 2 17
## 786 40 0 1 1492 2 20
## 787 27 0 3 1277 2 8
## 788 55 0 2 1091 2 2
## 789 28 0 1 857 2 10
## 790 44 1 1 1376 3 1
## 791 33 0 1 654 2 5
## 792 35 1 1 1204 1 4
## 793 33 1 2 827 2 29
## 794 28 0 1 895 2 15
## 795 34 0 2 618 2 3
## 796 37 0 1 309 1 10
## 797 25 1 1 1219 2 4
## 798 26 1 1 1330 2 21
## 799 33 1 1 1017 2 25
## 800 42 0 1 469 2 2
## 801 28 1 2 1009 2 1
## 802 50 1 2 959 1 1
## 803 33 0 2 970 1 7
## 804 34 0 3 697 2 3
## 805 48 0 3 1262 2 1
## 806 45 0 3 1050 1 9
## 807 52 0 1 994 2 7
## 808 38 0 1 770 1 10
## 809 29 0 1 1107 2 28
## 810 28 0 1 950 2 3
## 811 46 0 1 406 1 3
## 812 38 0 1 130 1 2
## 813 43 0 2 1082 2 27
## 814 39 1 2 203 2 2
## 815 40 0 1 1308 2 14
## 816 21 0 1 984 2 1
## 817 39 0 3 439 2 9
## 818 36 0 3 217 2 18
## 819 31 0 2 793 1 20
## 820 28 0 1 1451 2 2
## 821 35 0 2 1182 1 11
## 822 49 0 1 174 1 8
## 823 34 0 2 1003 2 2
## 824 29 0 2 490 2 10
## 825 42 0 1 188 2 29
## 826 29 0 1 718 2 8
## 827 38 0 1 433 3 1
## 828 28 0 2 773 2 6
## 829 18 1 3 247 2 8
## 830 33 1 1 603 1 9
## 831 41 0 1 167 2 12
## 832 31 1 2 874 2 15
## 833 37 0 1 367 2 25
## 834 27 0 1 199 2 6
## 835 34 0 1 1400 1 9
## 836 35 0 1 528 3 8
## 837 29 1 1 408 1 23
## 838 40 0 2 593 2 9
## 839 42 1 2 481 1 12
## 840 42 0 1 647 1 4
## 841 35 0 1 982 2 1
## 842 24 0 1 477 2 24
## 843 28 1 1 1485 2 12
## 844 26 0 1 1384 2 3
## 845 30 0 1 852 1 10
## 846 40 0 2 902 2 26
## 847 35 0 1 819 2 2
## 848 34 0 2 669 2 1
## 849 35 0 2 636 2 4
## 850 43 1 1 1372 1 9
## 851 32 0 3 862 1 2
## 852 56 0 1 718 2 4
## 853 29 0 1 1401 2 6
## 854 19 0 1 645 2 9
## 855 45 0 1 1457 2 7
## 856 37 0 1 977 2 1
## 857 20 0 1 805 2 3
## 858 44 1 1 1097 2 10
## 859 53 0 1 1223 2 7
## 860 29 0 1 942 2 15
## 861 22 1 2 1256 2 3
## 862 46 0 1 1402 1 2
## 863 44 0 3 111 2 17
## 864 33 0 1 147 3 2
## 865 41 1 3 906 2 5
## 866 30 0 1 1329 1 29
## 867 40 0 2 1184 1 2
## 868 50 0 2 1421 2 2
## 869 28 0 1 1179 2 19
## 870 46 0 1 1450 2 15
## 871 35 0 1 1361 1 17
## 872 24 1 1 984 2 17
## 873 33 0 2 1146 1 25
## 874 36 0 1 917 2 6
## 875 30 0 1 853 2 7
## 876 44 0 1 200 2 29
## 877 20 0 1 654 1 21
## 878 46 0 1 150 2 2
## 879 42 0 3 179 3 2
## 880 60 0 1 696 1 7
## 881 32 0 2 116 2 13
## 882 32 0 2 1316 2 2
## 883 36 0 1 363 2 1
## 884 33 0 1 117 2 9
## 885 40 0 1 107 1 10
## 886 25 0 1 1356 1 10
## 887 30 0 1 1465 2 1
## 888 42 0 2 458 2 26
## 889 35 0 3 1212 1 8
## 890 27 0 1 1103 2 14
## 891 54 0 2 966 2 1
## 892 44 0 1 1117 2 2
## 893 19 1 3 504 2 10
## 894 29 0 1 1010 2 1
## 895 54 0 1 685 2 3
## 896 31 0 1 1332 2 11
## 897 31 0 1 1062 2 24
## 898 59 0 1 326 1 3
## 899 43 0 1 920 2 3
## 900 49 0 1 1098 2 4
## 901 36 0 2 469 2 3
## 902 48 0 1 969 2 2
## 903 27 0 1 1167 2 4
## 904 29 0 1 1329 2 7
## 905 48 0 1 715 2 1
## 906 29 0 1 694 2 1
## 907 34 0 1 1320 2 20
## 908 44 0 1 1099 1 5
## 909 33 0 1 536 1 10
## 910 19 0 1 265 2 25
## 911 23 0 1 373 2 1
## 912 25 1 2 599 1 24
## 913 26 0 1 583 2 4
## 914 45 1 1 1449 1 2
## 915 55 0 3 177 2 8
## 916 21 1 2 251 2 10
## 917 46 0 1 168 1 4
## 918 34 0 1 131 1 2
## 919 51 0 2 237 1 9
## 920 59 0 1 1429 2 18
## 921 34 0 2 135 2 19
## 922 28 0 2 791 2 1
## 923 44 0 1 1199 2 4
## 924 34 0 2 648 3 11
## 925 35 0 1 735 2 6
## 926 42 0 1 603 2 7
## 927 43 0 1 531 1 4
## 928 36 0 1 429 2 2
## 929 44 1 1 621 2 15
## 930 28 0 2 193 2 2
## 931 51 0 2 968 2 6
## 932 30 0 3 879 2 9
## 933 29 1 1 806 2 7
## 934 28 0 1 640 2 1
## 935 25 0 1 266 2 1
## 936 32 0 1 604 1 8
## 937 45 0 2 364 2 25
## 938 39 0 1 412 2 13
## 939 58 0 1 848 2 23
## 940 32 1 1 1089 2 7
## 941 39 1 1 360 2 23
## 942 30 0 1 1138 2 6
## 943 36 0 1 325 2 10
## 944 46 0 1 991 3 1
## 945 28 0 3 1476 2 1
## 946 50 0 1 1322 2 28
## 947 40 1 1 299 1 25
## 948 52 1 1 1030 1 5
## 949 30 0 1 634 2 17
## 950 39 0 1 524 2 18
## 951 31 0 3 587 1 2
## 952 41 0 3 256 1 10
## 953 31 1 2 1060 1 1
## 954 44 1 1 935 2 3
## 955 42 0 3 495 2 2
## 956 55 0 1 282 2 2
## 957 56 0 1 206 3 8
## 958 40 0 3 458 2 16
## 959 34 0 1 943 2 9
## 960 40 0 1 523 2 2
## 961 41 0 2 1018 1 1
## 962 35 0 2 482 2 4
## 963 51 0 1 770 3 5
## 964 38 0 1 1009 1 2
## 965 34 0 1 507 1 15
## 966 25 0 1 882 2 19
## 967 58 1 1 601 2 7
## 968 40 0 1 329 2 1
## 969 36 0 2 607 1 7
## 970 48 0 1 855 2 4
## 971 27 0 1 1291 1 11
## 972 51 0 1 1405 2 11
## 973 18 0 3 1124 2 1
## 974 35 0 1 817 2 1
## 975 27 0 2 793 1 2
## 976 55 1 1 267 1 13
## 977 56 0 1 1369 2 23
## 978 34 0 3 999 2 26
## 979 40 0 1 1202 2 2
## 980 34 0 1 285 2 29
## 981 31 1 2 703 1 2
## 982 35 1 2 662 1 18
## 983 38 0 2 693 2 7
## 984 34 0 1 404 2 2
## 985 28 0 1 736 1 26
## 986 31 1 1 330 2 22
## 987 39 0 1 1498 1 21
## 988 51 0 2 541 1 2
## 989 41 0 2 1200 2 22
## 990 37 0 1 1439 2 4
## 991 33 0 2 1111 1 5
## 992 32 0 1 499 1 2
## 993 39 0 3 1485 2 25
## 994 25 0 1 1372 1 18
## 995 52 0 2 322 2 28
## 996 43 0 1 930 2 6
## 997 27 0 1 205 1 10
## 998 27 1 1 135 2 17
## 999 26 0 1 683 2 2
## 1000 42 0 1 1147 3 10
## 1001 52 0 1 258 2 8
## 1002 37 0 1 1462 2 11
## 1003 35 0 2 200 2 18
## 1004 25 0 1 949 2 1
## 1005 26 0 1 652 2 7
## 1006 29 0 1 332 3 17
## 1007 49 1 2 1475 2 28
## 1008 29 1 2 337 2 14
## 1009 54 0 1 971 2 1
## 1010 58 0 1 1055 2 1
## 1011 55 0 1 1136 2 1
## 1012 36 0 1 1174 1 3
## 1013 31 1 2 667 1 1
## 1014 30 0 1 855 1 7
## 1015 31 0 1 182 2 8
## 1016 34 0 2 560 2 1
## 1017 31 1 1 202 2 8
## 1018 27 0 1 1377 2 11
## 1019 36 0 1 172 2 4
## 1020 36 0 1 329 1 16
## 1021 47 0 1 465 2 1
## 1022 25 1 1 383 1 9
## 1023 37 0 3 1413 2 5
## 1024 56 0 1 1255 2 1
## 1025 47 0 1 359 2 2
## 1026 24 0 1 1476 1 4
## 1027 32 0 1 601 1 7
## 1028 34 0 1 401 2 1
## 1029 41 0 1 1283 2 5
## 1030 40 0 3 663 2 9
## 1031 31 0 1 326 1 8
## 1032 46 1 1 377 1 9
## 1033 39 1 3 592 2 2
## 1034 31 1 2 1445 2 1
## 1035 45 0 1 1038 2 20
## 1036 31 0 1 1398 3 8
## 1037 31 1 2 523 2 2
## 1038 45 0 1 1448 2 29
## 1039 48 0 1 1221 1 7
## 1040 34 1 1 1107 3 9
## 1041 40 0 3 218 2 8
## 1042 28 0 1 866 1 5
## 1043 44 0 3 981 2 5
## 1044 53 0 1 447 2 2
## 1045 49 0 1 1495 2 5
## 1046 40 0 1 896 2 2
## 1047 44 0 1 1467 2 20
## 1048 33 0 2 430 1 7
## 1049 34 0 1 1326 1 3
## 1050 30 0 1 1358 1 16
## 1051 42 0 2 748 2 9
## 1052 44 0 2 383 1 1
## 1053 30 0 3 990 2 7
## 1054 57 0 1 405 2 1
## 1055 49 0 1 1490 2 7
## 1056 34 0 2 829 2 15
## 1057 28 1 2 1496 1 1
## 1058 29 1 2 115 1 13
## 1059 34 1 1 790 1 24
## 1060 35 0 1 660 1 7
## 1061 24 1 2 381 2 9
## 1062 24 0 3 830 1 13
## 1063 44 0 2 1193 2 2
## 1064 29 0 1 1246 1 19
## 1065 30 0 1 330 3 1
## 1066 55 0 1 1229 2 4
## 1067 33 0 1 1099 2 4
## 1068 47 0 1 571 1 14
## 1069 28 1 2 289 2 2
## 1070 28 0 1 1423 2 1
## 1071 28 0 2 467 1 7
## 1072 49 0 1 271 2 3
## 1073 29 0 2 410 2 2
## 1074 28 0 1 1083 2 29
## 1075 33 0 1 516 2 8
## 1076 32 0 1 495 2 10
## 1077 54 0 2 1050 2 11
## 1078 29 1 1 224 2 1
## 1079 44 0 1 136 2 28
## 1080 39 0 1 1089 2 6
## 1081 46 0 1 228 1 3
## 1082 35 0 1 1029 2 16
## 1083 23 0 1 507 2 20
## 1084 40 1 1 676 2 9
## 1085 34 0 1 971 1 1
## 1086 31 1 2 561 2 3
## 1087 50 0 2 333 2 22
## 1088 34 0 1 1440 1 7
## 1089 42 0 1 1210 2 2
## 1090 37 0 1 674 2 13
## 1091 29 0 1 441 2 8
## 1092 33 0 1 575 2 25
## 1093 45 0 1 950 2 28
## 1094 42 0 2 288 2 2
## 1095 40 0 1 1342 1 9
## 1096 33 0 1 589 2 28
## 1097 40 0 1 898 3 6
## 1098 24 0 1 350 2 21
## 1099 40 0 3 1142 2 8
## 1100 45 0 1 538 2 1
## 1101 35 0 1 1402 1 28
## 1102 32 0 1 824 2 5
## 1103 36 0 1 1157 1 2
## 1104 48 0 1 492 1 16
## 1105 29 0 1 598 2 9
## 1106 33 0 1 1242 1 8
## 1107 30 1 1 740 1 1
## 1108 38 0 2 888 3 10
## 1109 35 0 1 992 2 1
## 1110 30 0 1 1288 1 29
## 1111 35 1 1 104 2 2
## 1112 53 1 1 607 2 2
## 1113 38 1 1 903 2 2
## 1114 32 0 3 1200 2 1
## 1115 48 0 1 1108 2 15
## 1116 34 0 1 479 2 7
## 1117 55 0 1 685 1 26
## 1118 34 0 1 1351 2 1
## 1119 26 0 1 474 2 3
## 1120 38 0 1 1245 1 14
## 1121 38 0 1 437 1 16
## 1122 36 0 1 884 1 1
## 1123 29 0 1 1370 2 3
## 1124 35 0 1 670 2 10
## 1125 39 0 1 1462 1 6
## 1126 29 0 2 995 2 2
## 1127 50 0 1 264 1 9
## 1128 23 0 1 977 2 10
## 1129 36 0 2 1302 2 6
## 1130 42 0 1 1059 2 9
## 1131 35 0 1 750 2 28
## 1132 34 0 2 653 2 10
## 1133 40 0 1 118 1 14
## 1134 43 0 1 990 2 27
## 1135 35 0 1 1349 2 7
## 1136 46 0 1 563 1 1
## 1137 28 1 1 329 2 24
## 1138 22 0 3 457 2 26
## 1139 50 0 2 1234 2 20
## 1140 32 0 1 634 2 5
## 1141 44 0 1 1313 2 7
## 1142 30 0 1 241 2 7
## 1143 45 0 1 1015 2 5
## 1144 45 0 3 336 1 26
## 1145 31 0 2 715 1 2
## 1146 36 0 1 559 2 12
## 1147 34 0 2 426 2 10
## 1148 49 0 1 722 2 25
## 1149 39 0 1 1387 2 10
## 1150 27 0 1 1302 2 19
## 1151 35 0 1 819 2 18
## 1152 28 0 1 580 2 27
## 1153 21 0 1 546 2 5
## 1154 18 1 2 544 1 3
## 1155 47 0 1 1176 3 26
## 1156 39 0 1 170 2 3
## 1157 40 0 1 884 2 15
## 1158 35 0 3 208 2 8
## 1159 37 0 1 671 2 19
## 1160 39 0 2 711 2 4
## 1161 45 0 1 1329 2 2
## 1162 38 0 1 397 2 2
## 1163 35 1 1 737 1 10
## 1164 37 0 1 1470 2 10
## 1165 40 0 1 448 2 16
## 1166 44 0 2 602 3 1
## 1167 48 0 2 365 2 4
## 1168 35 1 1 763 1 15
## 1169 24 0 2 567 2 2
## 1170 27 0 1 486 2 8
## 1171 27 0 2 591 2 2
## 1172 40 1 1 1329 2 7
## 1173 29 0 1 469 1 10
## 1174 36 0 1 711 2 5
## 1175 25 0 2 772 2 2
## 1176 39 0 1 492 2 12
## 1177 49 0 1 301 2 22
## 1178 50 0 1 813 2 17
## 1179 20 0 1 1141 1 2
## 1180 34 0 1 1130 2 3
## 1181 36 0 1 311 2 7
## 1182 49 0 1 465 2 6
## 1183 36 0 3 894 2 1
## 1184 36 0 1 1040 2 3
## 1185 54 0 1 584 2 22
## 1186 43 0 1 1291 2 15
## 1187 35 1 2 880 1 12
## 1188 38 0 2 1189 2 1
## 1189 29 0 1 991 1 5
## 1190 33 0 1 392 1 2
## 1191 32 0 1 977 2 2
## 1192 31 0 1 1112 1 5
## 1193 49 0 1 464 2 16
## 1194 38 0 2 148 2 2
## 1195 47 0 1 1225 1 2
## 1196 49 0 1 809 2 1
## 1197 41 0 1 1206 1 23
## 1198 20 0 1 727 1 9
## 1199 33 0 3 530 1 16
## 1200 36 0 1 1351 2 26
## 1201 44 0 1 528 3 1
## 1202 23 1 1 1320 2 8
## 1203 38 0 1 1495 2 4
## 1204 53 0 1 1395 2 24
## 1205 48 1 2 708 1 7
## 1206 32 1 1 1259 2 2
## 1207 26 0 3 786 2 7
## 1208 55 0 1 1441 2 22
## 1209 34 0 1 1157 2 5
## 1210 60 0 1 370 2 1
## 1211 33 0 1 267 2 21
## 1212 37 0 2 1278 1 1
## 1213 34 0 1 678 2 19
## 1214 23 1 1 427 1 7
## 1215 44 0 1 921 2 2
## 1216 35 0 2 146 2 2
## 1217 43 0 1 1179 1 2
## 1218 24 0 1 581 2 9
## 1219 41 0 1 918 1 6
## 1220 29 0 1 1082 2 9
## 1221 36 0 1 530 1 2
## 1222 45 0 3 1238 2 1
## 1223 24 1 1 240 3 22
## 1224 47 1 2 1093 1 9
## 1225 26 0 1 390 2 17
## 1226 45 0 1 1005 2 28
## 1227 32 0 2 585 2 10
## 1228 31 0 1 741 2 2
## 1229 41 0 3 552 3 4
## 1230 40 0 1 369 2 8
## 1231 24 0 1 506 2 29
## 1232 46 0 1 717 2 13
## 1233 35 0 1 1370 2 27
## 1234 30 0 1 793 2 16
## 1235 47 0 3 543 1 2
## 1236 46 0 1 1277 1 2
## 1237 36 1 1 1456 1 13
## 1238 32 1 1 964 1 1
## 1239 23 0 1 160 2 4
## 1240 31 0 2 163 2 24
## 1241 39 0 3 792 2 1
## 1242 32 0 1 371 1 19
## 1243 40 0 1 611 1 7
## 1244 45 0 1 176 3 4
## 1245 30 0 2 1312 2 2
## 1246 24 0 2 897 3 10
## 1247 30 1 2 600 3 8
## 1248 31 0 1 1003 1 5
## 1249 27 0 1 1054 2 8
## 1250 29 1 1 428 1 9
## 1251 29 0 2 461 2 1
## 1252 30 0 1 979 1 15
## 1253 34 0 1 181 2 2
## 1254 33 0 3 1283 1 2
## 1255 49 0 1 1313 1 11
## 1256 33 1 1 211 1 16
## 1257 38 0 2 594 2 2
## 1258 31 1 1 1079 1 16
## 1259 29 0 1 590 2 4
## 1260 30 0 1 305 2 16
## 1261 32 0 3 953 2 5
## 1262 38 0 1 833 2 18
## 1263 43 1 2 807 2 17
## 1264 42 0 1 855 2 12
## 1265 55 0 1 478 2 2
## 1266 33 0 3 775 2 4
## 1267 41 0 1 548 2 9
## 1268 34 0 3 1375 1 10
## 1269 53 0 3 661 2 1
## 1270 43 0 1 244 3 2
## 1271 34 0 1 511 1 3
## 1272 21 1 1 337 1 7
## 1273 38 0 1 1153 2 6
## 1274 22 1 1 1294 2 8
## 1275 31 0 1 196 1 29
## 1276 51 0 1 942 2 3
## 1277 37 0 1 589 1 9
## 1278 46 0 1 734 2 2
## 1279 36 0 1 1383 2 10
## 1280 44 1 2 429 2 1
## 1281 37 0 1 1239 3 8
## 1282 35 1 1 303 1 27
## 1283 33 0 1 867 2 8
## 1284 28 0 1 1181 2 1
## 1285 39 0 1 1253 2 10
## 1286 46 0 3 849 1 26
## 1287 40 0 1 616 2 2
## 1288 42 0 1 1128 2 13
## 1289 35 0 3 1180 2 2
## 1290 38 0 3 1336 3 2
## 1291 34 1 2 234 2 9
## 1292 37 1 1 370 2 10
## 1293 39 0 2 766 1 20
## 1294 43 0 3 343 2 9
## 1295 41 0 1 447 2 5
## 1296 41 0 1 796 1 4
## 1297 30 0 1 1092 2 10
## 1298 26 1 1 920 3 20
## 1299 46 1 1 261 2 21
## 1300 40 0 1 1194 2 1
## 1301 34 0 1 810 1 8
## 1302 58 0 3 350 1 2
## 1303 35 0 1 185 2 23
## 1304 47 0 1 1001 2 4
## 1305 40 0 1 750 2 12
## 1306 54 0 1 431 2 7
## 1307 31 0 2 1125 1 7
## 1308 28 0 1 1217 2 1
## 1309 38 0 1 723 1 2
## 1310 26 0 1 572 1 10
## 1311 58 0 2 1216 2 15
## 1312 18 0 3 1431 2 14
## 1313 31 1 1 359 3 18
## 1314 29 1 1 350 3 13
## 1315 45 0 3 589 1 2
## 1316 36 0 1 430 2 2
## 1317 43 0 2 1422 1 2
## 1318 27 0 2 1297 2 5
## 1319 29 0 2 574 2 20
## 1320 32 0 2 1318 1 10
## 1321 42 0 3 355 2 10
## 1322 47 0 1 207 2 9
## 1323 46 0 1 706 2 2
## 1324 28 0 3 280 3 1
## 1325 29 0 1 726 2 29
## 1326 42 0 1 1142 2 8
## 1327 32 1 1 414 1 2
## 1328 46 0 1 1319 1 3
## 1329 27 0 1 728 1 23
## 1330 29 0 1 352 3 6
## 1331 43 0 1 823 2 6
## 1332 48 0 1 1224 2 10
## 1333 29 1 2 459 2 24
## 1334 46 1 1 1254 1 10
## 1335 27 0 2 1131 2 15
## 1336 39 0 1 835 2 19
## 1337 55 0 1 836 2 2
## 1338 28 0 1 1172 1 3
## 1339 30 1 1 945 1 9
## 1340 22 1 1 391 2 7
## 1341 36 0 1 1266 1 10
## 1342 31 0 1 311 2 20
## 1343 34 0 1 1480 1 4
## 1344 29 0 1 592 2 7
## 1345 37 0 1 783 2 7
## 1346 35 0 1 219 2 16
## 1347 45 0 1 556 2 25
## 1348 36 0 2 1213 3 2
## 1349 40 0 1 1137 2 1
## 1350 26 0 1 482 2 1
## 1351 27 0 1 511 1 2
## 1352 48 0 2 117 2 22
## 1353 44 0 1 170 2 1
## 1354 34 1 3 967 2 16
## 1355 56 1 1 1162 2 24
## 1356 36 0 1 335 1 17
## 1357 41 0 1 337 1 8
## 1358 42 0 1 1396 2 6
## 1359 31 0 1 1079 1 10
## 1360 34 0 1 735 1 3
## 1361 31 0 1 471 2 4
## 1362 26 0 2 1096 2 6
## 1363 45 0 2 1297 2 1
## 1364 33 0 1 217 1 10
## 1365 28 0 2 783 1 1
## 1366 29 1 2 746 1 24
## 1367 39 0 3 1251 1 21
## 1368 27 0 1 1354 2 2
## 1369 34 0 2 735 2 22
## 1370 28 1 1 1475 1 13
## 1371 47 0 3 1169 2 14
## 1372 56 0 1 1443 1 11
## 1373 39 0 1 867 2 9
## 1374 38 0 2 1394 2 8
## 1375 58 0 1 605 1 21
## 1376 32 1 2 238 2 5
## 1377 38 0 1 1206 2 9
## 1378 49 0 2 1064 2 2
## 1379 42 0 1 419 1 12
## 1380 27 1 2 1337 3 22
## 1381 35 0 1 682 1 18
## 1382 28 0 3 1103 2 16
## 1383 31 0 3 976 2 3
## 1384 36 0 3 1351 2 9
## 1385 34 0 1 937 1 1
## 1386 34 0 1 1239 1 13
## 1387 26 0 1 157 2 1
## 1388 29 0 1 136 2 1
## 1389 32 0 3 1146 2 15
## 1390 31 0 2 1125 2 1
## 1391 28 1 1 1404 2 17
## 1392 38 0 1 1404 1 1
## 1393 35 0 1 1224 1 7
## 1394 27 0 1 954 1 9
## 1395 32 0 1 1373 2 5
## 1396 31 1 2 754 1 26
## 1397 53 1 1 1168 1 24
## 1398 54 0 1 155 2 9
## 1399 33 0 2 1303 2 7
## 1400 43 0 1 574 2 11
## 1401 38 0 2 1444 3 1
## 1402 55 0 1 189 3 26
## 1403 31 0 1 1276 2 2
## 1404 39 0 1 119 1 15
## 1405 42 0 3 335 2 23
## 1406 31 0 3 697 2 10
## 1407 54 0 1 157 2 10
## 1408 24 0 1 771 2 1
## 1409 23 0 1 571 2 12
## 1410 40 0 2 692 2 11
## 1411 40 0 1 444 1 2
## 1412 25 0 1 309 3 2
## 1413 30 0 1 911 2 1
## 1414 25 0 1 977 2 2
## 1415 47 0 1 1180 2 25
## 1416 33 0 3 1313 2 1
## 1417 38 0 1 1321 1 1
## 1418 31 0 1 1154 1 2
## 1419 38 0 2 508 2 6
## 1420 42 0 1 557 2 18
## 1421 41 0 1 642 2 1
## 1422 47 0 3 1162 2 1
## 1423 35 0 1 1490 2 11
## 1424 22 0 1 581 2 1
## 1425 35 0 1 1395 2 9
## 1426 33 0 1 501 2 15
## 1427 32 0 1 267 2 29
## 1428 40 0 1 543 2 1
## 1429 32 0 1 234 1 1
## 1430 39 0 1 116 2 24
## 1431 38 0 1 201 2 10
## 1432 32 0 1 801 1 1
## 1433 37 0 1 161 2 10
## 1434 25 0 1 1382 1 8
## 1435 52 0 3 585 1 29
## 1436 44 0 1 1037 2 1
## 1437 21 0 1 501 1 5
## 1438 39 0 3 105 2 9
## 1439 23 1 2 638 1 9
## 1440 36 0 1 557 1 3
## 1441 36 0 2 688 2 4
## 1442 56 0 3 667 2 1
## 1443 29 1 1 1092 2 1
## 1444 42 0 1 300 2 2
## 1445 56 1 1 310 2 7
## 1446 41 0 1 582 2 28
## 1447 34 0 1 704 1 28
## 1448 36 0 3 301 1 15
## 1449 41 0 1 930 1 3
## 1450 32 0 1 529 2 2
## 1451 35 0 1 1146 3 26
## 1452 38 0 1 345 1 10
## 1453 50 1 2 878 1 1
## 1454 36 0 1 1120 1 11
## 1455 45 0 1 374 1 20
## 1456 40 0 1 1322 2 2
## 1457 35 0 2 1199 2 18
## 1458 40 0 1 1194 2 2
## 1459 35 0 1 287 2 1
## 1460 29 0 1 1378 2 13
## 1461 29 0 1 468 2 28
## 1462 50 1 1 410 1 28
## 1463 39 0 1 722 1 24
## 1464 31 0 3 325 2 5
## 1465 26 0 1 1167 1 5
## 1466 36 0 2 884 2 23
## 1467 39 0 1 613 2 6
## 1468 27 0 1 155 2 4
## 1469 49 0 2 1023 1 2
## 1470 34 0 1 628 2 8
## EducationField EnvironmentSatisfaction JobInvolvement JobLevel JobRole
## 1 1 2 3 2 1
## 2 1 3 2 2 2
## 3 2 4 2 1 3
## 4 1 4 3 1 2
## 5 3 1 3 1 3
## 6 1 4 3 1 3
## 7 3 3 4 1 3
## 8 1 4 3 1 3
## 9 1 4 2 3 4
## 10 3 3 3 2 5
## 11 3 1 4 1 3
## 12 1 4 2 2 3
## 13 1 1 3 1 2
## 14 3 2 3 1 3
## 15 1 3 2 1 3
## 16 1 2 4 3 4
## 17 1 1 4 1 2
## 18 3 4 4 1 3
## 19 1 1 2 4 6
## 20 1 4 3 1 2
## 21 2 1 4 2 4
## 22 1 3 2 1 7
## 23 1 1 3 3 8
## 24 1 3 3 1 2
## 25 3 2 3 1 2
## 26 2 3 3 5 6
## 27 1 2 1 1 2
## 28 4 3 3 2 1
## 29 3 1 2 3 5
## 30 4 2 3 5 6
## 31 3 3 3 1 3
## 32 2 4 3 2 5
## 33 3 4 2 1 3
## 34 5 4 3 2 7
## 35 3 2 3 1 2
## 36 3 4 4 1 2
## 37 4 1 2 1 7
## 38 4 4 3 1 7
## 39 1 2 2 1 2
## 40 1 3 4 2 1
## 41 2 3 3 1 3
## 42 1 4 3 1 3
## 43 1 1 1 1 3
## 44 1 4 3 3 1
## 45 3 3 3 2 3
## 46 5 2 3 5 8
## 47 4 2 3 2 1
## 48 1 2 3 1 2
## 49 4 1 3 2 1
## 50 1 4 4 1 3
## 51 1 1 2 3 3
## 52 5 3 3 1 3
## 53 4 2 3 2 1
## 54 3 3 2 3 5
## 55 4 3 2 2 1
## 56 1 1 3 3 8
## 57 1 2 3 3 1
## 58 3 3 3 1 3
## 59 1 4 3 2 3
## 60 1 1 2 2 4
## 61 3 1 3 2 4
## 62 1 4 3 2 3
## 63 3 2 2 5 8
## 64 1 1 3 3 1
## 65 5 3 3 3 5
## 66 3 4 3 4 6
## 67 1 2 2 2 4
## 68 1 2 3 3 2
## 69 3 2 3 1 2
## 70 3 4 2 1 2
## 71 1 1 2 2 1
## 72 1 3 3 1 2
## 73 3 3 3 1 2
## 74 1 2 3 2 2
## 75 1 2 4 1 3
## 76 1 3 3 2 4
## 77 4 3 2 2 1
## 78 2 4 3 3 8
## 79 3 1 3 3 8
## 80 3 2 3 2 9
## 81 1 4 2 2 3
## 82 3 2 2 1 2
## 83 1 1 3 3 1
## 84 3 2 1 2 2
## 85 3 1 3 2 4
## 86 1 4 1 3 4
## 87 5 3 3 1 7
## 88 1 4 3 1 3
## 89 1 3 2 2 5
## 90 3 3 2 3 1
## 91 1 3 2 4 5
## 92 4 3 3 2 1
## 93 3 3 2 2 1
## 94 3 3 2 3 5
## 95 3 2 3 2 1
## 96 5 1 3 3 8
## 97 2 1 3 2 1
## 98 3 2 3 2 1
## 99 3 4 3 4 1
## 100 3 2 3 2 3
## 101 6 3 3 1 9
## 102 1 4 3 1 2
## 103 1 4 2 1 3
## 104 2 1 3 2 2
## 105 1 3 2 2 5
## 106 6 3 2 5 6
## 107 1 1 3 5 8
## 108 4 3 2 2 1
## 109 3 4 2 1 2
## 110 3 2 3 1 3
## 111 3 1 2 3 5
## 112 1 1 1 2 3
## 113 6 4 4 4 6
## 114 1 2 3 1 3
## 115 1 3 2 2 2
## 116 1 3 3 3 1
## 117 3 3 2 3 6
## 118 5 2 3 3 1
## 119 1 1 3 1 3
## 120 1 3 3 4 6
## 121 1 1 1 1 2
## 122 4 3 3 2 1
## 123 1 2 3 1 2
## 124 1 1 3 5 8
## 125 1 2 1 2 1
## 126 2 3 2 1 2
## 127 3 4 3 3 5
## 128 4 4 3 1 7
## 129 5 3 3 1 3
## 130 3 3 3 2 4
## 131 3 2 4 1 2
## 132 4 3 3 3 1
## 133 1 2 1 2 1
## 134 1 3 3 3 1
## 135 1 3 3 1 9
## 136 3 2 3 2 4
## 137 1 1 1 3 4
## 138 1 4 2 2 1
## 139 1 1 2 2 1
## 140 6 3 3 2 9
## 141 3 1 3 1 3
## 142 3 3 3 1 2
## 143 5 4 3 2 2
## 144 1 1 3 1 2
## 145 3 4 1 2 1
## 146 5 4 3 1 2
## 147 3 2 2 1 3
## 148 1 4 2 4 6
## 149 1 3 3 1 3
## 150 3 2 3 1 3
## 151 3 2 3 2 2
## 152 4 3 3 3 1
## 153 4 2 3 2 7
## 154 1 2 3 2 3
## 155 4 2 3 3 1
## 156 5 4 3 2 4
## 157 3 2 2 2 4
## 158 3 2 2 1 2
## 159 4 3 2 3 1
## 160 4 3 3 1 7
## 161 3 3 3 1 2
## 162 3 4 3 1 2
## 163 3 3 3 1 2
## 164 1 3 4 3 5
## 165 3 3 2 1 2
## 166 1 3 3 5 6
## 167 1 1 3 1 2
## 168 1 2 3 3 1
## 169 1 1 2 2 1
## 170 1 3 3 1 2
## 171 5 3 3 1 2
## 172 5 3 1 1 7
## 173 3 4 3 1 3
## 174 3 3 3 2 3
## 175 1 3 3 2 1
## 176 1 3 3 1 2
## 177 1 3 3 1 2
## 178 1 2 2 1 3
## 179 4 2 3 3 1
## 180 1 3 3 1 3
## 181 3 3 3 1 2
## 182 3 4 3 1 2
## 183 4 2 3 1 7
## 184 3 3 2 1 3
## 185 3 4 4 2 4
## 186 3 4 3 1 2
## 187 3 4 3 5 6
## 188 3 3 4 5 8
## 189 1 4 2 2 4
## 190 3 4 3 4 5
## 191 1 3 2 5 6
## 192 3 4 3 1 2
## 193 1 2 2 2 4
## 194 3 4 4 1 2
## 195 3 1 2 4 6
## 196 1 2 4 1 2
## 197 3 2 3 2 3
## 198 3 3 3 2 4
## 199 1 4 3 2 4
## 200 5 4 3 2 4
## 201 5 3 2 2 4
## 202 1 4 3 2 4
## 203 3 4 3 1 2
## 204 3 3 3 2 3
## 205 3 2 3 2 5
## 206 4 2 3 3 1
## 207 1 4 4 1 2
## 208 3 2 3 1 3
## 209 1 4 2 2 5
## 210 3 4 3 3 5
## 211 3 4 1 3 1
## 212 1 3 2 3 4
## 213 1 4 3 2 1
## 214 1 2 2 3 8
## 215 5 4 3 1 2
## 216 1 4 3 3 6
## 217 4 3 2 2 1
## 218 5 3 3 1 2
## 219 3 4 2 3 1
## 220 4 4 3 2 1
## 221 1 4 3 2 3
## 222 3 3 2 1 2
## 223 2 2 3 3 8
## 224 1 1 3 3 1
## 225 3 3 1 2 4
## 226 1 3 2 1 2
## 227 4 1 3 1 7
## 228 3 2 3 3 1
## 229 4 3 3 3 1
## 230 3 3 2 1 2
## 231 1 3 2 1 3
## 232 5 3 3 5 6
## 233 3 2 3 1 9
## 234 3 4 3 5 6
## 235 3 3 3 1 3
## 236 4 4 3 4 6
## 237 1 1 3 1 3
## 238 1 1 2 5 6
## 239 1 3 3 1 7
## 240 1 4 2 1 3
## 241 3 3 3 1 3
## 242 4 3 3 2 1
## 243 1 3 3 2 2
## 244 5 1 3 2 2
## 245 2 3 4 5 6
## 246 3 2 3 3 8
## 247 1 3 2 1 2
## 248 1 4 2 2 4
## 249 3 3 2 1 2
## 250 1 1 4 2 4
## 251 3 1 3 3 4
## 252 5 3 3 3 5
## 253 1 3 3 1 2
## 254 1 4 4 2 2
## 255 4 4 3 2 1
## 256 1 1 3 2 4
## 257 3 4 2 1 3
## 258 3 1 3 5 8
## 259 1 3 3 1 2
## 260 3 3 2 1 3
## 261 1 2 4 1 3
## 262 1 4 2 2 1
## 263 5 4 2 2 3
## 264 5 3 1 4 6
## 265 1 1 3 1 3
## 266 3 1 2 2 1
## 267 3 2 2 2 5
## 268 1 2 4 2 5
## 269 3 3 3 4 5
## 270 1 4 3 1 3
## 271 3 4 3 5 6
## 272 1 1 3 3 6
## 273 3 4 3 1 2
## 274 3 3 3 2 1
## 275 3 4 2 1 2
## 276 3 1 3 3 8
## 277 1 2 4 3 6
## 278 3 1 4 2 1
## 279 1 3 3 2 4
## 280 1 1 3 5 8
## 281 3 3 3 4 8
## 282 1 2 3 2 1
## 283 1 2 3 2 1
## 284 5 2 3 2 3
## 285 3 1 3 2 5
## 286 1 4 3 1 2
## 287 1 4 3 1 3
## 288 1 4 3 2 5
## 289 3 1 3 1 3
## 290 1 4 3 1 2
## 291 1 3 3 5 8
## 292 5 3 3 2 2
## 293 4 4 3 1 7
## 294 4 4 2 2 1
## 295 3 2 3 1 2
## 296 4 3 3 4 1
## 297 1 3 3 1 3
## 298 4 3 3 3 1
## 299 1 3 4 1 3
## 300 3 4 1 2 4
## 301 1 4 3 4 6
## 302 3 4 2 1 7
## 303 3 2 4 2 5
## 304 5 2 4 2 1
## 305 3 3 4 3 5
## 306 1 2 3 2 3
## 307 1 4 2 2 1
## 308 1 1 2 3 8
## 309 1 4 1 2 5
## 310 5 3 3 1 2
## 311 6 1 2 2 9
## 312 1 1 3 3 3
## 313 1 3 3 1 2
## 314 1 4 3 3 6
## 315 3 3 3 4 6
## 316 1 3 3 1 3
## 317 5 3 2 4 5
## 318 3 3 2 2 2
## 319 1 3 3 1 2
## 320 5 3 2 2 1
## 321 1 4 3 2 1
## 322 4 4 3 2 1
## 323 3 1 4 2 2
## 324 3 1 1 1 2
## 325 3 4 3 2 2
## 326 1 3 2 3 4
## 327 3 3 2 5 6
## 328 3 4 3 2 1
## 329 4 2 2 2 1
## 330 1 4 3 5 8
## 331 1 3 2 2 3
## 332 4 3 3 2 1
## 333 1 4 3 2 2
## 334 1 3 3 3 5
## 335 2 4 3 2 2
## 336 3 2 1 2 1
## 337 2 2 1 1 3
## 338 2 2 2 1 3
## 339 4 4 2 2 1
## 340 4 2 3 2 1
## 341 3 4 3 2 4
## 342 1 3 2 3 8
## 343 3 3 3 3 4
## 344 4 4 2 2 1
## 345 5 3 3 3 4
## 346 1 3 3 1 2
## 347 3 4 2 2 4
## 348 3 2 3 2 7
## 349 1 1 3 4 8
## 350 1 4 3 2 1
## 351 5 3 3 1 9
## 352 3 3 3 1 3
## 353 3 1 3 3 6
## 354 3 3 4 2 2
## 355 5 4 3 2 1
## 356 1 3 3 2 1
## 357 2 1 2 2 5
## 358 5 1 2 1 7
## 359 3 4 3 2 1
## 360 3 1 2 3 1
## 361 3 4 3 2 5
## 362 1 4 4 1 3
## 363 3 1 3 1 7
## 364 4 4 3 1 7
## 365 3 3 3 1 3
## 366 3 3 3 2 4
## 367 4 1 3 2 1
## 368 5 4 2 3 5
## 369 4 3 2 2 1
## 370 1 3 2 1 2
## 371 1 3 4 1 7
## 372 1 4 3 1 2
## 373 1 3 2 2 5
## 374 3 4 3 1 3
## 375 1 2 3 2 1
## 376 2 2 2 3 5
## 377 1 3 3 2 1
## 378 1 4 3 1 2
## 379 4 1 4 2 1
## 380 1 3 3 4 6
## 381 4 4 3 2 1
## 382 5 3 3 1 7
## 383 5 3 3 1 2
## 384 3 1 3 1 2
## 385 3 2 2 3 1
## 386 5 3 3 1 2
## 387 1 4 3 1 3
## 388 4 4 3 2 1
## 389 1 2 3 1 3
## 390 1 3 3 2 4
## 391 1 1 2 4 8
## 392 3 2 2 2 3
## 393 3 1 3 5 8
## 394 4 3 3 2 1
## 395 3 2 3 2 4
## 396 3 4 3 1 3
## 397 2 3 3 2 5
## 398 1 2 2 2 1
## 399 3 2 3 2 2
## 400 1 4 2 1 3
## 401 1 2 3 5 6
## 402 1 3 4 4 1
## 403 5 2 3 2 1
## 404 4 2 4 3 1
## 405 3 3 3 2 3
## 406 3 1 3 1 3
## 407 3 4 2 3 4
## 408 1 1 3 1 2
## 409 1 4 3 4 6
## 410 1 1 3 2 2
## 411 1 3 1 2 4
## 412 1 1 3 5 6
## 413 3 3 3 2 4
## 414 5 4 2 2 5
## 415 5 1 3 1 7
## 416 4 4 1 1 7
## 417 1 4 3 1 3
## 418 1 3 3 5 6
## 419 1 1 3 1 2
## 420 1 3 3 1 3
## 421 3 2 2 3 8
## 422 5 3 2 1 2
## 423 5 1 2 1 9
## 424 2 3 3 3 1
## 425 4 1 2 4 6
## 426 1 2 2 4 6
## 427 3 3 3 1 3
## 428 4 3 2 3 1
## 429 3 1 3 2 4
## 430 1 1 3 4 8
## 431 1 4 1 1 3
## 432 1 3 3 2 3
## 433 1 4 2 1 2
## 434 4 3 2 3 1
## 435 1 3 3 3 4
## 436 3 2 3 3 6
## 437 3 1 1 1 3
## 438 4 4 3 1 7
## 439 1 4 3 3 5
## 440 1 1 3 3 5
## 441 6 2 3 3 9
## 442 2 2 3 1 3
## 443 3 2 3 3 1
## 444 5 3 2 1 3
## 445 4 2 3 2 1
## 446 1 1 3 4 6
## 447 1 4 3 2 1
## 448 4 2 3 2 1
## 449 1 2 3 4 4
## 450 1 3 3 1 3
## 451 1 2 3 2 1
## 452 3 4 3 3 4
## 453 2 4 3 2 1
## 454 1 2 3 1 9
## 455 5 4 3 2 4
## 456 3 1 4 4 8
## 457 1 3 2 3 6
## 458 4 2 3 1 7
## 459 2 3 1 3 1
## 460 2 1 2 2 5
## 461 3 1 3 2 1
## 462 3 1 3 2 1
## 463 1 4 4 2 1
## 464 5 3 1 1 3
## 465 5 2 3 3 4
## 466 3 1 3 3 5
## 467 1 2 3 4 6
## 468 3 1 3 3 1
## 469 5 4 3 2 2
## 470 2 4 4 2 1
## 471 3 4 3 1 7
## 472 3 3 3 2 5
## 473 1 2 3 2 4
## 474 1 4 2 5 8
## 475 3 2 4 1 2
## 476 4 1 3 2 1
## 477 2 4 2 1 3
## 478 3 1 3 5 6
## 479 3 2 3 1 7
## 480 1 1 3 1 3
## 481 1 2 2 1 7
## 482 1 2 2 1 2
## 483 3 2 3 2 1
## 484 2 1 2 2 3
## 485 3 1 4 2 1
## 486 3 1 2 1 2
## 487 4 4 3 2 1
## 488 1 4 2 1 2
## 489 1 3 3 2 5
## 490 2 2 2 4 8
## 491 1 3 3 1 2
## 492 3 4 3 2 3
## 493 1 4 2 4 6
## 494 1 1 2 2 9
## 495 5 3 3 1 7
## 496 4 3 3 1 7
## 497 5 3 3 1 7
## 498 2 4 3 5 6
## 499 3 1 3 1 2
## 500 4 3 3 2 1
## 501 1 1 3 2 2
## 502 3 3 3 1 2
## 503 3 4 3 2 1
## 504 1 2 3 1 2
## 505 1 1 3 2 1
## 506 1 3 3 1 3
## 507 2 3 3 3 4
## 508 3 2 3 2 1
## 509 1 2 1 2 2
## 510 1 3 3 2 5
## 511 3 3 3 3 9
## 512 3 2 2 2 4
## 513 3 1 2 1 2
## 514 3 4 3 1 2
## 515 1 1 3 1 2
## 516 1 3 2 1 3
## 517 3 1 4 1 2
## 518 1 4 4 2 1
## 519 4 4 2 2 1
## 520 1 2 1 1 2
## 521 4 2 4 2 1
## 522 3 4 4 2 1
## 523 1 4 4 1 2
## 524 3 4 4 1 3
## 525 3 4 2 3 5
## 526 1 1 3 2 1
## 527 5 4 2 2 5
## 528 4 4 3 2 1
## 529 5 2 3 2 1
## 530 1 2 4 2 5
## 531 1 3 3 3 4
## 532 1 3 3 3 8
## 533 4 4 3 2 1
## 534 1 4 2 3 1
## 535 1 3 4 4 8
## 536 6 2 2 5 6
## 537 4 1 3 2 1
## 538 1 4 3 3 4
## 539 6 4 2 5 6
## 540 4 4 3 1 7
## 541 1 1 1 1 2
## 542 1 1 4 3 8
## 543 1 3 3 3 4
## 544 3 1 1 1 3
## 545 3 4 3 4 1
## 546 4 3 3 2 1
## 547 1 3 3 1 7
## 548 3 3 4 1 2
## 549 1 4 2 2 1
## 550 3 2 3 2 5
## 551 3 2 3 1 3
## 552 6 3 4 2 9
## 553 3 3 3 4 5
## 554 3 4 2 1 2
## 555 3 4 2 2 5
## 556 4 4 3 1 7
## 557 1 4 3 2 3
## 558 1 4 3 2 5
## 559 1 1 3 2 3
## 560 3 4 3 1 2
## 561 1 2 3 2 4
## 562 4 3 2 4 6
## 563 2 4 3 1 2
## 564 3 3 3 2 1
## 565 5 2 1 2 7
## 566 3 1 4 1 2
## 567 1 2 4 2 1
## 568 2 4 3 2 1
## 569 3 4 3 5 6
## 570 1 1 2 3 1
## 571 3 4 3 1 2
## 572 1 1 1 1 3
## 573 3 2 3 2 5
## 574 5 4 2 2 1
## 575 1 2 4 1 2
## 576 3 4 3 2 4
## 577 4 3 3 2 1
## 578 1 4 3 1 2
## 579 1 1 4 2 4
## 580 3 3 2 1 2
## 581 1 1 3 1 7
## 582 1 4 1 1 3
## 583 3 3 4 2 5
## 584 1 3 3 2 1
## 585 1 2 3 5 6
## 586 1 3 4 1 3
## 587 1 3 2 1 3
## 588 1 4 3 2 3
## 589 3 3 3 4 8
## 590 1 2 2 1 3
## 591 3 3 3 3 8
## 592 4 1 3 2 1
## 593 2 3 3 4 6
## 594 2 3 3 2 4
## 595 1 3 4 1 2
## 596 1 4 3 5 8
## 597 1 4 4 1 2
## 598 1 4 2 2 4
## 599 3 3 3 1 2
## 600 6 3 3 1 9
## 601 1 3 2 2 4
## 602 3 1 2 2 3
## 603 3 3 2 2 4
## 604 1 2 2 1 2
## 605 1 2 3 2 4
## 606 1 1 2 2 5
## 607 1 3 2 1 2
## 608 4 3 3 3 1
## 609 3 3 3 2 1
## 610 1 2 3 4 8
## 611 5 3 2 3 8
## 612 2 3 3 3 4
## 613 4 2 3 2 1
## 614 6 3 3 1 9
## 615 3 3 2 1 2
## 616 3 4 3 1 2
## 617 4 1 3 4 6
## 618 3 4 3 2 5
## 619 3 1 4 1 2
## 620 3 1 4 2 1
## 621 3 3 2 1 2
## 622 1 2 3 2 1
## 623 1 2 3 2 1
## 624 1 2 2 1 2
## 625 4 1 2 3 1
## 626 4 4 3 3 1
## 627 3 3 4 2 2
## 628 3 3 2 4 4
## 629 4 4 2 2 1
## 630 3 2 2 1 9
## 631 1 4 2 2 4
## 632 1 1 4 1 3
## 633 3 2 3 1 2
## 634 1 1 2 1 9
## 635 2 3 3 2 1
## 636 1 4 2 3 4
## 637 1 4 3 1 2
## 638 1 4 3 1 3
## 639 4 3 2 2 1
## 640 5 3 3 1 2
## 641 1 1 2 1 3
## 642 1 2 3 2 1
## 643 4 2 2 1 7
## 644 1 3 4 2 3
## 645 1 4 3 1 2
## 646 3 2 2 1 7
## 647 4 1 3 4 1
## 648 5 4 2 3 4
## 649 3 3 3 1 7
## 650 1 4 3 4 8
## 651 1 4 3 2 5
## 652 4 3 3 2 1
## 653 3 1 3 3 1
## 654 1 1 3 4 6
## 655 1 4 2 2 9
## 656 6 4 3 1 9
## 657 1 1 3 1 3
## 658 3 1 2 1 3
## 659 1 2 3 1 2
## 660 3 1 3 2 1
## 661 1 4 2 1 3
## 662 1 1 3 2 4
## 663 3 3 2 1 7
## 664 2 4 3 1 2
## 665 1 3 3 2 5
## 666 1 4 2 1 7
## 667 1 2 3 2 4
## 668 1 2 1 1 3
## 669 3 3 3 1 2
## 670 3 4 3 1 3
## 671 1 2 3 1 2
## 672 1 2 3 1 3
## 673 3 3 2 2 1
## 674 2 3 2 1 2
## 675 5 3 2 3 5
## 676 1 2 2 1 7
## 677 1 4 3 2 5
## 678 2 1 3 3 3
## 679 3 4 3 1 2
## 680 4 4 3 2 1
## 681 2 2 3 1 2
## 682 5 4 3 3 8
## 683 1 3 2 1 3
## 684 4 3 2 1 7
## 685 4 1 2 3 1
## 686 3 3 2 2 1
## 687 3 4 3 1 3
## 688 3 3 3 1 3
## 689 2 4 2 1 7
## 690 5 1 3 1 3
## 691 3 4 3 2 5
## 692 3 4 3 1 2
## 693 3 3 3 2 4
## 694 1 3 2 3 1
## 695 1 2 2 2 5
## 696 1 1 2 3 1
## 697 1 3 3 2 3
## 698 5 3 3 1 7
## 699 3 3 3 2 1
## 700 1 4 3 4 6
## 701 5 4 3 1 2
## 702 3 3 3 4 6
## 703 2 3 3 3 1
## 704 5 3 3 2 1
## 705 1 4 3 3 1
## 706 1 1 4 3 1
## 707 1 2 4 4 1
## 708 3 3 4 2 4
## 709 5 1 3 2 1
## 710 3 3 2 1 2
## 711 1 4 3 4 6
## 712 1 4 2 1 2
## 713 1 2 3 1 2
## 714 3 4 3 1 3
## 715 3 4 3 4 8
## 716 2 3 4 2 5
## 717 3 1 3 5 8
## 718 5 3 3 1 3
## 719 1 4 3 2 3
## 720 1 4 3 2 1
## 721 1 1 3 1 2
## 722 1 4 3 4 4
## 723 3 3 3 1 2
## 724 3 4 3 3 4
## 725 3 4 2 2 4
## 726 2 3 2 1 3
## 727 1 3 3 2 4
## 728 1 2 3 1 2
## 729 5 3 3 3 4
## 730 3 3 3 3 5
## 731 1 2 4 3 8
## 732 3 4 2 1 2
## 733 3 2 3 1 3
## 734 3 4 4 2 4
## 735 1 2 1 1 3
## 736 1 1 2 2 5
## 737 1 3 2 3 5
## 738 3 4 3 2 4
## 739 1 4 2 4 4
## 740 1 1 3 2 4
## 741 2 2 3 1 3
## 742 4 4 3 5 6
## 743 1 1 3 1 3
## 744 1 3 2 4 4
## 745 3 1 1 2 5
## 746 3 3 3 2 5
## 747 1 2 1 5 8
## 748 1 2 3 2 1
## 749 3 2 1 2 1
## 750 4 1 1 5 6
## 751 3 4 4 4 1
## 752 1 4 3 2 1
## 753 1 3 4 1 3
## 754 3 4 3 3 4
## 755 1 2 2 1 7
## 756 1 4 3 4 6
## 757 3 4 3 1 3
## 758 4 2 4 2 1
## 759 5 2 3 3 6
## 760 3 2 3 1 9
## 761 4 3 2 3 1
## 762 2 1 3 2 3
## 763 1 1 3 1 2
## 764 1 3 3 1 7
## 765 3 4 3 1 7
## 766 2 3 3 1 2
## 767 3 2 3 5 8
## 768 2 4 3 2 5
## 769 4 3 3 2 1
## 770 3 1 2 1 2
## 771 3 4 3 5 8
## 772 1 3 2 3 1
## 773 3 1 3 1 2
## 774 3 4 2 3 4
## 775 3 3 2 4 6
## 776 3 3 2 3 1
## 777 4 4 3 1 7
## 778 1 3 2 1 3
## 779 1 4 2 2 2
## 780 1 1 3 1 2
## 781 5 2 2 3 5
## 782 3 1 2 1 3
## 783 2 3 3 2 4
## 784 5 2 4 1 2
## 785 1 3 2 3 5
## 786 5 1 3 3 5
## 787 1 1 1 1 3
## 788 1 4 3 3 4
## 789 2 3 3 2 2
## 790 3 2 2 3 9
## 791 1 4 2 3 5
## 792 5 4 3 3 1
## 793 3 1 2 2 2
## 794 1 1 3 1 3
## 795 1 1 3 2 5
## 796 1 4 2 2 1
## 797 5 4 3 1 3
## 798 3 1 3 1 3
## 799 3 1 2 1 2
## 800 3 4 3 4 6
## 801 3 1 2 1 3
## 802 2 4 3 2 1
## 803 1 4 3 2 1
## 804 1 3 2 1 2
## 805 3 1 4 4 6
## 806 1 2 2 2 1
## 807 1 2 3 3 5
## 808 4 3 2 3 1
## 809 1 3 3 1 2
## 810 3 4 3 3 4
## 811 4 1 3 4 6
## 812 4 4 3 3 1
## 813 1 3 3 3 4
## 814 1 1 3 4 5
## 815 3 3 2 5 8
## 816 5 4 2 1 2
## 817 1 3 3 2 3
## 818 1 1 3 2 4
## 819 1 3 4 1 7
## 820 1 1 2 1 2
## 821 4 4 3 2 1
## 822 5 4 2 4 1
## 823 1 4 3 2 4
## 824 1 4 3 1 2
## 825 3 2 1 2 3
## 826 3 2 2 2 4
## 827 6 3 4 1 9
## 828 1 3 2 1 2
## 829 3 3 3 1 3
## 830 4 1 3 2 1
## 831 1 2 3 1 3
## 832 3 3 3 1 3
## 833 3 3 2 2 5
## 834 1 4 2 1 2
## 835 1 2 3 2 1
## 836 5 3 3 1 9
## 837 1 4 2 3 1
## 838 3 2 3 3 8
## 839 1 3 3 4 1
## 840 4 2 3 2 1
## 841 3 4 2 1 3
## 842 3 4 3 1 3
## 843 1 3 3 1 3
## 844 3 1 4 1 3
## 845 4 3 2 2 1
## 846 3 3 2 2 2
## 847 1 3 2 3 4
## 848 3 4 2 2 5
## 849 2 4 2 1 3
## 850 4 1 1 2 1
## 851 1 3 3 1 7
## 852 5 4 3 5 6
## 853 3 2 3 1 3
## 854 1 3 3 1 2
## 855 3 1 3 1 2
## 856 1 4 2 2 4
## 857 1 1 2 1 3
## 858 1 3 3 1 2
## 859 3 4 3 5 6
## 860 1 2 1 1 2
## 861 1 3 2 1 2
## 862 4 3 3 4 6
## 863 1 4 1 1 2
## 864 6 2 3 1 9
## 865 1 1 2 1 2
## 866 1 3 3 2 1
## 867 3 2 3 2 1
## 868 3 4 3 4 6
## 869 3 4 2 1 3
## 870 1 4 3 5 8
## 871 1 3 3 2 1
## 872 1 4 3 1 3
## 873 3 2 3 2 1
## 874 1 3 1 1 3
## 875 1 3 3 2 3
## 876 2 4 3 2 2
## 877 4 3 4 1 7
## 878 5 4 3 2 4
## 879 3 4 4 2 9
## 880 4 2 4 2 1
## 881 2 3 2 1 3
## 882 1 4 3 2 2
## 883 5 3 1 3 4
## 884 3 1 3 1 2
## 885 5 2 2 2 1
## 886 1 3 3 2 1
## 887 3 4 3 1 2
## 888 3 1 3 3 8
## 889 4 3 2 3 1
## 890 1 1 3 1 2
## 891 1 4 3 3 4
## 892 1 1 4 1 2
## 893 3 1 2 1 2
## 894 1 1 3 1 2
## 895 1 4 3 4 8
## 896 3 3 3 2 5
## 897 3 3 2 2 5
## 898 1 3 2 2 1
## 899 1 3 1 5 8
## 900 3 1 2 5 6
## 901 5 3 3 1 2
## 902 5 4 4 1 3
## 903 1 1 3 1 2
## 904 1 3 3 2 5
## 905 1 4 2 5 8
## 906 1 4 2 4 8
## 907 5 3 4 1 2
## 908 4 2 3 5 6
## 909 4 4 4 3 1
## 910 1 2 4 1 2
## 911 1 4 3 1 2
## 912 1 3 1 1 7
## 913 1 3 3 1 2
## 914 4 1 1 5 6
## 915 3 4 2 4 5
## 916 1 1 2 1 3
## 917 4 4 2 5 6
## 918 4 3 3 2 1
## 919 1 4 3 5 6
## 920 3 4 3 3 4
## 921 3 3 3 2 3
## 922 3 4 3 1 3
## 923 1 3 4 5 6
## 924 1 3 2 2 9
## 925 1 3 3 1 2
## 926 3 2 4 2 2
## 927 4 4 2 3 1
## 928 1 3 3 2 4
## 929 3 1 3 3 5
## 930 1 4 2 1 3
## 931 3 2 2 1 3
## 932 3 3 3 2 4
## 933 5 2 3 1 3
## 934 5 4 3 1 2
## 935 3 4 3 1 2
## 936 3 3 4 2 1
## 937 3 2 3 5 6
## 938 3 3 2 4 6
## 939 1 1 3 1 2
## 940 1 4 3 2 3
## 941 3 3 3 1 2
## 942 5 1 2 2 3
## 943 5 4 3 3 5
## 944 1 4 3 1 9
## 945 1 3 1 2 3
## 946 1 4 3 4 8
## 947 4 4 2 3 1
## 948 1 2 3 3 1
## 949 3 2 3 3 6
## 950 1 1 3 2 4
## 951 1 4 3 3 1
## 952 3 3 1 2 1
## 953 1 4 3 1 7
## 954 1 1 3 1 3
## 955 1 3 3 4 6
## 956 3 4 1 5 6
## 957 1 4 3 5 6
## 958 1 3 3 1 2
## 959 1 4 3 3 5
## 960 1 3 3 2 2
## 961 4 3 3 2 1
## 962 1 3 3 2 2
## 963 1 3 3 4 6
## 964 1 2 3 2 1
## 965 3 3 3 2 1
## 966 3 4 3 1 3
## 967 3 3 2 3 4
## 968 1 2 3 1 3
## 969 4 1 4 2 1
## 970 1 4 3 3 4
## 971 3 3 4 1 7
## 972 5 4 2 4 4
## 973 1 4 3 1 3
## 974 3 4 2 2 3
## 975 1 4 1 2 1
## 976 4 1 4 4 1
## 977 1 4 3 4 4
## 978 5 1 2 1 2
## 979 3 2 4 2 5
## 980 3 2 3 2 3
## 981 1 3 2 1 7
## 982 4 4 3 2 1
## 983 1 4 4 1 2
## 984 5 3 3 2 5
## 985 1 3 2 2 1
## 986 3 4 3 2 4
## 987 1 1 2 2 1
## 988 4 2 3 3 1
## 989 1 4 3 2 2
## 990 1 3 3 1 2
## 991 1 2 3 2 1
## 992 4 3 3 2 1
## 993 1 3 3 3 5
## 994 1 1 4 2 1
## 995 3 4 4 4 4
## 996 3 1 2 2 2
## 997 4 4 2 2 1
## 998 1 4 3 1 2
## 999 3 1 2 1 2
## 1000 6 3 3 4 6
## 1001 2 3 3 1 3
## 1002 3 1 3 1 3
## 1003 1 3 3 3 4
## 1004 5 1 3 1 3
## 1005 2 3 4 1 3
## 1006 2 2 2 3 9
## 1007 1 1 2 2 3
## 1008 2 3 3 3 5
## 1009 3 4 3 4 8
## 1010 3 4 3 5 8
## 1011 3 2 4 4 8
## 1012 4 1 3 2 1
## 1013 1 2 1 1 7
## 1014 4 4 3 2 1
## 1015 1 1 3 4 8
## 1016 2 4 3 1 2
## 1017 1 1 2 1 2
## 1018 1 2 3 1 3
## 1019 1 1 2 2 3
## 1020 4 3 2 2 1
## 1021 5 1 3 1 2
## 1022 1 1 2 1 7
## 1023 5 3 4 1 3
## 1024 1 1 3 1 2
## 1025 3 1 3 4 8
## 1026 3 4 3 2 1
## 1027 4 4 3 2 1
## 1028 1 4 2 1 3
## 1029 3 2 4 1 2
## 1030 2 3 3 2 3
## 1031 1 1 3 3 1
## 1032 4 1 3 3 1
## 1033 1 1 2 1 3
## 1034 1 3 4 3 4
## 1035 3 2 1 3 5
## 1036 3 4 4 1 9
## 1037 1 2 3 1 3
## 1038 5 2 3 3 4
## 1039 4 3 3 2 1
## 1040 5 1 3 1 9
## 1041 3 4 2 3 8
## 1042 3 4 3 2 1
## 1043 1 3 2 1 3
## 1044 3 4 4 4 8
## 1045 5 1 3 2 5
## 1046 3 3 3 1 2
## 1047 1 4 3 1 2
## 1048 3 4 3 2 1
## 1049 2 4 1 2 1
## 1050 1 4 3 2 1
## 1051 3 1 3 1 3
## 1052 4 1 3 2 1
## 1053 5 3 3 1 2
## 1054 1 2 4 2 2
## 1055 1 3 3 3 5
## 1056 3 2 3 4 8
## 1057 5 1 3 1 7
## 1058 5 1 3 2 1
## 1059 3 1 2 2 1
## 1060 1 4 3 1 7
## 1061 3 2 3 1 3
## 1062 1 4 3 1 7
## 1063 3 2 3 3 4
## 1064 1 3 2 2 1
## 1065 1 3 3 1 9
## 1066 1 4 3 2 5
## 1067 3 1 2 1 3
## 1068 3 3 3 2 1
## 1069 3 3 2 1 3
## 1070 1 1 2 1 2
## 1071 1 3 3 2 1
## 1072 3 3 2 2 3
## 1073 1 4 3 1 3
## 1074 1 3 1 2 4
## 1075 1 4 3 2 5
## 1076 3 3 3 3 6
## 1077 3 2 3 4 6
## 1078 5 1 2 1 2
## 1079 1 4 3 4 8
## 1080 1 2 3 3 4
## 1081 1 3 3 4 6
## 1082 1 4 2 3 5
## 1083 1 1 3 2 3
## 1084 1 4 3 1 3
## 1085 5 4 2 3 1
## 1086 1 4 3 1 2
## 1087 3 3 1 4 8
## 1088 5 2 3 1 7
## 1089 3 3 2 1 3
## 1090 3 1 3 2 2
## 1091 2 3 1 2 5
## 1092 1 4 2 2 4
## 1093 5 4 3 1 2
## 1094 1 4 3 3 5
## 1095 3 1 3 2 1
## 1096 1 2 3 2 3
## 1097 3 3 3 4 6
## 1098 5 3 2 1 3
## 1099 1 4 3 2 5
## 1100 5 1 3 3 5
## 1101 1 2 2 1 7
## 1102 1 4 2 2 2
## 1103 1 3 3 1 7
## 1104 1 3 3 2 1
## 1105 1 3 4 1 2
## 1106 1 1 3 2 1
## 1107 1 2 2 2 1
## 1108 6 3 3 2 9
## 1109 3 4 2 1 3
## 1110 5 3 3 3 1
## 1111 1 1 3 1 3
## 1112 5 3 2 3 4
## 1113 3 3 3 2 4
## 1114 5 4 3 2 2
## 1115 2 3 3 1 2
## 1116 3 1 3 1 2
## 1117 4 3 2 5 6
## 1118 1 2 3 2 2
## 1119 1 1 3 1 2
## 1120 1 3 3 2 1
## 1121 1 2 3 2 1
## 1122 1 2 3 2 1
## 1123 3 2 3 1 3
## 1124 3 1 3 2 5
## 1125 3 4 4 3 1
## 1126 1 1 3 2 5
## 1127 4 3 3 5 6
## 1128 5 4 4 1 2
## 1129 1 1 4 2 3
## 1130 2 4 2 5 6
## 1131 1 2 4 2 3
## 1132 5 4 2 2 5
## 1133 1 4 3 2 1
## 1134 5 4 4 1 3
## 1135 1 3 2 1 3
## 1136 1 4 4 4 6
## 1137 3 3 3 1 3
## 1138 2 2 2 1 2
## 1139 3 2 3 4 5
## 1140 2 2 4 1 2
## 1141 3 2 3 5 8
## 1142 3 2 2 1 2
## 1143 3 3 1 2 3
## 1144 4 1 2 2 1
## 1145 2 4 3 2 1
## 1146 1 3 3 2 4
## 1147 1 3 4 2 4
## 1148 1 3 3 1 3
## 1149 3 2 3 2 4
## 1150 2 4 2 1 3
## 1151 1 2 4 2 2
## 1152 3 2 1 2 4
## 1153 3 3 3 1 2
## 1154 3 2 3 1 7
## 1155 1 4 3 5 6
## 1156 3 3 2 2 3
## 1157 1 1 2 3 4
## 1158 1 3 3 2 5
## 1159 1 3 3 2 4
## 1160 3 1 3 2 4
## 1161 2 4 2 2 4
## 1162 3 4 2 3 4
## 1163 3 4 2 3 1
## 1164 3 2 3 1 2
## 1165 1 3 3 3 4
## 1166 6 1 3 2 9
## 1167 3 3 2 4 6
## 1168 3 1 1 2 1
## 1169 5 1 3 1 2
## 1170 3 2 4 1 2
## 1171 3 4 3 1 2
## 1172 1 1 3 1 3
## 1173 3 3 2 2 1
## 1174 1 2 3 3 5
## 1175 1 4 4 2 4
## 1176 3 4 3 2 4
## 1177 2 1 3 4 8
## 1178 1 4 2 3 8
## 1179 3 3 3 1 7
## 1180 1 4 3 2 2
## 1181 1 1 3 1 3
## 1182 1 3 2 4 5
## 1183 3 4 2 2 4
## 1184 1 4 4 2 5
## 1185 3 2 3 4 6
## 1186 1 3 2 4 8
## 1187 2 4 3 2 1
## 1188 1 4 3 2 2
## 1189 3 1 2 2 1
## 1190 3 4 3 2 1
## 1191 3 4 3 2 2
## 1192 1 1 3 2 1
## 1193 3 4 3 1 3
## 1194 3 4 2 1 3
## 1195 1 2 4 4 6
## 1196 1 3 3 4 6
## 1197 1 4 3 3 1
## 1198 1 4 3 1 7
## 1199 1 3 3 2 1
## 1200 1 1 3 2 5
## 1201 1 3 3 1 9
## 1202 3 4 2 1 3
## 1203 3 4 3 1 3
## 1204 3 2 4 3 5
## 1205 3 4 3 1 7
## 1206 1 4 3 1 3
## 1207 3 4 3 1 3
## 1208 5 1 2 1 2
## 1209 3 2 2 2 3
## 1210 3 3 1 3 5
## 1211 3 2 4 1 3
## 1212 3 3 1 2 1
## 1213 1 2 2 1 2
## 1214 1 3 3 1 7
## 1215 1 3 4 3 5
## 1216 3 1 2 1 2
## 1217 3 4 3 2 1
## 1218 3 3 4 1 2
## 1219 4 4 3 3 1
## 1220 3 4 3 1 3
## 1221 1 3 3 2 7
## 1222 1 3 2 3 5
## 1223 6 4 1 1 9
## 1224 1 3 1 4 1
## 1225 3 4 1 1 3
## 1226 5 4 2 4 8
## 1227 1 1 3 1 2
## 1228 1 2 3 1 3
## 1229 6 3 1 2 9
## 1230 1 2 3 2 4
## 1231 3 2 3 1 3
## 1232 1 3 3 2 5
## 1233 1 4 3 2 4
## 1234 1 2 3 1 2
## 1235 4 3 3 2 1
## 1236 1 3 3 3 1
## 1237 4 2 2 2 1
## 1238 1 1 1 2 1
## 1239 3 3 3 1 3
## 1240 5 4 3 2 4
## 1241 1 4 3 2 3
## 1242 1 4 1 3 1
## 1243 3 2 3 5 6
## 1244 1 3 1 3 9
## 1245 5 4 2 1 2
## 1246 3 1 3 1 9
## 1247 6 3 2 1 9
## 1248 5 1 3 2 1
## 1249 3 3 3 1 2
## 1250 4 2 1 1 7
## 1251 1 4 4 2 5
## 1252 4 3 2 3 1
## 1253 3 4 4 1 2
## 1254 4 4 3 2 1
## 1255 4 4 3 2 1
## 1256 1 1 3 3 1
## 1257 3 3 2 1 3
## 1258 4 1 3 3 1
## 1259 5 4 2 1 2
## 1260 1 3 4 2 5
## 1261 5 2 3 1 2
## 1262 3 2 1 2 5
## 1263 5 3 2 1 2
## 1264 3 2 3 1 3
## 1265 3 3 2 5 8
## 1266 5 4 3 2 2
## 1267 1 3 3 1 3
## 1268 1 4 3 2 1
## 1269 3 1 2 4 4
## 1270 1 2 3 1 9
## 1271 1 4 1 2 1
## 1272 4 2 3 1 7
## 1273 2 4 2 1 3
## 1274 3 3 3 1 3
## 1275 4 1 2 2 1
## 1276 5 1 3 3 6
## 1277 4 2 2 2 1
## 1278 3 3 3 5 8
## 1279 1 4 3 3 5
## 1280 3 3 3 1 2
## 1281 2 3 3 2 9
## 1282 1 3 3 2 1
## 1283 1 4 4 1 2
## 1284 1 3 3 1 2
## 1285 3 3 3 3 8
## 1286 1 2 2 2 1
## 1287 1 3 3 1 3
## 1288 3 2 4 2 5
## 1289 3 2 3 2 4
## 1290 6 1 3 1 9
## 1291 1 4 3 2 3
## 1292 3 4 3 2 4
## 1293 1 3 3 2 1
## 1294 1 1 3 1 2
## 1295 1 2 4 2 5
## 1296 4 3 3 3 1
## 1297 3 1 3 3 4
## 1298 3 4 3 1 9
## 1299 3 4 3 2 5
## 1300 1 3 3 2 5
## 1301 5 2 4 2 1
## 1302 3 2 3 4 6
## 1303 3 2 1 1 3
## 1304 1 3 2 3 4
## 1305 1 2 3 2 5
## 1306 3 4 3 2 2
## 1307 4 1 3 3 1
## 1308 3 3 3 1 2
## 1309 4 2 1 2 7
## 1310 3 3 3 2 1
## 1311 1 1 3 4 8
## 1312 3 2 3 1 2
## 1313 6 4 4 1 9
## 1314 6 1 2 1 9
## 1315 1 3 3 2 1
## 1316 2 4 3 2 2
## 1317 1 1 3 2 1
## 1318 1 4 3 1 3
## 1319 3 4 3 1 3
## 1320 4 4 3 2 1
## 1321 5 3 3 1 2
## 1322 1 2 3 1 3
## 1323 1 4 3 3 4
## 1324 1 3 3 1 9
## 1325 1 4 1 2 5
## 1326 1 4 3 1 3
## 1327 4 3 2 2 1
## 1328 5 1 4 4 1
## 1329 3 2 2 2 7
## 1330 3 4 2 1 9
## 1331 3 1 2 5 6
## 1332 1 4 2 5 8
## 1333 1 4 2 1 2
## 1334 1 3 3 3 1
## 1335 1 4 2 1 2
## 1336 2 4 3 2 2
## 1337 5 2 2 1 2
## 1338 3 2 3 1 7
## 1339 3 2 3 1 7
## 1340 1 4 3 1 2
## 1341 5 2 2 2 1
## 1342 1 2 3 2 3
## 1343 1 3 3 3 1
## 1344 1 4 3 1 3
## 1345 3 4 3 2 2
## 1346 2 4 2 2 4
## 1347 1 2 2 2 4
## 1348 6 2 2 2 9
## 1349 1 1 3 4 6
## 1350 1 2 2 1 2
## 1351 3 1 4 2 1
## 1352 3 4 3 4 6
## 1353 1 2 4 2 5
## 1354 5 4 1 1 2
## 1355 1 1 3 1 3
## 1356 4 3 2 2 1
## 1357 4 3 3 2 1
## 1358 3 3 3 3 8
## 1359 3 3 3 2 1
## 1360 3 4 2 2 1
## 1361 3 1 4 1 3
## 1362 2 3 4 1 3
## 1363 3 2 3 2 5
## 1364 4 2 3 2 1
## 1365 1 3 2 2 1
## 1366 5 3 4 1 7
## 1367 1 1 1 2 1
## 1368 5 2 3 1 2
## 1369 2 3 2 2 2
## 1370 4 4 3 2 1
## 1371 5 3 3 2 2
## 1372 4 4 2 2 1
## 1373 3 1 3 2 4
## 1374 3 4 2 2 2
## 1375 1 4 3 4 6
## 1376 1 1 4 1 2
## 1377 1 2 3 1 2
## 1378 1 2 3 5 8
## 1379 4 2 3 2 1
## 1380 6 1 2 1 9
## 1381 3 2 3 2 1
## 1382 3 3 3 1 2
## 1383 3 3 3 1 2
## 1384 1 1 4 1 3
## 1385 4 1 3 3 1
## 1386 3 4 3 3 1
## 1387 3 3 3 1 3
## 1388 1 1 3 2 5
## 1389 3 3 3 2 5
## 1390 1 4 1 2 2
## 1391 5 3 2 1 3
## 1392 1 1 2 1 7
## 1393 1 3 3 2 1
## 1394 4 4 3 2 1
## 1395 1 4 2 2 4
## 1396 4 1 3 2 1
## 1397 1 1 3 3 1
## 1398 1 1 3 2 2
## 1399 1 4 3 2 5
## 1400 1 1 3 3 5
## 1401 2 4 3 1 9
## 1402 6 3 4 5 6
## 1403 3 4 1 1 3
## 1404 4 2 3 4 1
## 1405 1 4 2 2 2
## 1406 3 3 3 3 8
## 1407 3 3 3 2 4
## 1408 1 2 2 2 5
## 1409 2 4 3 1 3
## 1410 5 4 3 2 3
## 1411 4 2 3 2 1
## 1412 6 3 3 1 9
## 1413 3 4 3 1 3
## 1414 2 4 3 1 3
## 1415 3 1 3 3 5
## 1416 3 2 2 1 3
## 1417 1 4 3 2 1
## 1418 1 1 3 1 7
## 1419 1 1 2 2 4
## 1420 1 4 3 2 2
## 1421 1 4 3 1 2
## 1422 3 3 3 3 8
## 1423 3 4 3 1 3
## 1424 1 4 3 1 2
## 1425 3 2 3 2 2
## 1426 3 2 3 2 5
## 1427 1 3 2 1 3
## 1428 1 1 3 1 3
## 1429 3 2 2 1 7
## 1430 1 1 3 2 2
## 1431 3 2 1 3 8
## 1432 4 3 3 3 1
## 1433 1 3 4 3 8
## 1434 2 1 3 2 1
## 1435 1 1 3 1 7
## 1436 3 2 3 1 2
## 1437 3 3 3 1 7
## 1438 1 4 3 5 6
## 1439 4 4 3 1 7
## 1440 3 1 2 3 1
## 1441 1 4 3 2 4
## 1442 1 3 3 2 5
## 1443 3 1 3 1 2
## 1444 1 1 3 5 6
## 1445 5 4 3 1 3
## 1446 1 1 2 4 4
## 1447 4 4 2 2 1
## 1448 4 4 1 2 1
## 1449 1 3 2 2 1
## 1450 5 4 3 1 2
## 1451 1 3 3 3 9
## 1452 1 1 3 2 1
## 1453 1 2 3 2 1
## 1454 4 2 2 2 1
## 1455 1 4 3 2 1
## 1456 1 3 2 1 2
## 1457 1 3 3 2 5
## 1458 3 3 3 1 2
## 1459 1 3 1 1 2
## 1460 2 4 2 2 3
## 1461 3 4 2 1 2
## 1462 4 4 2 3 1
## 1463 4 2 2 4 1
## 1464 3 2 3 2 4
## 1465 2 4 2 1 7
## 1466 3 3 4 2 3
## 1467 3 4 2 3 5
## 1468 1 2 4 2 4
## 1469 3 4 2 2 1
## 1470 3 2 4 2 3
## JobSatisfaction MaritalStatus MonthlyIncome OverTime StockOptionLevel
## 1 4 1 5993 1 0
## 2 2 2 5130 0 1
## 3 3 1 2090 1 0
## 4 3 2 2909 1 0
## 5 2 2 3468 0 1
## 6 4 1 3068 0 0
## 7 1 2 2670 1 3
## 8 3 3 2693 0 1
## 9 3 1 9526 0 0
## 10 3 2 5237 0 2
## 11 2 2 2426 0 1
## 12 3 1 4193 1 0
## 13 3 3 2911 0 1
## 14 4 3 2661 0 1
## 15 3 1 2028 1 0
## 16 1 3 9980 0 1
## 17 2 3 3298 1 2
## 18 4 3 2935 1 2
## 19 4 2 15427 0 0
## 20 4 1 3944 1 0
## 21 3 3 4011 0 1
## 22 1 1 3407 0 0
## 23 2 1 11994 0 0
## 24 4 1 1232 0 0
## 25 1 1 2960 0 0
## 26 3 3 19094 0 1
## 27 1 1 3919 1 0
## 28 2 2 6825 0 1
## 29 4 2 10248 0 1
## 30 1 1 18947 0 0
## 31 4 1 2496 0 0
## 32 4 2 6465 1 0
## 33 3 1 2206 0 0
## 34 4 2 2086 0 1
## 35 4 2 2293 1 1
## 36 3 3 2645 0 2
## 37 3 2 2683 1 0
## 38 4 2 2014 0 0
## 39 1 2 3419 1 1
## 40 1 2 5376 0 2
## 41 4 3 1951 0 1
## 42 1 3 2341 0 1
## 43 3 1 2293 0 0
## 44 3 1 8726 0 0
## 45 4 1 4011 0 0
## 46 3 2 19545 0 0
## 47 3 1 4568 0 0
## 48 2 2 3022 0 0
## 49 4 1 5772 1 0
## 50 4 2 2269 0 0
## 51 3 1 5381 1 0
## 52 3 1 3441 1 0
## 53 1 3 5454 1 1
## 54 1 2 9884 1 1
## 55 4 2 4157 1 1
## 56 4 1 13458 1 0
## 57 1 2 9069 0 1
## 58 1 2 4014 1 1
## 59 4 3 5915 0 1
## 60 3 3 5993 0 1
## 61 4 2 6162 1 1
## 62 4 1 2406 0 0
## 63 3 3 18740 1 1
## 64 1 1 7637 0 0
## 65 3 3 10096 0 3
## 66 3 3 14756 1 3
## 67 2 1 6499 0 0
## 68 1 3 9724 0 1
## 69 1 2 2194 0 1
## 70 3 2 3388 1 1
## 71 3 1 5473 0 0
## 72 2 2 2703 0 1
## 73 2 1 2501 0 0
## 74 2 2 6220 0 2
## 75 4 2 3038 0 0
## 76 4 1 4424 0 0
## 77 1 1 4312 0 0
## 78 1 2 13245 1 0
## 79 3 1 13664 0 0
## 80 2 3 5021 1 1
## 81 4 2 5126 1 2
## 82 3 1 2859 0 0
## 83 4 2 10239 0 1
## 84 4 3 5329 1 3
## 85 2 2 4325 0 0
## 86 4 1 7260 0 0
## 87 1 3 2322 0 1
## 88 4 2 2075 0 2
## 89 4 2 4152 0 3
## 90 4 1 9619 0 0
## 91 2 2 13503 0 1
## 92 4 1 5441 1 0
## 93 2 3 5209 1 3
## 94 1 2 10673 1 1
## 95 3 1 5010 0 0
## 96 3 2 13549 0 1
## 97 3 2 4999 0 1
## 98 3 2 4221 0 0
## 99 3 1 13872 0 0
## 100 2 2 2042 0 1
## 101 1 3 2073 1 0
## 102 1 1 2956 0 0
## 103 4 1 2926 1 0
## 104 3 1 4809 0 0
## 105 4 3 5163 0 1
## 106 4 2 18844 0 1
## 107 2 2 18172 1 0
## 108 3 1 5744 1 0
## 109 4 2 2889 0 2
## 110 4 1 2871 0 0
## 111 1 1 7484 0 0
## 112 3 1 6074 1 0
## 113 4 1 17328 1 0
## 114 3 2 2774 0 1
## 115 2 3 4505 0 1
## 116 4 1 7428 0 0
## 117 1 1 11631 0 0
## 118 4 2 9738 0 1
## 119 4 3 2835 0 1
## 120 4 2 16959 1 2
## 121 3 3 2613 0 3
## 122 2 2 6146 0 1
## 123 2 2 4963 1 3
## 124 3 1 19537 0 0
## 125 3 2 6172 1 0
## 126 2 2 2368 0 0
## 127 4 2 10312 0 1
## 128 3 1 1675 1 0
## 129 4 2 2523 0 1
## 130 1 2 6567 0 0
## 131 3 1 4739 0 0
## 132 4 1 9208 0 0
## 133 3 2 4559 1 1
## 134 3 3 8189 1 1
## 135 3 2 2942 0 1
## 136 2 3 4941 0 2
## 137 4 1 10650 0 0
## 138 3 2 5902 0 1
## 139 3 2 8639 0 0
## 140 4 2 6347 1 0
## 141 1 1 4200 0 0
## 142 4 1 3452 0 0
## 143 3 1 4317 1 0
## 144 3 1 2632 0 0
## 145 4 3 4668 0 3
## 146 1 3 3204 0 1
## 147 4 1 2720 0 0
## 148 1 3 17181 0 1
## 149 1 2 2238 0 1
## 150 2 1 1483 0 0
## 151 2 3 5605 0 1
## 152 2 2 7295 0 2
## 153 3 2 2306 1 1
## 154 2 3 2348 0 1
## 155 4 1 8998 0 0
## 156 3 2 4319 0 1
## 157 3 2 6132 0 0
## 158 2 2 3346 1 1
## 159 4 2 10855 0 1
## 160 3 2 2231 0 1
## 161 4 2 2323 0 2
## 162 2 3 2024 0 1
## 163 4 2 2713 0 1
## 164 4 3 9439 1 1
## 165 3 3 2566 1 1
## 166 2 1 19926 0 0
## 167 3 3 2451 0 1
## 168 4 2 9419 0 1
## 169 4 1 8686 0 0
## 170 3 1 3038 0 0
## 171 2 2 3058 1 1
## 172 1 1 2325 0 0
## 173 2 1 2088 0 0
## 174 1 3 3072 0 2
## 175 1 3 5006 1 1
## 176 1 3 4257 1 1
## 177 4 1 2500 0 0
## 178 4 1 1102 0 0
## 179 1 3 10453 0 3
## 180 4 1 2288 0 0
## 181 4 2 3929 1 1
## 182 2 1 2311 0 0
## 183 2 1 3140 1 0
## 184 3 2 3690 0 1
## 185 1 3 4450 0 2
## 186 2 2 2756 0 1
## 187 3 2 19033 0 1
## 188 2 1 18722 0 0
## 189 3 2 9547 0 0
## 190 2 1 13734 0 0
## 191 3 2 19999 0 1
## 192 2 1 2279 0 0
## 193 3 2 5916 1 0
## 194 4 3 2089 0 3
## 195 4 2 16792 0 1
## 196 1 2 3564 1 1
## 197 2 1 4425 0 0
## 198 3 3 5265 0 1
## 199 3 2 6553 0 0
## 200 4 2 6261 0 1
## 201 1 2 4298 0 1
## 202 4 3 6804 1 2
## 203 3 3 3815 1 1
## 204 4 2 2741 1 1
## 205 1 2 6673 1 0
## 206 4 2 7639 0 3
## 207 2 3 2328 1 1
## 208 4 1 2153 0 0
## 209 4 2 4876 0 1
## 210 1 3 9396 0 1
## 211 4 2 10400 0 0
## 212 3 1 8474 0 0
## 213 3 1 9981 0 0
## 214 2 2 12490 0 2
## 215 1 1 2657 1 0
## 216 4 1 13591 1 0
## 217 1 1 6696 0 0
## 218 3 1 2058 0 0
## 219 4 1 8865 0 0
## 220 1 2 5940 0 1
## 221 2 1 5914 0 0
## 222 2 2 2622 0 0
## 223 4 3 12185 1 3
## 224 3 3 10609 0 2
## 225 3 2 4345 0 1
## 226 4 2 2177 0 1
## 227 4 3 2793 0 1
## 228 4 2 7918 0 1
## 229 3 1 8789 0 0
## 230 4 1 2389 1 0
## 231 4 1 3212 0 0
## 232 4 2 19232 0 0
## 233 3 2 2267 0 0
## 234 4 3 19517 0 1
## 235 4 2 2436 1 1
## 236 4 2 16064 1 1
## 237 1 2 2707 0 0
## 238 3 1 19068 1 0
## 239 2 2 3931 0 1
## 240 3 1 3730 1 0
## 241 3 3 2232 0 3
## 242 4 2 4465 0 0
## 243 1 3 3072 0 2
## 244 4 3 3319 0 2
## 245 4 2 19202 0 1
## 246 3 3 13675 0 1
## 247 4 2 2911 0 1
## 248 1 2 5957 0 1
## 249 1 2 3920 0 1
## 250 3 2 6434 0 1
## 251 3 3 10048 0 2
## 252 3 1 10938 0 0
## 253 4 1 2340 0 0
## 254 1 1 6545 1 0
## 255 4 3 6931 0 1
## 256 3 2 4898 0 2
## 257 1 3 2593 1 1
## 258 3 3 19436 0 1
## 259 4 2 2723 0 0
## 260 2 1 3479 0 0
## 261 2 2 2794 0 0
## 262 4 2 5249 0 1
## 263 1 1 2176 0 0
## 264 2 2 16872 1 1
## 265 3 1 3485 0 0
## 266 2 2 6644 0 2
## 267 4 2 5582 0 1
## 268 1 3 4000 0 2
## 269 4 2 13496 1 0
## 270 4 2 3210 0 1
## 271 1 1 19045 1 0
## 272 2 2 11849 1 1
## 273 4 2 2070 0 1
## 274 4 2 6502 0 1
## 275 3 1 3230 0 0
## 276 4 3 13603 1 2
## 277 2 3 11996 0 1
## 278 1 3 5605 1 1
## 279 2 3 6397 0 1
## 280 2 3 19144 0 2
## 281 3 2 17584 1 3
## 282 3 2 4907 0 0
## 283 4 1 4554 0 0
## 284 4 2 5415 1 1
## 285 1 2 4741 1 1
## 286 4 1 2115 0 0
## 287 3 3 3161 1 1
## 288 4 3 5745 0 1
## 289 2 3 2373 1 1
## 290 4 1 3310 0 0
## 291 1 1 18665 1 0
## 292 2 1 4485 0 0
## 293 2 3 2789 0 1
## 294 4 1 5828 1 0
## 295 4 2 2326 1 3
## 296 2 2 13525 0 1
## 297 3 1 1420 0 0
## 298 2 2 8020 0 2
## 299 4 2 3688 0 2
## 300 2 3 5482 0 1
## 301 2 1 16015 0 0
## 302 3 1 1200 0 0
## 303 1 1 5661 0 0
## 304 4 2 6929 0 1
## 305 4 3 9613 0 3
## 306 2 2 5674 0 1
## 307 3 2 5484 0 1
## 308 2 2 12061 0 1
## 309 3 3 5660 1 1
## 310 4 2 4821 1 1
## 311 1 2 6410 0 0
## 312 1 3 5210 0 1
## 313 4 3 2695 1 1
## 314 2 2 11878 0 2
## 315 1 2 17068 1 0
## 316 4 1 2455 0 0
## 317 3 1 13964 1 0
## 318 2 2 4941 0 0
## 319 2 1 2478 1 0
## 320 2 2 5228 1 0
## 321 3 1 4478 1 0
## 322 4 3 7547 0 3
## 323 4 1 5055 0 0
## 324 4 2 3464 1 0
## 325 4 2 5775 0 2
## 326 3 2 8943 0 1
## 327 4 2 19272 0 1
## 328 3 2 5238 1 0
## 329 4 1 4682 0 0
## 330 3 2 18300 0 1
## 331 3 3 5257 0 1
## 332 2 2 6349 1 1
## 333 3 1 4869 0 0
## 334 1 2 9985 0 1
## 335 4 2 3697 0 2
## 336 4 2 7457 1 3
## 337 1 2 2119 1 0
## 338 4 1 3983 0 0
## 339 3 3 6118 0 3
## 340 2 2 6214 0 1
## 341 4 3 6347 0 2
## 342 4 3 11510 1 1
## 343 4 1 7143 1 0
## 344 2 3 8268 1 2
## 345 2 1 8095 0 0
## 346 4 3 2904 0 2
## 347 2 1 6032 1 0
## 348 3 1 2976 0 0
## 349 4 1 15992 0 0
## 350 3 2 4649 0 1
## 351 3 3 2696 1 1
## 352 2 2 2370 0 1
## 353 3 2 12504 0 1
## 354 1 3 5974 1 2
## 355 3 2 4736 1 1
## 356 3 2 5296 0 1
## 357 4 1 6781 0 0
## 358 2 1 2174 1 0
## 359 4 1 6653 0 0
## 360 4 2 9699 0 1
## 361 3 2 6755 0 0
## 362 3 2 2213 1 1
## 363 4 1 2610 0 0
## 364 3 1 2851 1 0
## 365 1 2 3452 0 1
## 366 3 2 5258 0 0
## 367 2 1 9355 0 0
## 368 4 1 10496 0 0
## 369 3 2 6380 1 2
## 370 2 1 2657 1 0
## 371 2 1 2716 0 0
## 372 4 1 2201 0 0
## 373 2 1 6540 0 0
## 374 2 3 3816 0 1
## 375 4 1 5253 0 0
## 376 3 1 10965 0 0
## 377 4 2 4936 0 1
## 378 3 2 2543 0 1
## 379 4 1 5304 1 0
## 380 4 1 16659 1 0
## 381 3 3 4260 1 1
## 382 2 2 2476 0 1
## 383 1 1 3102 0 0
## 384 2 2 2244 0 1
## 385 3 2 7596 0 2
## 386 4 1 2285 1 0
## 387 1 3 3034 0 1
## 388 2 3 5715 0 2
## 389 1 3 2576 0 1
## 390 2 1 4197 1 0
## 391 2 3 14336 0 1
## 392 3 2 3448 0 1
## 393 1 2 19406 0 1
## 394 3 2 6538 0 1
## 395 1 2 4306 0 1
## 396 4 2 2258 0 1
## 397 3 3 4522 1 0
## 398 4 1 4487 1 0
## 399 3 2 4449 1 2
## 400 1 2 2218 0 1
## 401 3 3 19197 1 1
## 402 1 2 13212 0 3
## 403 3 1 6577 0 0
## 404 1 2 8392 0 1
## 405 1 3 4558 0 1
## 406 1 2 4031 0 1
## 407 3 2 7969 1 0
## 408 4 2 2654 0 2
## 409 4 2 16555 0 0
## 410 3 3 4556 0 1
## 411 4 1 6091 0 0
## 412 1 2 19566 0 0
## 413 3 3 4810 0 1
## 414 4 2 4523 0 3
## 415 2 1 3202 1 0
## 416 3 3 2351 0 1
## 417 4 2 1702 1 1
## 418 3 2 18041 0 0
## 419 4 3 2886 0 2
## 420 4 2 2097 0 1
## 421 3 2 11935 0 0
## 422 2 2 2546 0 0
## 423 4 1 2564 0 0
## 424 1 2 8412 0 0
## 425 4 3 14118 0 1
## 426 3 2 17046 0 1
## 427 4 1 2564 0 0
## 428 1 2 10266 0 0
## 429 4 3 5070 0 3
## 430 3 2 17861 0 0
## 431 3 1 4230 0 0
## 432 3 1 3780 0 0
## 433 3 3 2768 0 1
## 434 4 2 9071 1 1
## 435 2 3 10648 0 1
## 436 3 2 13610 1 0
## 437 4 3 3408 0 3
## 438 2 1 2983 0 0
## 439 3 2 7632 1 0
## 440 3 2 9824 0 0
## 441 1 3 9950 1 3
## 442 3 2 2093 0 1
## 443 4 1 9980 0 0
## 444 3 1 3894 0 0
## 445 4 2 4051 0 1
## 446 2 1 16835 0 0
## 447 4 1 6230 0 0
## 448 3 2 4717 0 0
## 449 3 1 13237 0 0
## 450 3 2 3755 0 1
## 451 4 1 6582 1 0
## 452 1 2 7406 1 1
## 453 2 2 4805 0 1
## 454 3 3 2741 1 1
## 455 4 3 4262 0 2
## 456 3 3 16184 0 1
## 457 4 3 11557 0 1
## 458 2 1 1878 1 0
## 459 1 3 10932 0 1
## 460 3 1 6811 1 0
## 461 3 3 4306 0 2
## 462 3 1 4859 0 0
## 463 4 1 5337 0 0
## 464 4 1 2340 1 0
## 465 4 1 7491 0 0
## 466 3 2 10527 0 0
## 467 1 2 16595 0 1
## 468 2 3 8834 0 1
## 469 1 3 5577 1 2
## 470 3 2 4707 0 0
## 471 4 2 2400 0 2
## 472 3 2 9824 0 1
## 473 2 2 6447 0 1
## 474 3 3 19502 1 1
## 475 4 2 2725 1 2
## 476 2 2 6272 0 2
## 477 2 2 2127 0 1
## 478 2 2 18200 0 1
## 479 3 2 2096 0 0
## 480 3 2 2886 1 1
## 481 1 2 2033 0 1
## 482 4 2 3622 1 1
## 483 1 3 4233 0 0
## 484 4 1 3681 0 0
## 485 4 3 5460 0 2
## 486 3 3 2187 0 2
## 487 3 2 9602 1 1
## 488 2 1 2836 0 0
## 489 4 2 4089 0 2
## 490 4 3 16627 1 1
## 491 1 1 2619 0 0
## 492 3 3 5679 1 1
## 493 1 2 15402 0 1
## 494 3 1 5985 0 0
## 495 3 3 2579 1 2
## 496 1 3 3041 0 1
## 497 3 1 3447 0 0
## 498 4 2 19513 1 1
## 499 3 2 2773 0 0
## 500 3 3 7104 0 0
## 501 4 2 6322 1 1
## 502 3 3 2083 0 1
## 503 1 1 8381 0 0
## 504 4 2 2691 0 1
## 505 1 2 4286 0 2
## 506 4 2 2659 1 1
## 507 3 2 9434 0 1
## 508 3 2 5561 0 1
## 509 4 1 6646 0 0
## 510 4 3 7725 0 1
## 511 2 2 10725 0 1
## 512 2 3 8847 1 1
## 513 4 1 2045 0 0
## 514 3 1 1009 1 0
## 515 1 1 3348 1 0
## 516 3 2 1281 0 2
## 517 1 2 2819 0 1
## 518 2 2 4851 0 1
## 519 4 1 4028 0 0
## 520 4 3 2720 0 1
## 521 2 2 8120 0 0
## 522 4 3 4647 1 2
## 523 4 1 4680 0 0
## 524 3 2 3221 1 3
## 525 2 1 8621 0 0
## 526 3 1 4577 0 0
## 527 3 1 4553 0 0
## 528 4 1 5396 0 0
## 529 3 2 6796 1 1
## 530 4 1 7625 0 0
## 531 1 2 7412 0 0
## 532 4 1 11159 0 0
## 533 1 1 4960 0 0
## 534 1 2 10475 1 1
## 535 3 2 14814 0 0
## 536 4 3 19141 0 3
## 537 1 1 5405 0 0
## 538 1 3 8793 0 2
## 539 3 2 19189 0 1
## 540 2 2 3875 0 1
## 541 2 1 2216 1 0
## 542 1 2 11713 0 1
## 543 3 1 7861 1 0
## 544 3 1 3708 0 0
## 545 3 3 13770 1 2
## 546 4 3 5304 0 1
## 547 3 1 2642 0 0
## 548 3 3 2759 1 0
## 549 4 2 6804 0 1
## 550 3 1 6142 0 0
## 551 1 2 2500 0 1
## 552 2 2 6389 0 1
## 553 4 2 11103 0 0
## 554 4 1 2342 1 0
## 555 1 1 6811 0 0
## 556 2 3 2297 0 2
## 557 4 1 2450 0 0
## 558 1 3 5093 0 1
## 559 4 2 5309 0 2
## 560 3 2 3057 1 1
## 561 1 3 5121 0 1
## 562 1 2 16856 0 0
## 563 4 1 2686 1 0
## 564 4 1 6180 0 0
## 565 3 1 6632 0 0
## 566 3 1 3505 0 0
## 567 3 1 6397 1 0
## 568 4 1 6274 0 0
## 569 1 2 19859 1 1
## 570 1 1 7587 0 0
## 571 4 2 4258 0 1
## 572 4 3 4364 0 1
## 573 3 2 4335 0 1
## 574 1 1 5326 0 0
## 575 4 1 3280 0 0
## 576 1 3 5485 1 2
## 577 4 2 4342 0 1
## 578 1 3 2782 1 2
## 579 1 1 5980 1 0
## 580 1 1 4381 0 0
## 581 4 2 2572 0 1
## 582 3 2 3833 0 2
## 583 2 2 4244 0 1
## 584 1 2 6500 0 1
## 585 4 3 18430 0 1
## 586 1 2 1601 1 2
## 587 2 3 2694 0 3
## 588 3 2 3149 0 1
## 589 3 2 17639 0 0
## 590 1 2 2319 1 1
## 591 3 2 11691 0 0
## 592 1 1 5324 0 0
## 593 4 2 16752 1 1
## 594 2 2 5228 0 1
## 595 3 2 2700 0 1
## 596 2 1 19246 1 0
## 597 3 1 2506 0 0
## 598 4 2 6062 1 1
## 599 3 1 4382 0 0
## 600 2 2 2143 0 1
## 601 3 2 6162 0 1
## 602 3 1 5094 0 0
## 603 4 1 6877 1 0
## 604 3 1 2274 0 0
## 605 2 2 4434 0 1
## 606 1 3 6288 0 1
## 607 4 1 2553 0 0
## 608 4 2 7654 0 2
## 609 4 1 5160 0 0
## 610 1 2 17159 0 1
## 611 4 3 12808 1 1
## 612 3 1 10221 0 0
## 613 2 2 4779 1 0
## 614 4 2 3737 0 1
## 615 3 2 2366 1 1
## 616 4 2 1706 0 3
## 617 3 2 16307 0 1
## 618 2 1 5933 0 0
## 619 1 1 3424 0 0
## 620 1 3 4037 0 1
## 621 1 1 2559 0 0
## 622 4 2 6201 1 1
## 623 4 3 4403 0 1
## 624 4 3 3761 0 1
## 625 4 2 10934 1 1
## 626 1 3 10761 1 1
## 627 3 2 5175 0 1
## 628 4 2 13826 0 0
## 629 3 3 6334 0 2
## 630 4 3 4936 0 1
## 631 4 2 4775 0 2
## 632 4 2 2818 1 1
## 633 4 1 2515 1 0
## 634 1 2 2342 0 0
## 635 1 2 4194 1 0
## 636 3 2 10685 1 1
## 637 2 3 2022 1 1
## 638 4 3 2314 0 1
## 639 1 2 4256 0 0
## 640 1 2 3580 0 1
## 641 4 2 3162 0 0
## 642 2 2 6524 0 1
## 643 2 2 2899 0 1
## 644 4 2 5231 1 1
## 645 4 2 2356 1 1
## 646 3 3 2800 1 3
## 647 4 2 11836 0 1
## 648 2 2 10903 0 0
## 649 4 2 2973 0 1
## 650 4 1 14275 0 0
## 651 4 2 5562 0 1
## 652 4 2 4537 1 1
## 653 2 1 7642 1 0
## 654 1 3 17924 0 1
## 655 4 2 5204 0 2
## 656 2 3 2277 1 1
## 657 4 1 2795 1 0
## 658 4 3 2532 0 3
## 659 1 2 2559 1 0
## 660 4 1 4908 0 0
## 661 4 3 2380 1 1
## 662 2 3 4765 0 1
## 663 3 1 2044 0 0
## 664 4 1 2693 0 0
## 665 4 2 6586 1 1
## 666 4 1 3294 1 0
## 667 3 2 4171 1 1
## 668 4 3 2778 1 1
## 669 3 3 2377 0 1
## 670 1 2 2404 1 0
## 671 3 1 2318 0 0
## 672 2 3 2008 0 2
## 673 3 1 6244 0 0
## 674 1 1 2799 1 0
## 675 2 3 10552 1 1
## 676 3 2 2329 0 0
## 677 4 2 4014 1 1
## 678 2 2 7403 0 1
## 679 3 2 2259 0 2
## 680 3 2 6932 0 1
## 681 4 1 4678 0 0
## 682 1 2 13582 0 1
## 683 2 2 2332 0 0
## 684 2 2 2413 1 3
## 685 2 3 9705 0 1
## 686 1 1 4294 0 0
## 687 1 1 4721 1 0
## 688 3 1 2519 0 0
## 689 2 1 2121 1 0
## 690 1 1 2973 0 0
## 691 4 2 5855 1 2
## 692 2 3 3617 1 1
## 693 1 2 6725 0 1
## 694 4 2 10325 1 1
## 695 4 1 6949 0 0
## 696 3 2 10609 0 0
## 697 2 2 4447 0 0
## 698 4 2 2157 0 1
## 699 3 2 4601 0 0
## 700 4 2 17099 0 1
## 701 3 1 2479 0 0
## 702 3 3 14852 0 1
## 703 3 3 7264 0 1
## 704 4 1 5666 1 0
## 705 4 3 7823 0 1
## 706 3 1 7880 0 0
## 707 2 1 13194 1 0
## 708 3 3 5067 1 0
## 709 4 3 5079 0 2
## 710 1 1 2321 1 0
## 711 3 1 17444 0 0
## 712 1 1 2404 1 0
## 713 4 1 3452 0 0
## 714 4 3 2270 0 2
## 715 4 3 17399 0 1
## 716 2 2 5488 1 1
## 717 3 3 19419 0 1
## 718 2 2 2811 0 1
## 719 1 2 3633 1 1
## 720 4 1 4163 1 0
## 721 3 2 2132 1 0
## 722 3 2 13973 1 1
## 723 3 2 2684 0 1
## 724 3 3 10845 0 1
## 725 3 3 4377 0 2
## 726 2 3 3743 1 1
## 727 1 2 4148 0 1
## 728 4 1 1051 0 0
## 729 3 2 10739 0 1
## 730 3 3 10388 1 1
## 731 1 2 11416 1 3
## 732 1 1 2600 1 0
## 733 2 1 2422 0 0
## 734 4 2 5472 0 0
## 735 1 2 2451 0 1
## 736 3 1 4240 0 0
## 737 3 1 10999 0 0
## 738 3 1 5003 0 0
## 739 4 2 12742 0 1
## 740 4 2 4227 0 1
## 741 4 3 3917 0 1
## 742 3 2 18303 0 0
## 743 4 2 2380 0 0
## 744 4 1 13726 1 0
## 745 2 2 4777 0 0
## 746 2 2 6385 1 2
## 747 3 3 19973 0 2
## 748 4 1 6861 1 0
## 749 1 1 4969 0 0
## 750 4 2 19845 0 1
## 751 4 2 13320 1 1
## 752 3 2 6347 0 1
## 753 1 1 2743 0 0
## 754 1 1 10880 1 0
## 755 4 1 2342 0 0
## 756 4 2 17650 0 1
## 757 3 1 4025 0 0
## 758 4 3 9725 0 1
## 759 4 2 11904 1 1
## 760 2 1 2177 0 0
## 761 2 2 7525 0 1
## 762 3 3 4834 0 1
## 763 1 2 2042 1 1
## 764 3 2 2220 1 1
## 765 2 2 1052 0 0
## 766 3 2 2821 0 1
## 767 3 2 19237 1 1
## 768 2 1 4107 0 0
## 769 1 2 8396 0 1
## 770 3 3 2007 0 2
## 771 4 3 19627 0 2
## 772 3 2 10686 0 1
## 773 3 2 2942 0 1
## 774 4 1 8858 0 0
## 775 1 1 16756 0 0
## 776 4 3 10798 0 1
## 777 4 1 2323 1 0
## 778 1 1 1416 0 0
## 779 1 3 4615 1 3
## 780 3 2 2461 1 3
## 781 1 1 8722 0 0
## 782 1 2 3955 0 2
## 783 1 2 9957 0 1
## 784 3 2 3376 0 0
## 785 3 2 8823 0 1
## 786 4 2 10322 0 1
## 787 3 2 4621 0 3
## 788 2 2 10976 0 1
## 789 3 1 3660 0 0
## 790 1 2 10482 0 1
## 791 4 3 7119 0 1
## 792 1 1 9582 1 0
## 793 3 1 4508 0 0
## 794 3 3 2207 0 1
## 795 4 1 7756 0 0
## 796 4 3 6694 1 3
## 797 4 2 3691 1 1
## 798 3 3 2377 0 1
## 799 2 1 2313 1 0
## 800 1 2 17665 0 1
## 801 2 3 2596 0 2
## 802 3 1 4728 1 0
## 803 2 2 4302 0 1
## 804 4 2 2979 0 3
## 805 4 1 16885 0 0
## 806 3 2 5593 0 1
## 807 2 1 10445 0 0
## 808 3 3 8740 1 2
## 809 4 3 2514 0 1
## 810 2 3 7655 0 3
## 811 3 2 17465 0 1
## 812 2 1 7351 0 0
## 813 1 2 10820 0 1
## 814 4 3 12169 0 3
## 815 3 1 19626 0 0
## 816 2 1 2070 1 0
## 817 2 1 6782 0 0
## 818 4 1 7779 0 0
## 819 4 2 2791 0 1
## 820 2 2 3201 0 0
## 821 4 3 4968 0 1
## 822 2 2 13120 0 1
## 823 3 1 4033 0 0
## 824 2 3 3291 0 2
## 825 4 1 4272 0 0
## 826 4 2 5056 1 1
## 827 3 2 2844 0 1
## 828 3 3 2703 1 1
## 829 3 1 1904 0 0
## 830 1 1 8224 1 0
## 831 4 2 4766 1 1
## 832 3 2 2610 0 1
## 833 4 3 5731 0 2
## 834 3 2 2539 0 1
## 835 3 2 5714 0 0
## 836 3 1 4323 0 0
## 837 1 2 7336 0 1
## 838 3 1 13499 0 0
## 839 1 1 13758 1 0
## 840 1 1 5155 0 0
## 841 3 2 2258 0 1
## 842 2 1 3597 0 0
## 843 4 2 2515 1 0
## 844 4 2 4420 0 1
## 845 3 2 6578 0 1
## 846 4 2 4422 1 1
## 847 2 3 10274 0 1
## 848 1 1 5343 0 0
## 849 4 2 2376 0 1
## 850 3 1 5346 0 0
## 851 1 3 2827 0 3
## 852 1 3 19943 0 1
## 853 4 2 3131 0 1
## 854 1 1 2552 0 0
## 855 3 2 4477 1 1
## 856 4 2 6474 0 1
## 857 3 1 3033 0 0
## 858 3 1 2936 1 0
## 859 3 3 18606 0 1
## 860 4 2 2168 1 1
## 861 4 2 2853 1 1
## 862 1 2 17048 0 0
## 863 3 1 2290 0 0
## 864 3 2 3600 0 1
## 865 1 3 2107 0 1
## 866 1 3 4115 0 3
## 867 2 2 4327 0 3
## 868 1 2 17856 0 1
## 869 1 2 3196 0 3
## 870 2 2 19081 0 1
## 871 1 2 8966 1 3
## 872 2 2 2210 0 1
## 873 3 2 4539 0 1
## 874 3 3 2741 0 1
## 875 3 3 3491 0 3
## 876 4 1 4541 0 0
## 877 4 1 2678 0 0
## 878 4 3 7379 0 1
## 879 1 2 6272 0 1
## 880 4 3 5220 1 1
## 881 2 2 2743 0 1
## 882 3 1 4998 1 0
## 883 1 3 10252 1 1
## 884 4 2 2781 0 1
## 885 2 3 6852 0 1
## 886 4 1 4950 0 0
## 887 2 2 3579 1 1
## 888 1 2 13191 1 0
## 889 4 2 10377 1 1
## 890 1 2 2235 1 2
## 891 3 3 10502 0 1
## 892 4 2 2011 0 1
## 893 2 1 1859 1 0
## 894 4 3 3760 0 3
## 895 4 2 17779 0 0
## 896 1 2 6833 1 0
## 897 1 1 6812 0 0
## 898 4 1 5171 0 0
## 899 4 2 19740 0 1
## 900 3 2 18711 0 1
## 901 2 2 3692 0 0
## 902 2 1 2559 0 0
## 903 3 3 2517 0 3
## 904 4 3 6623 1 2
## 905 4 1 18265 0 0
## 906 4 3 16124 0 2
## 907 3 2 2585 0 0
## 908 2 2 18213 0 1
## 909 3 3 8380 1 2
## 910 4 1 2994 1 0
## 911 3 2 1223 0 1
## 912 4 1 1118 1 0
## 913 4 1 2875 1 0
## 914 2 1 18824 1 0
## 915 2 3 13577 1 1
## 916 3 1 2625 0 0
## 917 2 2 18789 0 1
## 918 1 1 4538 1 0
## 919 2 3 19847 1 1
## 920 4 1 10512 0 0
## 921 2 3 4444 0 2
## 922 3 1 2154 1 0
## 923 1 3 19190 0 2
## 924 2 2 4490 0 2
## 925 3 2 3506 1 0
## 926 2 2 2372 1 0
## 927 4 1 10231 0 0
## 928 2 1 5410 1 0
## 929 4 2 7978 0 1
## 930 4 2 3867 1 1
## 931 3 1 2838 0 0
## 932 3 1 4695 1 0
## 933 3 3 3339 1 2
## 934 1 1 2080 0 0
## 935 2 1 2096 0 0
## 936 4 2 6209 0 2
## 937 2 1 18061 0 0
## 938 2 3 17123 1 2
## 939 3 3 2372 0 2
## 940 3 2 4883 0 1
## 941 1 1 3904 0 0
## 942 4 2 4627 0 1
## 943 3 2 7094 0 0
## 944 1 1 3423 0 0
## 945 4 2 6674 0 3
## 946 1 2 16880 1 0
## 947 2 1 9094 1 0
## 948 2 1 8446 1 0
## 949 1 2 11916 1 2
## 950 3 1 4534 0 0
## 951 3 3 9852 1 1
## 952 2 1 6151 0 0
## 953 2 1 2302 1 0
## 954 1 2 2362 0 0
## 955 3 2 17861 1 0
## 956 3 2 19187 0 1
## 957 2 1 19717 0 0
## 958 3 3 3544 0 1
## 959 4 3 8500 0 1
## 960 4 1 4661 0 0
## 961 1 3 4103 0 1
## 962 3 1 4249 1 0
## 963 2 3 14026 1 1
## 964 1 3 6893 0 1
## 965 1 1 6125 0 0
## 966 4 2 3669 0 3
## 967 1 2 10008 1 0
## 968 2 2 2387 0 1
## 969 1 2 4639 0 1
## 970 4 1 7898 0 0
## 971 4 2 2534 0 1
## 972 2 1 13142 0 0
## 973 4 1 1611 0 0
## 974 4 2 5363 0 1
## 975 4 1 5071 0 0
## 976 3 1 13695 1 0
## 977 2 2 13402 1 1
## 978 3 3 2029 0 3
## 979 3 3 6377 0 3
## 980 3 2 5429 0 2
## 981 4 1 2785 0 0
## 982 3 2 4614 1 1
## 983 3 3 2610 0 3
## 984 4 1 6687 0 0
## 985 1 2 4724 0 1
## 986 3 2 6179 1 2
## 987 4 2 6120 1 2
## 988 2 2 10596 0 0
## 989 4 3 5467 1 2
## 990 3 2 2996 1 0
## 991 4 2 9998 0 0
## 992 2 2 4078 1 3
## 993 3 2 10920 0 1
## 994 3 2 6232 0 0
## 995 3 2 13247 1 1
## 996 3 1 4081 1 0
## 997 4 2 5769 1 0
## 998 3 1 2394 1 0
## 999 4 1 3904 0 0
## 1000 1 2 16799 0 1
## 1001 1 2 2950 0 0
## 1002 3 1 3629 0 0
## 1003 4 1 9362 0 0
## 1004 4 2 3229 0 1
## 1005 1 1 3578 0 0
## 1006 1 1 7988 0 0
## 1007 1 1 4284 0 0
## 1008 4 1 7553 1 0
## 1009 4 1 17328 0 0
## 1010 1 2 19701 1 1
## 1011 4 3 14732 0 2
## 1012 2 1 9278 1 0
## 1013 3 1 1359 0 0
## 1014 1 3 4779 0 2
## 1015 2 1 16422 0 0
## 1016 1 3 2996 0 2
## 1017 2 1 1261 0 0
## 1018 1 2 2099 0 0
## 1019 4 1 5810 0 0
## 1020 1 2 5647 0 2
## 1021 4 2 3420 0 1
## 1022 1 2 4400 0 0
## 1023 3 1 3500 0 0
## 1024 1 2 2066 0 1
## 1025 3 2 17169 0 2
## 1026 3 2 4162 1 2
## 1027 4 2 9204 0 1
## 1028 2 2 3294 0 1
## 1029 3 2 2127 1 0
## 1030 3 3 3975 0 2
## 1031 4 3 10793 0 1
## 1032 4 3 10096 0 1
## 1033 1 1 3646 1 0
## 1034 2 1 7446 0 0
## 1035 1 3 10851 1 1
## 1036 2 1 2109 0 0
## 1037 4 2 3722 1 1
## 1038 4 2 9380 1 2
## 1039 1 3 5486 0 3
## 1040 3 2 2742 0 0
## 1041 2 3 13757 0 1
## 1042 1 1 8463 0 0
## 1043 3 1 3162 0 0
## 1044 2 1 16598 0 0
## 1045 3 2 6651 0 1
## 1046 3 3 2345 0 1
## 1047 2 1 3420 0 0
## 1048 1 2 4373 0 2
## 1049 1 1 4759 0 0
## 1050 3 2 5301 0 2
## 1051 4 1 3673 0 0
## 1052 3 2 4768 0 1
## 1053 3 3 1274 0 2
## 1054 3 2 4900 0 1
## 1055 2 3 10466 0 2
## 1056 1 3 17007 0 2
## 1057 3 2 2909 0 1
## 1058 2 1 5765 0 0
## 1059 2 1 4599 1 0
## 1060 3 2 2404 0 1
## 1061 1 1 3172 1 0
## 1062 2 2 2033 0 1
## 1063 3 1 10209 1 0
## 1064 3 3 8620 0 2
## 1065 3 3 2064 0 1
## 1066 3 2 4035 1 0
## 1067 2 2 3838 0 0
## 1068 3 2 4591 1 1
## 1069 1 1 2561 0 0
## 1070 3 3 1563 0 1
## 1071 1 1 4898 0 0
## 1072 1 2 4789 0 1
## 1073 2 2 3180 0 3
## 1074 2 2 6549 0 2
## 1075 3 1 6388 1 0
## 1076 4 1 11244 0 0
## 1077 4 3 16032 0 1
## 1078 1 1 2362 0 0
## 1079 1 2 16328 0 1
## 1080 2 1 8376 0 0
## 1081 2 2 16606 0 1
## 1082 2 1 8606 0 0
## 1083 3 1 2272 0 0
## 1084 1 1 2018 0 0
## 1085 3 2 7083 1 0
## 1086 3 1 4084 0 0
## 1087 4 1 14411 1 0
## 1088 3 2 2308 1 1
## 1089 2 2 4841 0 1
## 1090 4 2 4285 0 0
## 1091 1 2 9715 0 1
## 1092 2 1 4320 0 0
## 1093 4 2 2132 0 1
## 1094 4 2 10124 1 1
## 1095 1 2 5473 0 0
## 1096 3 2 5207 1 1
## 1097 4 1 16437 1 0
## 1098 1 3 2296 0 3
## 1099 4 3 4069 1 0
## 1100 2 3 7441 0 3
## 1101 3 2 2430 0 2
## 1102 2 2 5878 0 1
## 1103 4 1 2644 1 0
## 1104 3 3 6439 0 1
## 1105 3 2 2451 0 2
## 1106 1 2 6392 0 1
## 1107 1 2 9714 0 1
## 1108 3 2 6077 0 0
## 1109 1 1 2450 0 0
## 1110 2 2 9250 0 1
## 1111 1 3 2074 1 1
## 1112 4 2 10169 0 1
## 1113 2 2 4855 0 2
## 1114 1 2 4087 0 1
## 1115 1 2 2367 0 1
## 1116 4 1 2972 0 0
## 1117 4 2 19586 0 1
## 1118 4 2 5484 0 1
## 1119 4 2 2061 0 0
## 1120 2 2 9924 0 1
## 1121 2 1 4198 0 0
## 1122 3 1 6815 0 0
## 1123 1 1 4723 1 0
## 1124 3 1 6142 1 0
## 1125 3 2 8237 0 1
## 1126 4 3 8853 0 1
## 1127 3 2 19331 1 1
## 1128 3 2 2073 0 1
## 1129 1 2 5562 1 1
## 1130 4 1 19613 0 0
## 1131 3 2 3407 0 2
## 1132 3 2 5063 0 1
## 1133 1 2 4639 0 1
## 1134 2 3 4876 0 1
## 1135 4 2 2690 0 1
## 1136 1 1 17567 0 0
## 1137 2 2 2408 1 3
## 1138 3 2 2814 1 0
## 1139 3 2 11245 1 1
## 1140 4 2 3312 0 2
## 1141 4 3 19049 1 1
## 1142 2 2 2141 0 1
## 1143 1 1 5769 1 0
## 1144 1 2 4385 0 1
## 1145 1 1 5332 0 0
## 1146 3 2 4663 1 2
## 1147 4 3 4724 0 1
## 1148 1 2 3211 0 1
## 1149 1 2 5377 0 3
## 1150 1 3 4066 0 2
## 1151 1 2 5208 0 0
## 1152 1 3 4877 0 1
## 1153 4 1 3117 0 0
## 1154 4 1 1569 1 0
## 1155 3 2 19658 0 1
## 1156 3 3 3069 0 1
## 1157 3 2 10435 0 2
## 1158 3 2 4148 0 1
## 1159 3 2 5768 0 3
## 1160 3 1 5042 0 0
## 1161 4 3 5770 0 2
## 1162 3 2 7756 1 1
## 1163 1 2 10306 0 0
## 1164 2 2 3936 0 1
## 1165 4 1 7945 1 0
## 1166 4 2 5743 1 0
## 1167 4 2 15202 0 1
## 1168 4 3 5440 1 2
## 1169 4 1 3760 1 0
## 1170 3 2 3517 0 0
## 1171 4 1 2580 0 0
## 1172 1 1 2166 1 0
## 1173 3 1 5869 0 0
## 1174 1 2 8008 0 2
## 1175 3 3 5206 0 2
## 1176 2 2 5295 0 0
## 1177 2 2 16413 0 2
## 1178 1 3 13269 0 3
## 1179 3 1 2783 0 0
## 1180 2 3 5433 0 1
## 1181 2 1 2013 0 0
## 1182 3 2 13966 1 1
## 1183 3 2 4374 0 0
## 1184 1 3 6842 0 1
## 1185 3 2 17426 0 1
## 1186 3 2 17603 0 1
## 1187 4 1 4581 1 0
## 1188 4 2 4735 0 2
## 1189 2 3 4187 1 1
## 1190 4 3 5505 0 2
## 1191 2 3 5470 0 2
## 1192 4 2 5476 0 2
## 1193 1 3 2587 1 1
## 1194 2 1 2440 0 0
## 1195 2 3 15972 0 3
## 1196 3 1 15379 0 0
## 1197 3 1 7082 1 0
## 1198 1 1 2728 0 0
## 1199 4 3 5368 1 1
## 1200 3 2 5347 0 2
## 1201 4 3 3195 1 3
## 1202 3 1 3989 1 0
## 1203 3 2 3306 0 1
## 1204 4 2 7005 0 0
## 1205 3 2 2655 1 2
## 1206 2 1 1393 0 0
## 1207 4 1 2570 0 0
## 1208 2 3 3537 0 1
## 1209 4 2 3986 0 1
## 1210 4 3 10883 0 1
## 1211 2 2 2028 0 3
## 1212 4 3 9525 0 2
## 1213 4 2 2929 0 0
## 1214 4 3 2275 1 1
## 1215 4 2 7879 1 1
## 1216 4 1 4930 1 0
## 1217 4 2 7847 1 1
## 1218 3 2 4401 0 1
## 1219 3 1 9241 0 0
## 1220 3 2 2974 0 1
## 1221 4 1 4502 0 0
## 1222 3 2 10748 0 1
## 1223 3 2 1555 0 1
## 1224 3 2 12936 0 0
## 1225 3 2 2305 0 3
## 1226 2 1 16704 0 0
## 1227 3 2 3433 0 1
## 1228 3 2 3477 0 1
## 1229 2 2 6430 0 1
## 1230 1 2 6516 1 1
## 1231 1 3 3907 0 3
## 1232 2 1 5562 0 0
## 1233 3 2 6883 0 1
## 1234 4 2 2862 0 1
## 1235 2 2 4978 0 1
## 1236 4 3 10368 1 1
## 1237 1 3 6134 1 3
## 1238 2 1 6735 0 0
## 1239 2 1 3295 0 0
## 1240 4 1 5238 0 0
## 1241 4 2 6472 1 1
## 1242 3 2 9610 0 1
## 1243 2 1 19833 0 0
## 1244 3 2 9756 0 2
## 1245 1 1 4968 0 0
## 1246 4 2 2145 0 1
## 1247 4 3 2180 0 1
## 1248 3 2 8346 0 1
## 1249 4 1 3445 0 0
## 1250 2 1 2760 0 0
## 1251 3 1 6294 1 0
## 1252 1 3 7140 0 1
## 1253 4 2 2932 1 3
## 1254 2 1 5147 0 0
## 1255 4 1 4507 0 0
## 1256 1 1 8564 1 0
## 1257 2 2 2468 0 1
## 1258 3 2 8161 0 3
## 1259 1 3 2109 0 1
## 1260 3 2 5294 0 1
## 1261 2 1 2718 0 0
## 1262 4 2 5811 1 1
## 1263 3 2 2437 1 1
## 1264 2 3 2766 0 3
## 1265 1 2 19038 0 3
## 1266 2 3 3055 0 2
## 1267 1 3 2289 0 2
## 1268 3 3 4001 1 1
## 1269 3 2 12965 1 3
## 1270 4 1 3539 0 0
## 1271 4 1 6029 0 0
## 1272 2 1 2679 0 0
## 1273 3 2 3702 0 1
## 1274 1 2 2398 1 0
## 1275 4 2 5468 0 2
## 1276 3 2 13116 0 0
## 1277 2 2 4189 0 2
## 1278 4 3 19328 1 1
## 1279 1 2 8321 1 1
## 1280 2 3 2342 1 3
## 1281 2 3 4071 0 0
## 1282 4 1 5813 1 0
## 1283 1 2 3143 0 1
## 1284 4 2 2044 0 1
## 1285 3 1 13464 0 0
## 1286 2 1 7991 0 0
## 1287 1 2 3377 0 1
## 1288 1 2 5538 0 2
## 1289 4 3 5762 0 1
## 1290 2 3 2592 0 3
## 1291 1 2 5346 0 1
## 1292 1 1 4213 0 0
## 1293 4 3 4127 0 1
## 1294 3 1 2438 0 0
## 1295 2 1 6870 0 0
## 1296 3 3 10447 1 1
## 1297 3 1 9667 0 0
## 1298 2 2 2148 1 0
## 1299 2 2 8926 0 1
## 1300 4 3 6513 0 1
## 1301 3 2 6799 0 2
## 1302 2 3 16291 0 1
## 1303 3 2 2705 0 1
## 1304 2 3 10333 1 1
## 1305 1 3 4448 0 1
## 1306 4 2 6854 0 1
## 1307 1 2 9637 0 2
## 1308 1 2 3591 0 1
## 1309 4 2 5405 1 2
## 1310 4 1 4684 0 0
## 1311 3 2 15787 1 0
## 1312 3 1 1514 0 0
## 1313 1 2 2956 0 0
## 1314 1 3 2335 1 3
## 1315 3 2 5154 0 2
## 1316 2 2 6962 1 1
## 1317 4 2 5675 0 1
## 1318 4 1 2379 1 0
## 1319 4 2 3812 0 0
## 1320 4 1 4648 0 0
## 1321 3 2 2936 0 2
## 1322 3 1 2105 0 0
## 1323 4 3 8578 0 1
## 1324 4 3 2706 0 1
## 1325 3 3 6384 0 2
## 1326 3 1 3968 0 0
## 1327 2 1 9907 1 0
## 1328 1 3 13225 0 1
## 1329 3 2 3540 0 1
## 1330 2 2 2804 0 0
## 1331 3 2 19392 0 0
## 1332 2 2 19665 0 0
## 1333 4 1 2439 1 0
## 1334 2 2 7314 0 3
## 1335 1 2 4774 0 1
## 1336 4 3 3902 0 3
## 1337 4 2 2662 0 1
## 1338 2 2 2856 0 1
## 1339 4 1 1081 0 0
## 1340 2 1 2472 1 0
## 1341 3 2 5673 1 1
## 1342 3 3 4197 0 1
## 1343 4 2 9713 1 3
## 1344 1 1 2062 0 0
## 1345 1 2 4284 1 1
## 1346 2 2 4788 1 0
## 1347 4 2 5906 0 2
## 1348 4 1 3886 0 0
## 1349 1 3 16823 0 1
## 1350 3 2 2933 1 1
## 1351 3 1 6500 0 0
## 1352 4 3 17174 0 1
## 1353 1 2 5033 0 1
## 1354 1 2 2307 1 1
## 1355 4 1 2587 0 0
## 1356 2 2 5507 0 2
## 1357 2 2 4393 0 1
## 1358 1 2 13348 0 1
## 1359 4 3 6583 1 1
## 1360 4 2 8103 1 0
## 1361 3 3 3978 0 1
## 1362 4 2 2544 0 1
## 1363 3 1 5399 0 0
## 1364 3 1 5487 0 0
## 1365 4 2 6834 1 1
## 1366 1 1 1091 0 0
## 1367 3 2 5736 0 1
## 1368 2 2 2226 0 1
## 1369 4 2 5747 1 0
## 1370 3 1 9854 1 0
## 1371 2 2 5467 0 1
## 1372 1 2 5380 0 1
## 1373 1 2 5151 0 1
## 1374 2 3 2133 1 1
## 1375 4 2 17875 1 1
## 1376 3 1 2432 1 0
## 1377 4 3 4771 0 2
## 1378 4 2 19161 0 0
## 1379 4 3 5087 1 2
## 1380 2 2 2863 0 0
## 1381 1 2 5561 0 1
## 1382 3 1 2144 0 0
## 1383 1 3 3065 1 1
## 1384 2 2 2810 0 0
## 1385 4 1 9888 0 0
## 1386 3 3 8628 0 1
## 1387 1 1 2867 0 0
## 1388 1 2 5373 0 1
## 1389 4 3 6667 0 1
## 1390 1 2 5003 0 0
## 1391 4 3 2367 0 1
## 1392 1 1 2858 0 0
## 1393 4 2 5204 1 0
## 1394 4 1 4105 0 0
## 1395 4 1 9679 0 0
## 1396 4 2 5617 1 0
## 1397 1 1 10448 1 0
## 1398 3 2 2897 0 2
## 1399 3 3 5968 0 3
## 1400 3 2 7510 0 1
## 1401 2 2 2991 1 1
## 1402 2 2 19636 1 1
## 1403 4 3 1129 1 3
## 1404 1 1 13341 0 0
## 1405 3 1 4332 0 0
## 1406 3 2 11031 0 1
## 1407 1 1 4440 1 0
## 1408 3 1 4617 0 0
## 1409 4 1 2647 0 0
## 1410 3 2 6323 0 1
## 1411 2 2 5677 0 1
## 1412 2 2 2187 0 0
## 1413 2 2 3748 0 0
## 1414 3 3 3977 1 1
## 1415 3 1 8633 0 0
## 1416 3 3 2008 0 3
## 1417 2 2 4440 0 2
## 1418 3 2 3067 0 1
## 1419 3 2 5321 0 1
## 1420 1 3 5410 1 1
## 1421 4 2 2782 0 1
## 1422 2 2 11957 0 2
## 1423 3 2 2660 1 1
## 1424 3 1 3375 0 0
## 1425 3 1 5098 0 0
## 1426 4 2 4878 1 1
## 1427 2 1 2837 0 0
## 1428 4 2 2406 0 2
## 1429 2 2 2269 0 1
## 1430 4 1 4108 0 0
## 1431 3 2 13206 0 1
## 1432 4 2 10422 0 2
## 1433 4 2 13744 1 1
## 1434 3 3 4907 1 1
## 1435 4 3 3482 0 2
## 1436 4 1 2436 1 0
## 1437 1 1 2380 1 0
## 1438 4 1 19431 0 0
## 1439 1 2 1790 0 1
## 1440 4 2 7644 0 2
## 1441 2 3 5131 0 3
## 1442 3 3 6306 0 1
## 1443 4 2 4787 1 3
## 1444 3 2 18880 0 0
## 1445 3 2 2339 0 1
## 1446 2 2 13570 0 1
## 1447 3 2 6712 0 2
## 1448 4 3 5406 0 1
## 1449 2 3 8938 0 1
## 1450 1 1 2439 0 0
## 1451 4 1 8837 1 0
## 1452 4 2 5343 0 1
## 1453 3 3 6728 0 2
## 1454 4 2 6652 0 1
## 1455 3 1 4850 0 0
## 1456 3 1 2809 0 0
## 1457 3 2 5689 1 2
## 1458 3 2 2001 0 3
## 1459 4 2 2977 0 1
## 1460 2 2 4025 1 1
## 1461 1 1 3785 0 0
## 1462 1 3 10854 1 1
## 1463 4 2 12031 0 1
## 1464 1 1 9936 0 0
## 1465 3 1 2966 0 0
## 1466 4 2 2571 0 1
## 1467 1 2 9991 0 1
## 1468 2 2 6142 1 1
## 1469 2 2 5390 0 0
## 1470 3 2 4404 0 0
## TotalWorkingYears TrainingTimesLastYear WorkLifeBalance YearsAtCompany
## 1 8 0 1 6
## 2 10 3 3 10
## 3 7 3 3 0
## 4 8 3 3 8
## 5 6 3 3 2
## 6 8 2 2 7
## 7 12 3 2 1
## 8 1 2 3 1
## 9 10 2 3 9
## 10 17 3 2 7
## 11 6 5 3 5
## 12 10 3 3 9
## 13 5 1 2 5
## 14 3 2 3 2
## 15 6 4 3 4
## 16 10 1 3 10
## 17 7 5 2 6
## 18 1 2 2 1
## 19 31 3 3 25
## 20 6 3 3 3
## 21 5 5 2 4
## 22 10 4 3 5
## 23 13 4 3 12
## 24 0 6 3 0
## 25 8 2 3 4
## 26 26 3 2 14
## 27 10 5 3 10
## 28 10 2 3 9
## 29 24 4 3 22
## 30 22 2 2 2
## 31 7 3 3 1
## 32 9 5 4 4
## 33 10 5 3 10
## 34 19 6 4 1
## 35 6 2 2 2
## 36 6 3 2 5
## 37 3 2 3 3
## 38 2 3 3 2
## 39 6 3 4 1
## 40 10 3 3 5
## 41 1 3 3 1
## 42 1 6 3 1
## 43 1 2 2 1
## 44 9 0 3 9
## 45 12 2 3 12
## 46 23 0 3 22
## 47 10 2 3 9
## 48 8 1 3 1
## 49 14 4 3 9
## 50 1 2 3 1
## 51 23 2 3 1
## 52 2 3 2 2
## 53 9 2 2 4
## 54 10 3 3 4
## 55 5 2 2 2
## 56 15 1 3 15
## 57 9 3 2 9
## 58 4 3 3 2
## 59 10 3 2 7
## 60 7 2 4 7
## 61 9 3 3 9
## 62 10 2 3 10
## 63 29 2 2 27
## 64 28 3 2 21
## 65 17 2 3 17
## 66 21 2 3 5
## 67 6 3 3 6
## 68 25 2 3 1
## 69 5 2 2 3
## 70 2 0 2 1
## 71 20 2 2 4
## 72 6 3 3 5
## 73 1 4 3 1
## 74 10 3 3 10
## 75 5 3 3 1
## 76 11 2 3 11
## 77 16 2 3 15
## 78 17 3 4 0
## 79 16 3 4 5
## 80 16 2 3 4
## 81 10 1 2 10
## 82 6 3 3 6
## 83 24 4 3 1
## 84 17 3 3 13
## 85 5 2 3 5
## 86 37 3 2 6
## 87 3 3 3 0
## 88 10 4 3 4
## 89 11 3 3 11
## 90 9 3 3 9
## 91 22 3 2 22
## 92 11 2 1 10
## 93 11 4 2 11
## 94 21 5 2 10
## 95 12 0 3 11
## 96 16 5 1 4
## 97 4 2 2 3
## 98 5 3 4 5
## 99 38 1 2 37
## 100 17 3 4 3
## 101 7 3 3 3
## 102 1 2 3 1
## 103 1 5 3 1
## 104 16 3 3 16
## 105 17 2 4 1
## 106 30 3 3 3
## 107 28 1 2 8
## 108 6 1 3 6
## 109 2 2 3 2
## 110 1 5 3 0
## 111 23 1 2 13
## 112 9 3 3 9
## 113 23 3 3 5
## 114 6 2 3 5
## 115 12 3 3 1
## 116 12 3 3 5
## 117 14 6 3 11
## 118 10 6 3 9
## 119 7 2 3 1
## 120 25 3 4 25
## 121 10 2 2 10
## 122 8 2 4 7
## 123 7 2 3 5
## 124 23 5 3 20
## 125 12 3 2 7
## 126 5 3 2 5
## 127 40 3 2 40
## 128 0 2 2 0
## 129 3 2 3 2
## 130 16 2 2 15
## 131 18 2 3 3
## 132 16 3 3 2
## 133 4 2 3 2
## 134 12 2 3 9
## 135 8 3 3 8
## 136 7 0 3 3
## 137 18 2 3 4
## 138 17 1 4 15
## 139 6 3 3 2
## 140 12 2 1 11
## 141 10 2 4 5
## 142 9 2 2 6
## 143 19 2 3 3
## 144 5 4 2 5
## 145 9 2 4 8
## 146 8 3 3 3
## 147 6 3 3 5
## 148 21 2 2 7
## 149 7 2 3 5
## 150 1 3 3 1
## 151 20 2 3 20
## 152 10 3 3 10
## 153 13 3 1 7
## 154 20 2 1 17
## 155 9 2 3 9
## 156 10 1 3 10
## 157 10 2 3 1
## 158 9 3 2 1
## 159 15 2 2 12
## 160 6 3 3 4
## 161 2 6 3 2
## 162 6 1 1 2
## 163 5 2 1 5
## 164 12 2 1 5
## 165 1 2 2 1
## 166 21 5 3 5
## 167 13 2 3 9
## 168 12 2 3 10
## 169 12 2 4 8
## 170 8 2 3 5
## 171 6 3 2 5
## 172 1 5 4 0
## 173 13 3 2 8
## 174 12 4 3 12
## 175 9 3 4 5
## 176 19 3 3 2
## 177 4 2 4 3
## 178 1 3 2 1
## 179 24 2 3 24
## 180 2 3 3 2
## 181 7 0 3 4
## 182 9 3 3 3
## 183 4 5 2 4
## 184 5 2 2 3
## 185 5 3 3 4
## 186 8 5 3 8
## 187 21 2 3 20
## 188 36 3 3 24
## 189 10 2 2 10
## 190 21 6 3 7
## 191 34 5 3 33
## 192 7 2 2 7
## 193 8 1 3 1
## 194 7 3 4 5
## 195 22 1 3 20
## 196 8 3 2 8
## 197 10 5 3 6
## 198 11 5 3 5
## 199 14 3 3 1
## 200 9 3 1 7
## 201 6 1 3 2
## 202 7 0 3 7
## 203 5 4 4 5
## 204 15 2 4 7
## 205 17 2 3 1
## 206 10 3 2 10
## 207 4 2 2 4
## 208 8 2 3 8
## 209 5 5 1 3
## 210 17 3 3 4
## 211 14 2 2 14
## 212 12 2 3 11
## 213 7 2 3 7
## 214 16 5 1 10
## 215 8 5 3 5
## 216 16 3 3 1
## 217 9 5 2 6
## 218 7 1 2 6
## 219 23 2 3 19
## 220 16 4 3 6
## 221 16 3 4 13
## 222 7 3 3 3
## 223 10 1 3 10
## 224 17 6 2 16
## 225 6 2 3 5
## 226 7 6 3 1
## 227 13 2 3 9
## 228 11 5 3 11
## 229 10 3 4 10
## 230 4 3 2 4
## 231 6 3 2 2
## 232 22 3 3 22
## 233 7 2 2 2
## 234 32 3 2 7
## 235 8 2 1 5
## 236 22 3 3 17
## 237 13 3 4 9
## 238 33 2 4 33
## 239 6 5 3 4
## 240 4 2 1 3
## 241 7 1 3 3
## 242 4 2 3 3
## 243 17 2 2 1
## 244 9 3 3 9
## 245 25 2 3 24
## 246 9 3 3 2
## 247 2 2 2 2
## 248 13 3 3 11
## 249 17 2 2 3
## 250 9 1 3 3
## 251 17 5 3 1
## 252 20 1 3 19
## 253 6 1 3 6
## 254 10 1 3 3
## 255 10 2 3 3
## 256 5 3 3 4
## 257 10 4 3 9
## 258 22 5 3 21
## 259 1 0 2 1
## 260 6 2 4 5
## 261 5 3 1 5
## 262 13 0 3 8
## 263 9 5 3 6
## 264 28 2 2 7
## 265 5 5 1 0
## 266 10 2 3 0
## 267 10 2 3 9
## 268 6 2 3 6
## 269 21 2 3 20
## 270 16 4 3 15
## 271 37 2 3 36
## 272 10 2 2 10
## 273 5 3 2 5
## 274 7 5 4 5
## 275 3 4 4 3
## 276 15 2 3 5
## 277 10 6 2 7
## 278 8 3 3 8
## 279 6 6 1 6
## 280 28 4 2 10
## 281 21 5 2 5
## 282 20 3 3 20
## 283 10 3 2 10
## 284 12 4 3 10
## 285 5 3 3 5
## 286 17 3 3 17
## 287 19 0 1 1
## 288 10 2 3 2
## 289 5 2 3 3
## 290 5 3 3 5
## 291 22 4 3 3
## 292 10 2 3 8
## 293 2 5 2 2
## 294 8 0 3 8
## 295 4 3 2 4
## 296 23 2 4 20
## 297 0 2 3 0
## 298 12 3 2 11
## 299 4 2 3 1
## 300 13 3 3 4
## 301 22 2 3 22
## 302 0 2 3 0
## 303 9 2 3 8
## 304 10 3 2 8
## 305 19 5 2 18
## 306 11 3 3 9
## 307 13 3 2 13
## 308 19 2 3 10
## 309 12 2 3 5
## 310 6 4 3 5
## 311 9 1 3 2
## 312 24 2 3 24
## 313 3 2 1 2
## 314 12 2 3 10
## 315 21 3 3 21
## 316 9 5 3 8
## 317 25 2 3 7
## 318 11 3 2 8
## 319 4 2 2 4
## 320 13 2 3 13
## 321 5 3 3 5
## 322 13 3 3 7
## 323 10 0 2 7
## 324 5 4 2 3
## 325 11 2 3 10
## 326 10 2 3 10
## 327 21 2 3 21
## 328 12 3 2 1
## 329 9 6 2 7
## 330 21 2 3 3
## 331 9 3 4 9
## 332 6 0 3 5
## 333 20 4 2 4
## 334 10 1 2 1
## 335 12 3 3 10
## 336 6 2 2 4
## 337 7 4 2 7
## 338 4 2 3 3
## 339 10 2 3 10
## 340 8 3 3 8
## 341 8 2 2 6
## 342 12 3 3 11
## 343 11 2 2 11
## 344 7 2 3 7
## 345 17 5 3 16
## 346 4 2 2 4
## 347 8 3 3 5
## 348 5 3 3 0
## 349 16 2 3 1
## 350 4 3 2 4
## 351 4 5 3 3
## 352 8 4 3 8
## 353 15 3 1 0
## 354 13 2 3 7
## 355 4 2 4 2
## 356 8 3 3 8
## 357 14 6 3 1
## 358 3 3 3 3
## 359 7 6 3 1
## 360 16 2 3 13
## 361 15 2 3 3
## 362 10 3 3 7
## 363 3 3 2 3
## 364 1 2 3 1
## 365 17 3 3 5
## 366 7 2 4 1
## 367 8 5 3 8
## 368 20 2 3 4
## 369 8 6 3 6
## 370 3 5 3 2
## 371 1 0 3 1
## 372 6 4 3 3
## 373 10 5 3 1
## 374 5 2 3 5
## 375 7 1 3 7
## 376 26 2 3 5
## 377 18 2 2 7
## 378 6 3 3 2
## 379 9 3 2 5
## 380 30 2 3 5
## 381 5 2 4 5
## 382 1 3 3 1
## 383 7 2 3 6
## 384 2 1 3 2
## 385 10 2 3 10
## 386 3 4 3 1
## 387 18 2 2 18
## 388 8 5 3 5
## 389 8 5 3 5
## 390 18 2 2 1
## 391 25 3 3 25
## 392 20 3 3 1
## 393 24 4 2 4
## 394 6 3 3 3
## 395 13 5 1 13
## 396 8 1 3 3
## 397 8 3 3 5
## 398 5 3 3 5
## 399 15 2 3 13
## 400 4 3 3 4
## 401 21 3 3 21
## 402 36 0 2 7
## 403 6 6 3 5
## 404 10 2 3 10
## 405 10 2 3 10
## 406 6 5 3 2
## 407 28 4 3 5
## 408 8 3 2 2
## 409 31 2 1 5
## 410 19 3 3 5
## 411 11 2 3 5
## 412 33 5 1 29
## 413 19 5 2 10
## 414 7 4 4 6
## 415 6 4 3 5
## 416 3 3 2 2
## 417 1 3 3 1
## 418 21 2 3 20
## 419 3 3 1 3
## 420 9 3 1 5
## 421 10 2 3 10
## 422 6 2 4 2
## 423 1 3 4 1
## 424 10 3 3 9
## 425 32 3 2 1
## 426 28 2 3 27
## 427 12 2 2 11
## 428 22 5 4 18
## 429 20 2 3 5
## 430 26 2 1 3
## 431 6 2 3 5
## 432 19 3 3 1
## 433 14 3 3 7
## 434 15 3 3 3
## 435 13 6 4 13
## 436 15 2 4 7
## 437 8 2 3 4
## 438 4 3 3 3
## 439 10 2 3 8
## 440 12 2 3 1
## 441 11 2 3 3
## 442 8 4 3 2
## 443 10 3 2 10
## 444 4 3 3 2
## 445 14 2 3 9
## 446 37 2 3 10
## 447 16 3 3 14
## 448 15 2 3 11
## 449 22 3 3 20
## 450 8 3 3 8
## 451 10 2 4 6
## 452 10 5 2 10
## 453 9 3 4 8
## 454 8 2 2 7
## 455 8 2 4 3
## 456 10 2 3 6
## 457 10 3 2 5
## 458 0 3 3 0
## 459 20 2 3 1
## 460 10 3 3 8
## 461 8 5 3 0
## 462 5 3 3 5
## 463 10 3 3 10
## 464 1 3 1 1
## 465 12 3 4 6
## 466 28 3 2 2
## 467 22 2 3 18
## 468 9 6 3 9
## 469 18 3 3 10
## 470 6 2 3 4
## 471 3 3 3 2
## 472 18 4 3 1
## 473 8 2 2 6
## 474 31 5 3 31
## 475 6 3 3 6
## 476 6 5 4 5
## 477 1 2 3 1
## 478 32 2 3 32
## 479 7 1 3 7
## 480 6 4 3 6
## 481 1 2 4 1
## 482 6 3 3 6
## 483 9 2 1 3
## 484 9 3 3 3
## 485 13 4 4 7
## 486 6 5 2 5
## 487 17 3 2 3
## 488 1 0 4 1
## 489 10 4 3 10
## 490 21 3 2 1
## 491 8 3 2 0
## 492 10 3 3 8
## 493 21 3 1 3
## 494 10 1 4 2
## 495 8 3 3 8
## 496 5 3 3 4
## 497 3 2 3 3
## 498 26 2 4 2
## 499 3 3 3 2
## 500 6 3 3 5
## 501 6 2 2 6
## 502 1 2 3 1
## 503 18 2 4 14
## 504 10 4 2 10
## 505 5 4 3 1
## 506 3 2 3 3
## 507 10 2 3 10
## 508 6 5 2 6
## 509 17 3 3 17
## 510 15 2 1 13
## 511 16 1 4 9
## 512 13 2 3 3
## 513 5 0 3 4
## 514 1 5 3 1
## 515 10 3 3 10
## 516 1 3 3 1
## 517 5 3 4 3
## 518 4 4 3 3
## 519 8 2 3 7
## 520 10 5 3 10
## 521 12 3 3 2
## 522 6 3 3 6
## 523 4 2 3 1
## 524 20 3 3 20
## 525 9 3 4 8
## 526 4 3 3 2
## 527 20 4 3 20
## 528 10 2 2 10
## 529 18 4 3 4
## 530 10 4 2 9
## 531 9 3 3 9
## 532 10 6 3 7
## 533 20 2 3 7
## 534 20 2 3 18
## 535 32 3 3 5
## 536 23 2 2 21
## 537 10 1 3 2
## 538 9 4 2 9
## 539 22 3 3 22
## 540 4 2 3 2
## 541 10 4 3 7
## 542 10 2 3 8
## 543 10 4 4 1
## 544 9 5 3 5
## 545 28 2 2 22
## 546 10 2 2 8
## 547 1 6 3 1
## 548 7 2 3 2
## 549 7 5 3 2
## 550 10 2 3 5
## 551 5 2 4 4
## 552 12 3 1 8
## 553 30 1 2 10
## 554 5 2 2 4
## 555 9 2 1 7
## 556 2 2 3 2
## 557 19 4 3 2
## 558 16 2 4 1
## 559 10 2 3 10
## 560 6 0 1 1
## 561 7 3 3 0
## 562 34 3 4 34
## 563 10 2 2 10
## 564 6 5 2 6
## 565 9 3 3 8
## 566 2 3 3 2
## 567 8 2 3 5
## 568 6 5 3 6
## 569 24 2 3 5
## 570 10 1 3 10
## 571 5 3 3 4
## 572 5 2 3 2
## 573 11 3 2 8
## 574 6 2 2 4
## 575 10 2 3 4
## 576 9 4 3 5
## 577 5 3 3 4
## 578 6 3 2 5
## 579 17 2 3 15
## 580 6 3 3 6
## 581 3 1 2 3
## 582 7 2 3 2
## 583 8 2 3 8
## 584 6 1 3 3
## 585 24 4 2 24
## 586 1 2 3 0
## 587 1 4 3 1
## 588 9 3 3 5
## 589 30 3 3 4
## 590 1 1 3 1
## 591 14 3 4 13
## 592 6 3 3 3
## 593 26 3 2 26
## 594 10 2 3 9
## 595 10 3 3 10
## 596 40 2 3 31
## 597 7 0 3 2
## 598 8 4 3 4
## 599 5 3 2 2
## 600 8 2 3 5
## 601 14 3 3 14
## 602 10 6 3 1
## 603 12 4 2 0
## 604 1 3 3 1
## 605 10 3 2 9
## 606 13 3 2 4
## 607 6 3 3 5
## 608 9 3 4 9
## 609 12 3 2 9
## 610 22 3 3 4
## 611 9 3 3 9
## 612 17 3 4 8
## 613 8 2 3 8
## 614 4 1 1 3
## 615 8 2 3 8
## 616 0 6 2 0
## 617 29 2 2 20
## 618 10 2 2 5
## 619 6 3 2 4
## 620 9 5 3 9
## 621 6 3 2 6
## 622 18 1 2 18
## 623 8 3 2 5
## 624 10 3 2 5
## 625 35 3 3 5
## 626 18 2 3 5
## 627 9 3 2 5
## 628 31 3 3 9
## 629 9 2 3 1
## 630 6 6 3 5
## 631 4 2 1 2
## 632 10 2 2 3
## 633 8 2 3 2
## 634 6 3 3 5
## 635 5 3 3 5
## 636 17 2 3 17
## 637 10 3 2 10
## 638 4 2 3 3
## 639 5 1 4 5
## 640 7 2 3 4
## 641 6 2 2 5
## 642 10 3 3 10
## 643 3 3 3 2
## 644 17 1 2 5
## 645 8 2 3 6
## 646 5 3 3 3
## 647 28 3 3 2
## 648 16 2 3 13
## 649 10 3 3 5
## 650 33 0 3 12
## 651 12 2 2 5
## 652 8 2 3 7
## 653 10 2 3 10
## 654 31 3 3 31
## 655 13 2 3 5
## 656 7 4 4 4
## 657 1 2 1 1
## 658 8 5 3 4
## 659 8 0 3 8
## 660 4 3 3 4
## 661 3 3 2 1
## 662 4 2 4 1
## 663 2 3 2 2
## 664 1 3 2 1
## 665 17 2 2 16
## 666 3 3 2 3
## 667 4 3 4 3
## 668 10 1 2 7
## 669 6 2 3 2
## 670 8 2 1 2
## 671 1 2 3 1
## 672 1 3 3 1
## 673 10 6 3 5
## 674 6 1 3 3
## 675 24 3 3 6
## 676 13 2 4 7
## 677 10 2 1 10
## 678 29 3 2 26
## 679 13 2 2 0
## 680 9 2 2 9
## 681 8 6 3 6
## 682 15 3 3 15
## 683 5 3 3 3
## 684 1 2 3 1
## 685 11 2 2 1
## 686 7 2 3 7
## 687 20 3 3 18
## 688 16 6 3 11
## 689 1 3 4 1
## 690 1 2 3 1
## 691 10 2 1 9
## 692 3 2 3 1
## 693 8 2 4 8
## 694 16 6 3 16
## 695 6 3 3 5
## 696 17 2 1 14
## 697 9 5 2 9
## 698 3 5 3 3
## 699 5 3 3 5
## 700 26 2 2 9
## 701 7 4 3 1
## 702 22 3 4 17
## 703 10 2 4 8
## 704 6 1 3 5
## 705 12 2 3 10
## 706 9 3 3 8
## 707 22 2 2 1
## 708 20 3 4 19
## 709 12 3 3 7
## 710 4 0 3 3
## 711 10 2 3 10
## 712 3 5 3 0
## 713 5 4 3 3
## 714 8 2 3 5
## 715 32 1 2 5
## 716 6 2 3 6
## 717 21 2 4 18
## 718 4 2 3 2
## 719 9 2 3 9
## 720 9 0 3 9
## 721 7 2 3 5
## 722 22 2 3 12
## 723 3 0 2 2
## 724 13 3 3 8
## 725 5 6 3 4
## 726 5 2 1 4
## 727 4 1 3 4
## 728 0 2 3 0
## 729 22 2 3 10
## 730 16 3 2 16
## 731 9 4 2 8
## 732 1 2 3 1
## 733 4 3 3 3
## 734 8 2 3 8
## 735 4 3 2 4
## 736 19 0 3 2
## 737 27 3 3 15
## 738 8 6 3 2
## 739 21 3 3 21
## 740 4 2 3 3
## 741 3 4 2 3
## 742 21 3 4 1
## 743 8 5 3 1
## 744 30 4 3 5
## 745 15 2 1 1
## 746 17 3 3 8
## 747 21 3 3 21
## 748 19 1 3 1
## 749 7 6 3 2
## 750 33 3 3 32
## 751 23 2 3 12
## 752 19 3 3 18
## 753 18 1 3 17
## 754 21 2 3 21
## 755 3 2 2 2
## 756 26 4 4 9
## 757 10 2 3 8
## 758 16 2 2 15
## 759 14 1 1 6
## 760 6 3 3 6
## 761 30 2 3 15
## 762 9 3 2 1
## 763 6 2 3 3
## 764 1 2 3 1
## 765 1 5 3 1
## 766 8 2 3 2
## 767 29 2 2 8
## 768 8 3 2 4
## 769 8 3 2 7
## 770 5 5 3 5
## 771 23 0 3 2
## 772 13 4 3 9
## 773 18 4 3 5
## 774 15 2 2 14
## 775 31 3 4 9
## 776 18 5 3 1
## 777 2 3 3 2
## 778 1 6 2 1
## 779 19 2 3 16
## 780 18 2 4 10
## 781 10 2 2 10
## 782 6 2 3 5
## 783 7 1 2 6
## 784 10 3 3 10
## 785 20 4 2 19
## 786 14 6 3 11
## 787 3 4 3 3
## 788 23 4 3 3
## 789 10 4 4 8
## 790 24 1 3 20
## 791 9 2 3 3
## 792 9 2 3 8
## 793 14 4 3 13
## 794 4 5 2 4
## 795 7 1 2 6
## 796 8 5 3 1
## 797 7 3 4 7
## 798 1 0 2 1
## 799 5 0 3 2
## 800 23 3 3 22
## 801 1 2 3 1
## 802 5 4 3 0
## 803 4 3 3 3
## 804 6 2 3 0
## 805 27 3 2 5
## 806 15 2 3 15
## 807 18 4 3 8
## 808 9 2 3 8
## 809 11 1 3 7
## 810 10 3 2 9
## 811 23 3 3 12
## 812 10 2 3 1
## 813 18 1 3 8
## 814 21 4 3 18
## 815 21 2 4 20
## 816 2 6 4 2
## 817 9 2 2 5
## 818 18 0 3 11
## 819 3 4 3 2
## 820 6 2 1 5
## 821 5 3 3 5
## 822 22 3 3 9
## 823 5 3 2 3
## 824 8 2 2 7
## 825 16 3 3 1
## 826 10 2 2 10
## 827 7 2 4 7
## 828 3 2 3 3
## 829 0 0 3 0
## 830 6 3 3 5
## 831 6 4 3 1
## 832 2 5 2 2
## 833 9 2 3 6
## 834 4 0 3 4
## 835 6 3 2 6
## 836 6 2 1 5
## 837 11 3 1 11
## 838 20 3 2 18
## 839 22 2 2 21
## 840 9 3 4 6
## 841 10 2 3 8
## 842 6 2 3 4
## 843 1 4 2 1
## 844 8 2 3 8
## 845 10 3 3 10
## 846 16 3 1 1
## 847 15 2 4 7
## 848 14 3 3 13
## 849 2 2 4 2
## 850 7 2 2 4
## 851 1 3 3 1
## 852 28 2 3 5
## 853 10 5 3 10
## 854 1 4 3 1
## 855 7 2 2 3
## 856 14 2 2 14
## 857 2 2 2 2
## 858 6 4 3 6
## 859 26 6 3 7
## 860 6 2 2 5
## 861 1 5 3 0
## 862 28 2 3 26
## 863 6 3 3 0
## 864 5 2 3 5
## 865 5 2 1 1
## 866 8 3 3 4
## 867 5 2 3 0
## 868 32 3 3 2
## 869 6 2 3 6
## 870 25 2 3 4
## 871 15 2 3 7
## 872 1 3 1 1
## 873 10 3 2 10
## 874 7 4 3 7
## 875 10 4 2 10
## 876 20 3 3 20
## 877 2 2 3 2
## 878 12 3 2 6
## 879 10 3 4 4
## 880 12 3 3 11
## 881 2 2 3 2
## 882 10 2 3 8
## 883 17 2 3 7
## 884 15 5 3 14
## 885 7 2 4 5
## 886 5 4 3 4
## 887 12 2 3 11
## 888 20 6 3 1
## 889 16 6 2 13
## 890 9 3 2 9
## 891 33 2 1 5
## 892 10 5 3 10
## 893 1 2 4 1
## 894 3 5 3 3
## 895 36 2 3 10
## 896 6 2 2 6
## 897 10 2 3 10
## 898 13 2 3 6
## 899 25 2 3 8
## 900 23 2 4 1
## 901 12 2 2 11
## 902 7 4 2 1
## 903 5 2 3 5
## 904 6 2 3 6
## 905 25 3 4 1
## 906 9 2 2 7
## 907 2 5 2 1
## 908 26 5 3 22
## 909 10 3 3 9
## 910 1 2 3 1
## 911 1 2 3 1
## 912 1 4 3 1
## 913 8 2 2 8
## 914 26 2 3 24
## 915 34 3 3 33
## 916 2 2 1 2
## 917 26 2 3 11
## 918 4 3 3 3
## 919 31 5 2 29
## 920 25 6 2 9
## 921 15 2 4 11
## 922 5 2 2 4
## 923 26 4 2 25
## 924 14 5 4 10
## 925 4 3 3 3
## 926 18 2 3 1
## 927 23 3 4 21
## 928 18 2 3 16
## 929 10 2 3 10
## 930 2 2 3 2
## 931 8 6 2 7
## 932 10 3 3 8
## 933 10 2 3 7
## 934 5 2 2 3
## 935 2 3 2 2
## 936 10 4 4 10
## 937 22 4 3 0
## 938 21 4 3 19
## 939 2 3 3 2
## 940 10 3 3 10
## 941 6 2 3 5
## 942 10 6 3 9
## 943 10 0 3 7
## 944 10 3 4 7
## 945 10 6 3 9
## 946 25 2 3 3
## 947 9 2 3 5
## 948 10 2 2 8
## 949 9 2 3 9
## 950 9 6 3 8
## 951 10 5 2 10
## 952 19 4 3 19
## 953 3 2 4 3
## 954 10 4 4 3
## 955 21 3 2 20
## 956 23 5 3 19
## 957 36 4 3 7
## 958 6 0 3 4
## 959 10 0 2 9
## 960 9 4 3 9
## 961 10 2 3 9
## 962 9 3 3 9
## 963 33 2 3 33
## 964 11 3 3 7
## 965 10 6 4 10
## 966 7 6 2 3
## 967 31 0 2 10
## 968 7 3 3 4
## 969 17 2 2 15
## 970 11 2 3 10
## 971 5 4 3 1
## 972 29 1 2 5
## 973 0 5 4 0
## 974 10 0 3 9
## 975 8 3 3 6
## 976 24 2 2 19
## 977 33 0 3 19
## 978 5 2 3 5
## 979 15 0 3 12
## 980 10 1 3 8
## 981 3 3 4 1
## 982 5 0 2 4
## 983 4 2 3 4
## 984 14 2 4 14
## 985 5 0 3 5
## 986 10 3 2 10
## 987 8 2 4 5
## 988 14 5 3 4
## 989 12 4 2 6
## 990 8 2 3 6
## 991 8 2 4 5
## 992 4 3 2 3
## 993 13 2 3 6
## 994 6 3 2 3
## 995 24 3 2 5
## 996 20 3 1 20
## 997 6 3 3 6
## 998 8 2 3 8
## 999 5 2 3 4
## 1000 21 5 3 20
## 1001 12 2 1 5
## 1002 8 6 3 3
## 1003 10 2 3 2
## 1004 7 2 2 3
## 1005 8 2 3 7
## 1006 10 3 2 10
## 1007 20 2 3 4
## 1008 9 1 3 8
## 1009 29 3 2 20
## 1010 32 3 3 9
## 1011 31 4 4 7
## 1012 15 3 3 5
## 1013 1 3 3 1
## 1014 8 3 3 3
## 1015 9 3 4 3
## 1016 10 2 3 4
## 1017 1 3 4 1
## 1018 6 3 4 5
## 1019 10 2 2 10
## 1020 11 3 2 3
## 1021 17 2 2 6
## 1022 6 2 3 3
## 1023 7 2 1 6
## 1024 5 3 4 3
## 1025 26 2 4 20
## 1026 5 3 3 5
## 1027 7 3 2 4
## 1028 7 2 2 5
## 1029 7 5 2 4
## 1030 11 2 4 8
## 1031 13 5 3 13
## 1032 28 1 4 7
## 1033 11 2 4 1
## 1034 10 2 3 10
## 1035 24 2 3 7
## 1036 8 3 3 3
## 1037 7 2 1 2
## 1038 10 4 4 3
## 1039 15 3 3 2
## 1040 2 0 3 2
## 1041 16 5 3 9
## 1042 6 4 3 5
## 1043 7 5 3 5
## 1044 35 2 2 9
## 1045 20 0 2 3
## 1046 8 3 4 3
## 1047 6 3 2 5
## 1048 5 2 3 4
## 1049 15 2 3 13
## 1050 4 2 2 2
## 1051 12 3 3 12
## 1052 11 4 2 1
## 1053 1 2 2 1
## 1054 13 2 2 12
## 1055 29 3 3 8
## 1056 16 3 2 14
## 1057 5 3 4 3
## 1058 7 4 1 5
## 1059 16 2 4 15
## 1060 1 3 3 1
## 1061 4 2 2 0
## 1062 1 2 3 1
## 1063 16 2 2 2
## 1064 10 3 3 10
## 1065 6 3 4 5
## 1066 4 2 3 3
## 1067 8 5 3 5
## 1068 11 4 2 5
## 1069 8 2 2 0
## 1070 1 2 1 1
## 1071 5 5 3 4
## 1072 10 3 3 3
## 1073 4 3 3 3
## 1074 8 2 2 8
## 1075 14 6 3 0
## 1076 10 5 4 5
## 1077 26 2 3 14
## 1078 11 2 1 9
## 1079 24 1 4 20
## 1080 9 3 3 2
## 1081 23 2 4 13
## 1082 11 3 1 11
## 1083 5 2 3 4
## 1084 15 3 1 5
## 1085 10 3 3 10
## 1086 7 2 1 7
## 1087 32 2 3 32
## 1088 12 4 3 11
## 1089 4 3 3 1
## 1090 10 2 3 10
## 1091 9 3 3 7
## 1092 5 2 3 5
## 1093 8 3 3 5
## 1094 24 3 1 20
## 1095 9 5 4 8
## 1096 15 3 3 15
## 1097 21 2 3 21
## 1098 2 3 3 1
## 1099 8 2 3 2
## 1100 10 4 3 10
## 1101 6 5 3 5
## 1102 12 2 3 7
## 1103 7 3 2 3
## 1104 18 2 3 8
## 1105 5 2 2 1
## 1106 8 6 1 2
## 1107 10 4 3 10
## 1108 10 2 3 6
## 1109 3 3 3 3
## 1110 9 3 3 4
## 1111 1 2 3 1
## 1112 34 4 3 33
## 1113 7 2 3 5
## 1114 9 3 2 6
## 1115 10 3 2 8
## 1116 1 4 1 1
## 1117 36 3 3 36
## 1118 9 3 2 2
## 1119 1 5 3 1
## 1120 10 3 3 9
## 1121 8 5 4 3
## 1122 15 5 3 1
## 1123 10 3 3 10
## 1124 10 4 3 5
## 1125 11 3 3 7
## 1126 6 0 4 6
## 1127 27 2 3 1
## 1128 4 2 3 2
## 1129 9 3 3 3
## 1130 24 2 3 1
## 1131 10 3 2 10
## 1132 8 3 2 8
## 1133 5 2 3 5
## 1134 8 0 3 6
## 1135 1 5 2 1
## 1136 27 5 1 26
## 1137 1 3 3 1
## 1138 4 2 2 4
## 1139 32 3 3 30
## 1140 6 3 3 3
## 1141 23 4 2 22
## 1142 6 3 2 6
## 1143 10 3 3 10
## 1144 10 2 3 10
## 1145 10 3 3 5
## 1146 7 2 3 3
## 1147 9 3 3 9
## 1148 10 3 2 9
## 1149 10 3 3 7
## 1150 7 3 3 7
## 1151 16 2 3 16
## 1152 6 5 2 5
## 1153 3 2 3 2
## 1154 0 2 4 0
## 1155 27 2 3 5
## 1156 11 3 3 10
## 1157 18 2 3 18
## 1158 15 5 3 14
## 1159 9 2 2 4
## 1160 10 2 1 9
## 1161 10 3 3 10
## 1162 10 6 4 5
## 1163 15 3 3 13
## 1164 8 2 1 8
## 1165 18 2 2 4
## 1166 14 3 3 10
## 1167 23 3 3 2
## 1168 7 2 2 2
## 1169 6 2 3 6
## 1170 5 0 3 3
## 1171 6 0 2 4
## 1172 10 3 1 4
## 1173 8 2 3 5
## 1174 9 6 3 3
## 1175 7 6 3 7
## 1176 7 3 3 5
## 1177 27 2 3 4
## 1178 19 3 3 14
## 1179 2 3 3 2
## 1180 11 2 3 11
## 1181 15 4 3 4
## 1182 30 3 3 15
## 1183 4 6 3 3
## 1184 13 3 3 5
## 1185 36 6 3 10
## 1186 14 3 3 14
## 1187 13 2 4 11
## 1188 19 4 4 13
## 1189 10 3 2 10
## 1190 6 5 3 6
## 1191 10 4 2 9
## 1192 10 2 3 10
## 1193 17 2 2 2
## 1194 4 3 3 4
## 1195 29 2 3 3
## 1196 23 2 3 8
## 1197 21 2 3 2
## 1198 2 3 3 2
## 1199 7 2 3 6
## 1200 10 2 2 3
## 1201 8 2 3 2
## 1202 5 2 3 5
## 1203 7 5 2 0
## 1204 11 2 3 4
## 1205 19 3 3 9
## 1206 1 2 3 1
## 1207 7 5 3 7
## 1208 8 1 3 4
## 1209 15 3 4 15
## 1210 19 2 4 1
## 1211 14 6 3 14
## 1212 6 2 2 6
## 1213 10 3 3 10
## 1214 3 2 3 3
## 1215 9 2 3 8
## 1216 6 2 4 5
## 1217 10 3 3 10
## 1218 5 1 3 5
## 1219 10 3 3 10
## 1220 9 2 3 5
## 1221 17 2 2 13
## 1222 25 3 2 23
## 1223 1 2 3 1
## 1224 25 3 1 23
## 1225 3 3 4 3
## 1226 21 2 3 21
## 1227 10 3 2 5
## 1228 6 2 4 5
## 1229 10 4 3 3
## 1230 18 3 3 1
## 1231 6 2 4 6
## 1232 19 3 3 10
## 1233 17 3 3 7
## 1234 10 2 2 10
## 1235 4 3 1 1
## 1236 13 5 2 10
## 1237 16 3 3 2
## 1238 10 2 3 0
## 1239 3 3 1 3
## 1240 9 3 2 5
## 1241 9 2 3 9
## 1242 10 2 1 4
## 1243 21 3 2 21
## 1244 9 2 4 5
## 1245 10 2 3 9
## 1246 3 2 3 2
## 1247 6 0 2 4
## 1248 6 3 3 5
## 1249 6 5 2 6
## 1250 2 3 3 2
## 1251 10 5 4 3
## 1252 12 2 3 7
## 1253 6 3 3 5
## 1254 13 2 2 11
## 1255 8 1 4 5
## 1256 11 2 2 0
## 1257 9 4 2 6
## 1258 10 2 3 1
## 1259 1 2 3 1
## 1260 10 3 3 7
## 1261 12 3 3 7
## 1262 15 2 3 1
## 1263 6 4 3 1
## 1264 7 6 2 5
## 1265 34 2 3 1
## 1266 11 2 2 9
## 1267 5 2 3 5
## 1268 15 3 3 15
## 1269 27 2 2 3
## 1270 10 5 3 9
## 1271 6 3 3 2
## 1272 1 3 3 1
## 1273 5 3 3 5
## 1274 1 6 3 1
## 1275 13 3 3 12
## 1276 15 2 3 2
## 1277 5 2 3 5
## 1278 24 3 3 2
## 1279 15 1 3 12
## 1280 6 2 2 5
## 1281 19 4 2 10
## 1282 10 2 3 10
## 1283 14 1 3 10
## 1284 5 6 4 5
## 1285 9 3 3 4
## 1286 6 3 3 2
## 1287 7 5 2 4
## 1288 10 2 2 0
## 1289 15 6 3 7
## 1290 13 3 3 11
## 1291 11 3 2 7
## 1292 10 4 1 10
## 1293 7 6 3 2
## 1294 7 2 2 3
## 1295 11 3 1 3
## 1296 23 3 4 22
## 1297 9 3 3 7
## 1298 6 3 3 5
## 1299 13 2 4 9
## 1300 12 3 3 5
## 1301 10 5 3 10
## 1302 37 0 2 16
## 1303 6 2 4 5
## 1304 28 4 3 22
## 1305 15 3 3 7
## 1306 14 2 2 7
## 1307 9 3 3 3
## 1308 3 3 3 3
## 1309 20 4 2 4
## 1310 5 4 3 5
## 1311 23 3 3 2
## 1312 0 4 1 0
## 1313 2 4 3 1
## 1314 4 3 3 2
## 1315 10 3 4 8
## 1316 15 2 3 1
## 1317 7 5 3 7
## 1318 6 3 2 5
## 1319 11 3 4 11
## 1320 4 2 4 0
## 1321 10 1 2 6
## 1322 7 2 3 2
## 1323 12 4 2 9
## 1324 3 2 3 3
## 1325 11 3 3 7
## 1326 8 3 3 0
## 1327 7 3 2 2
## 1328 25 5 3 19
## 1329 9 5 3 9
## 1330 1 3 3 1
## 1331 21 2 3 16
## 1332 29 3 3 22
## 1333 1 3 2 1
## 1334 14 2 3 8
## 1335 8 2 2 7
## 1336 7 2 3 2
## 1337 19 2 4 5
## 1338 1 3 3 1
## 1339 1 3 2 1
## 1340 1 2 3 1
## 1341 10 4 3 10
## 1342 10 2 3 10
## 1343 9 3 3 5
## 1344 11 2 3 3
## 1345 16 2 3 5
## 1346 4 2 3 3
## 1347 10 2 2 9
## 1348 10 2 2 10
## 1349 22 3 3 19
## 1350 1 3 2 1
## 1351 9 5 2 8
## 1352 24 3 3 22
## 1353 10 5 3 2
## 1354 5 2 3 5
## 1355 5 3 3 4
## 1356 12 1 1 4
## 1357 14 3 3 5
## 1358 18 3 4 13
## 1359 8 2 3 5
## 1360 9 3 2 4
## 1361 4 0 2 2
## 1362 8 3 3 7
## 1363 12 3 3 4
## 1364 10 2 2 10
## 1365 7 2 3 7
## 1366 1 3 3 1
## 1367 10 1 3 3
## 1368 6 3 2 5
## 1369 16 3 3 15
## 1370 6 0 3 2
## 1371 16 4 4 8
## 1372 6 3 3 0
## 1373 10 3 3 10
## 1374 20 3 3 20
## 1375 29 2 2 1
## 1376 8 2 3 4
## 1377 10 0 4 5
## 1378 28 3 3 5
## 1379 14 4 3 0
## 1380 1 2 3 1
## 1381 6 2 1 5
## 1382 5 3 2 5
## 1383 4 3 4 4
## 1384 5 3 3 5
## 1385 14 3 2 14
## 1386 9 2 2 8
## 1387 8 6 2 7
## 1388 6 5 2 5
## 1389 9 6 3 5
## 1390 10 6 3 10
## 1391 6 2 2 4
## 1392 20 3 2 1
## 1393 10 2 3 10
## 1394 7 5 3 7
## 1395 8 1 3 1
## 1396 10 4 3 10
## 1397 15 2 2 2
## 1398 9 6 2 4
## 1399 9 2 3 9
## 1400 10 1 3 10
## 1401 7 2 3 6
## 1402 35 0 3 10
## 1403 1 4 3 1
## 1404 21 3 3 20
## 1405 20 2 3 20
## 1406 13 2 4 11
## 1407 9 3 3 5
## 1408 4 2 2 4
## 1409 5 6 4 5
## 1410 10 2 4 10
## 1411 15 4 3 11
## 1412 6 3 3 2
## 1413 12 6 2 12
## 1414 7 2 2 2
## 1415 25 3 3 17
## 1416 1 2 2 1
## 1417 16 3 3 15
## 1418 3 1 3 2
## 1419 10 1 3 8
## 1420 9 3 2 4
## 1421 12 3 3 5
## 1422 14 3 1 13
## 1423 5 3 3 2
## 1424 4 2 4 3
## 1425 10 5 3 10
## 1426 10 6 3 9
## 1427 6 3 3 6
## 1428 8 3 2 1
## 1429 3 2 3 2
## 1430 18 2 3 7
## 1431 20 3 3 18
## 1432 14 3 3 14
## 1433 16 2 3 16
## 1434 6 3 2 5
## 1435 16 3 2 9
## 1436 6 2 3 4
## 1437 2 6 3 2
## 1438 21 3 2 6
## 1439 1 3 2 1
## 1440 10 2 3 9
## 1441 18 3 3 4
## 1442 13 2 2 13
## 1443 4 3 4 2
## 1444 24 2 2 22
## 1445 14 4 1 10
## 1446 21 3 3 20
## 1447 8 2 3 8
## 1448 15 4 2 15
## 1449 14 5 3 5
## 1450 4 4 3 4
## 1451 9 2 3 9
## 1452 10 1 3 10
## 1453 12 3 3 6
## 1454 8 2 2 6
## 1455 8 3 3 5
## 1456 8 2 3 2
## 1457 10 2 4 10
## 1458 20 2 3 5
## 1459 4 5 3 4
## 1460 10 2 3 4
## 1461 5 3 1 5
## 1462 20 3 3 3
## 1463 21 2 2 20
## 1464 10 2 3 9
## 1465 5 2 3 4
## 1466 17 3 3 5
## 1467 9 5 3 7
## 1468 6 0 3 6
## 1469 17 3 2 9
## 1470 6 3 4 4
## YearsInCurrentRole YearsWithCurrManager
## 1 4 5
## 2 7 7
## 3 0 0
## 4 7 0
## 5 2 2
## 6 7 6
## 7 0 0
## 8 0 0
## 9 7 8
## 10 7 7
## 11 4 3
## 12 5 8
## 13 2 3
## 14 2 2
## 15 2 3
## 16 9 8
## 17 2 5
## 18 0 0
## 19 8 7
## 20 2 2
## 21 2 3
## 22 3 3
## 23 6 11
## 24 0 0
## 25 2 3
## 26 13 8
## 27 2 7
## 28 7 2
## 29 6 17
## 30 2 1
## 31 1 0
## 32 2 3
## 33 0 8
## 34 0 0
## 35 0 0
## 36 3 4
## 37 2 2
## 38 2 2
## 39 1 0
## 40 3 3
## 41 0 0
## 42 0 0
## 43 0 1
## 44 8 7
## 45 8 7
## 46 15 8
## 47 5 7
## 48 0 0
## 49 6 8
## 50 0 1
## 51 0 0
## 52 2 2
## 53 3 3
## 54 0 3
## 55 2 0
## 56 14 12
## 57 8 8
## 58 2 2
## 59 7 7
## 60 5 7
## 61 8 8
## 62 3 9
## 63 3 8
## 64 16 9
## 65 14 8
## 66 0 2
## 67 5 3
## 68 0 0
## 69 2 2
## 70 0 0
## 71 3 3
## 72 4 4
## 73 1 0
## 74 4 9
## 75 0 0
## 76 7 8
## 77 13 8
## 78 0 0
## 79 2 2
## 80 2 2
## 81 8 0
## 82 4 4
## 83 0 0
## 84 11 9
## 85 2 3
## 86 4 2
## 87 0 0
## 88 2 3
## 89 10 8
## 90 8 7
## 91 3 11
## 92 7 0
## 93 8 7
## 94 9 5
## 95 8 7
## 96 3 3
## 97 2 2
## 98 4 4
## 99 10 8
## 100 2 2
## 101 2 2
## 102 0 0
## 103 0 0
## 104 13 10
## 105 0 0
## 106 2 2
## 107 3 7
## 108 4 3
## 109 2 1
## 110 0 0
## 111 12 8
## 112 7 6
## 113 3 4
## 114 3 2
## 115 0 0
## 116 3 3
## 117 10 8
## 118 7 8
## 119 0 0
## 120 12 12
## 121 7 9
## 122 7 7
## 123 4 3
## 124 18 15
## 125 7 7
## 126 4 3
## 127 10 6
## 128 0 0
## 129 1 1
## 130 11 11
## 131 2 2
## 132 2 1
## 133 2 2
## 134 7 7
## 135 7 7
## 136 2 1
## 137 2 3
## 138 11 9
## 139 2 2
## 140 9 7
## 141 4 4
## 142 5 3
## 143 2 2
## 144 4 4
## 145 7 7
## 146 2 2
## 147 3 2
## 148 6 7
## 149 0 4
## 150 0 0
## 151 7 13
## 152 8 6
## 153 7 5
## 154 9 15
## 155 8 7
## 156 7 9
## 157 0 0
## 158 0 0
## 159 11 11
## 160 3 2
## 161 2 2
## 162 2 2
## 163 2 2
## 164 3 4
## 165 1 1
## 166 4 4
## 167 8 8
## 168 9 4
## 169 3 7
## 170 4 4
## 171 2 1
## 172 0 0
## 173 7 2
## 174 9 10
## 175 4 3
## 176 2 2
## 177 1 2
## 178 0 0
## 179 13 7
## 180 2 1
## 181 2 2
## 182 2 2
## 183 3 2
## 184 2 2
## 185 2 3
## 186 7 6
## 187 8 9
## 188 15 15
## 189 9 9
## 190 7 0
## 191 18 9
## 192 7 3
## 193 0 1
## 194 4 2
## 195 8 8
## 196 7 7
## 197 2 2
## 198 3 2
## 199 0 0
## 200 7 7
## 201 2 0
## 202 7 7
## 203 3 0
## 204 2 7
## 205 0 0
## 206 4 9
## 207 2 2
## 208 1 7
## 209 2 2
## 210 2 3
## 211 8 8
## 212 8 8
## 213 7 7
## 214 9 7
## 215 2 4
## 216 0 0
## 217 3 1
## 218 2 5
## 219 7 8
## 220 2 5
## 221 11 7
## 222 2 1
## 223 8 7
## 224 10 13
## 225 4 4
## 226 0 0
## 227 8 8
## 228 10 1
## 229 7 8
## 230 3 1
## 231 2 2
## 232 17 15
## 233 2 2
## 234 0 6
## 235 4 4
## 236 13 9
## 237 7 7
## 238 7 12
## 239 3 2
## 240 2 2
## 241 2 2
## 242 2 2
## 243 0 0
## 244 8 7
## 245 0 7
## 246 2 2
## 247 2 2
## 248 9 9
## 249 1 2
## 250 2 2
## 251 0 0
## 252 6 8
## 253 5 5
## 254 2 2
## 255 2 2
## 256 2 2
## 257 6 8
## 258 7 9
## 259 0 0
## 260 4 4
## 261 1 3
## 262 7 5
## 263 2 4
## 264 7 7
## 265 0 0
## 266 0 0
## 267 0 8
## 268 3 5
## 269 7 10
## 270 13 11
## 271 10 13
## 272 7 9
## 273 2 4
## 274 4 1
## 275 2 0
## 276 2 2
## 277 7 2
## 278 0 7
## 279 5 4
## 280 4 6
## 281 3 3
## 282 16 6
## 283 7 9
## 284 7 8
## 285 3 3
## 286 12 7
## 287 0 0
## 288 2 2
## 289 2 2
## 290 3 2
## 291 2 2
## 292 0 7
## 293 2 2
## 294 7 4
## 295 2 2
## 296 4 8
## 297 0 0
## 298 9 9
## 299 0 0
## 300 1 2
## 301 10 4
## 302 0 0
## 303 3 7
## 304 7 7
## 305 10 7
## 306 8 8
## 307 8 8
## 308 8 1
## 309 3 2
## 310 2 3
## 311 2 0
## 312 9 11
## 313 2 2
## 314 6 8
## 315 9 10
## 316 7 7
## 317 1 7
## 318 2 7
## 319 3 2
## 320 12 9
## 321 4 4
## 322 7 7
## 323 7 7
## 324 2 2
## 325 8 9
## 326 9 9
## 327 9 3
## 328 0 0
## 329 7 1
## 330 2 1
## 331 7 0
## 332 4 4
## 333 3 3
## 334 0 0
## 335 9 8
## 336 3 2
## 337 7 7
## 338 2 2
## 339 9 2
## 340 7 7
## 341 2 4
## 342 10 9
## 343 9 10
## 344 7 7
## 345 6 13
## 346 2 2
## 347 4 2
## 348 0 0
## 349 0 0
## 350 3 2
## 351 2 0
## 352 0 7
## 353 0 0
## 354 7 7
## 355 2 2
## 356 7 7
## 357 0 0
## 358 2 2
## 359 0 0
## 360 9 12
## 361 2 2
## 362 7 7
## 363 2 2
## 364 0 0
## 365 4 3
## 366 0 0
## 367 7 7
## 368 3 3
## 369 4 0
## 370 2 2
## 371 0 0
## 372 2 2
## 373 1 0
## 374 2 4
## 375 5 7
## 376 2 0
## 377 7 7
## 378 2 2
## 379 2 4
## 380 4 2
## 381 2 3
## 382 0 0
## 383 4 4
## 384 1 2
## 385 9 0
## 386 0 0
## 387 7 17
## 388 4 3
## 389 2 2
## 390 0 1
## 391 10 9
## 392 0 0
## 393 2 2
## 394 2 2
## 395 10 12
## 396 2 2
## 397 2 2
## 398 4 3
## 399 11 7
## 400 2 2
## 401 8 6
## 402 7 7
## 403 4 4
## 404 7 7
## 405 0 8
## 406 2 2
## 407 4 4
## 408 2 2
## 409 2 4
## 410 4 2
## 411 4 2
## 412 8 10
## 413 7 8
## 414 5 4
## 415 3 4
## 416 2 0
## 417 0 0
## 418 15 12
## 419 2 2
## 420 3 4
## 421 2 7
## 422 2 1
## 423 0 0
## 424 8 8
## 425 0 0
## 426 10 7
## 427 7 7
## 428 13 11
## 429 0 4
## 430 2 1
## 431 4 3
## 432 0 0
## 433 3 7
## 434 2 2
## 435 8 8
## 436 6 7
## 437 3 3
## 438 2 2
## 439 7 0
## 440 0 0
## 441 2 2
## 442 2 0
## 443 3 7
## 444 2 2
## 445 7 7
## 446 9 7
## 447 3 10
## 448 9 9
## 449 6 13
## 450 3 7
## 451 5 5
## 452 9 8
## 453 7 7
## 454 7 0
## 455 2 2
## 456 1 5
## 457 4 1
## 458 0 0
## 459 0 1
## 460 7 7
## 461 0 0
## 462 4 3
## 463 7 7
## 464 0 0
## 465 5 2
## 466 2 2
## 467 16 8
## 468 5 7
## 469 9 9
## 470 2 2
## 471 2 1
## 472 0 0
## 473 5 3
## 474 9 9
## 475 5 4
## 476 3 4
## 477 0 0
## 478 5 7
## 479 4 6
## 480 3 2
## 481 0 0
## 482 5 3
## 483 1 2
## 484 2 2
## 485 7 7
## 486 3 3
## 487 0 0
## 488 0 0
## 489 2 2
## 490 0 0
## 491 0 0
## 492 7 7
## 493 2 2
## 494 2 2
## 495 2 6
## 496 3 2
## 497 2 2
## 498 2 1
## 499 2 2
## 500 0 2
## 501 4 5
## 502 0 0
## 503 7 10
## 504 9 8
## 505 1 0
## 506 2 2
## 507 7 8
## 508 0 2
## 509 11 8
## 510 11 7
## 511 7 1
## 512 2 2
## 513 2 1
## 514 0 1
## 515 8 7
## 516 0 0
## 517 2 2
## 518 2 2
## 519 7 5
## 520 7 8
## 521 2 2
## 522 5 4
## 523 0 0
## 524 8 8
## 525 7 7
## 526 2 0
## 527 7 10
## 528 7 8
## 529 3 3
## 530 7 8
## 531 7 7
## 532 7 7
## 533 7 7
## 534 13 12
## 535 1 3
## 536 6 6
## 537 2 2
## 538 7 7
## 539 7 10
## 540 2 2
## 541 7 7
## 542 7 5
## 543 0 0
## 544 2 4
## 545 2 13
## 546 7 7
## 547 0 0
## 548 2 2
## 549 2 2
## 550 1 3
## 551 3 2
## 552 3 6
## 553 7 1
## 554 2 3
## 555 6 7
## 556 2 2
## 557 2 2
## 558 0 0
## 559 8 7
## 560 0 1
## 561 0 0
## 562 6 16
## 563 9 8
## 564 5 4
## 565 7 1
## 566 2 2
## 567 4 3
## 568 5 4
## 569 2 4
## 570 7 9
## 571 3 2
## 572 2 0
## 573 7 1
## 574 3 2
## 575 2 3
## 576 3 4
## 577 2 1
## 578 3 3
## 579 7 12
## 580 5 3
## 581 2 2
## 582 2 2
## 583 7 7
## 584 2 2
## 585 7 9
## 586 0 0
## 587 0 0
## 588 2 4
## 589 3 3
## 590 0 0
## 591 9 7
## 592 2 2
## 593 14 0
## 594 7 5
## 595 7 7
## 596 15 8
## 597 2 2
## 598 3 2
## 599 2 1
## 600 2 4
## 601 13 8
## 602 0 0
## 603 0 0
## 604 0 0
## 605 8 8
## 606 3 2
## 607 2 3
## 608 8 7
## 609 7 3
## 610 1 0
## 611 8 8
## 612 5 6
## 613 7 5
## 614 2 2
## 615 7 7
## 616 0 0
## 617 6 17
## 618 2 3
## 619 3 1
## 620 8 8
## 621 5 1
## 622 14 11
## 623 2 3
## 624 4 3
## 625 2 4
## 626 4 2
## 627 3 3
## 628 8 0
## 629 0 0
## 630 1 4
## 631 2 2
## 632 2 2
## 633 1 2
## 634 4 3
## 635 3 3
## 636 14 15
## 637 2 8
## 638 0 2
## 639 2 3
## 640 2 2
## 641 2 4
## 642 8 3
## 643 2 2
## 644 3 3
## 645 4 2
## 646 2 2
## 647 0 2
## 648 10 8
## 649 4 0
## 650 9 8
## 651 2 2
## 652 6 7
## 653 0 9
## 654 6 7
## 655 4 4
## 656 3 3
## 657 0 1
## 658 3 3
## 659 7 1
## 660 2 2
## 661 0 0
## 662 0 0
## 663 2 2
## 664 0 0
## 665 8 11
## 666 2 2
## 667 2 2
## 668 7 0
## 669 2 2
## 670 2 2
## 671 1 0
## 672 0 0
## 673 4 3
## 674 2 2
## 675 0 4
## 676 7 2
## 677 6 7
## 678 9 7
## 679 0 0
## 680 8 0
## 681 2 1
## 682 12 11
## 683 0 2
## 684 0 0
## 685 0 0
## 686 7 7
## 687 13 17
## 688 8 9
## 689 0 0
## 690 0 0
## 691 7 5
## 692 1 0
## 693 7 3
## 694 7 7
## 695 0 4
## 696 1 7
## 697 7 8
## 698 1 2
## 699 2 0
## 700 8 8
## 701 0 0
## 702 13 2
## 703 4 7
## 704 3 3
## 705 9 8
## 706 7 7
## 707 0 0
## 708 10 7
## 709 7 7
## 710 2 2
## 711 8 0
## 712 0 0
## 713 2 2
## 714 3 2
## 715 4 3
## 716 5 2
## 717 16 11
## 718 2 2
## 719 8 8
## 720 0 7
## 721 2 1
## 722 11 5
## 723 1 2
## 724 7 7
## 725 2 2
## 726 2 2
## 727 3 3
## 728 0 0
## 729 7 8
## 730 10 1
## 731 7 7
## 732 0 0
## 733 2 2
## 734 7 3
## 735 3 1
## 736 2 2
## 737 11 8
## 738 2 1
## 739 6 8
## 740 2 2
## 741 2 2
## 742 0 0
## 743 0 0
## 744 3 3
## 745 0 0
## 746 7 7
## 747 16 10
## 748 0 0
## 749 2 2
## 750 14 9
## 751 11 11
## 752 7 13
## 753 13 14
## 754 6 8
## 755 2 2
## 756 3 1
## 757 7 7
## 758 1 9
## 759 4 4
## 760 3 4
## 761 7 12
## 762 0 0
## 763 2 2
## 764 1 0
## 765 0 0
## 766 2 2
## 767 1 7
## 768 3 1
## 769 7 5
## 770 3 3
## 771 2 2
## 772 4 0
## 773 4 3
## 774 8 8
## 775 7 2
## 776 0 0
## 777 2 2
## 778 0 0
## 779 13 7
## 780 0 7
## 781 7 9
## 782 3 3
## 783 2 2
## 784 6 8
## 785 9 9
## 786 10 1
## 787 2 2
## 788 2 2
## 789 7 7
## 790 6 6
## 791 2 2
## 792 7 7
## 793 7 8
## 794 2 2
## 795 2 4
## 796 0 0
## 797 7 6
## 798 1 0
## 799 2 2
## 800 6 7
## 801 0 0
## 802 0 0
## 803 2 2
## 804 0 0
## 805 4 1
## 806 10 12
## 807 6 0
## 808 7 7
## 809 5 7
## 810 7 7
## 811 9 9
## 812 0 0
## 813 7 1
## 814 7 5
## 815 7 9
## 816 2 2
## 817 4 3
## 818 9 9
## 819 2 2
## 820 3 4
## 821 2 2
## 822 8 3
## 823 2 2
## 824 5 1
## 825 0 0
## 826 7 2
## 827 6 0
## 828 1 2
## 829 0 0
## 830 2 3
## 831 0 0
## 832 2 2
## 833 2 3
## 834 2 2
## 835 5 3
## 836 4 4
## 837 8 10
## 838 7 13
## 839 9 14
## 840 4 5
## 841 0 7
## 842 3 2
## 843 1 0
## 844 7 7
## 845 3 4
## 846 1 0
## 847 7 4
## 848 9 9
## 849 2 2
## 850 3 3
## 851 0 0
## 852 2 2
## 853 8 8
## 854 1 0
## 855 2 2
## 856 8 11
## 857 2 2
## 858 4 2
## 859 7 7
## 860 4 3
## 861 0 0
## 862 15 9
## 863 0 0
## 864 4 4
## 865 0 0
## 866 3 3
## 867 0 0
## 868 2 2
## 869 5 3
## 870 2 3
## 871 7 7
## 872 0 0
## 873 7 1
## 874 7 7
## 875 7 9
## 876 11 17
## 877 1 2
## 878 3 4
## 879 3 3
## 880 7 9
## 881 2 2
## 882 7 7
## 883 7 7
## 884 10 10
## 885 1 3
## 886 3 1
## 887 9 7
## 888 0 0
## 889 2 12
## 890 7 8
## 891 4 4
## 892 5 7
## 893 1 0
## 894 2 2
## 895 9 9
## 896 5 1
## 897 9 8
## 898 1 5
## 899 7 7
## 900 0 0
## 901 10 7
## 902 0 0
## 903 3 3
## 904 0 0
## 905 0 0
## 906 7 7
## 907 0 0
## 908 9 10
## 909 8 8
## 910 0 1
## 911 0 1
## 912 0 0
## 913 5 2
## 914 10 11
## 915 9 0
## 916 2 2
## 917 4 8
## 918 2 2
## 919 10 10
## 920 7 4
## 921 8 10
## 922 2 2
## 923 9 13
## 924 9 8
## 925 2 2
## 926 0 0
## 927 7 17
## 928 14 12
## 929 7 5
## 930 2 2
## 931 0 7
## 932 4 7
## 933 7 7
## 934 2 2
## 935 2 1
## 936 7 8
## 937 0 0
## 938 9 2
## 939 2 2
## 940 4 1
## 941 2 3
## 942 2 7
## 943 7 7
## 944 6 7
## 945 8 5
## 946 2 2
## 947 4 0
## 948 7 7
## 949 1 8
## 950 7 7
## 951 8 6
## 952 2 9
## 953 2 2
## 954 2 2
## 955 8 10
## 956 9 11
## 957 3 7
## 958 2 0
## 959 7 6
## 960 8 8
## 961 3 7
## 962 6 1
## 963 9 10
## 964 7 7
## 965 8 6
## 966 2 2
## 967 9 9
## 968 2 3
## 969 7 13
## 970 9 8
## 971 0 0
## 972 2 3
## 973 0 0
## 974 7 0
## 975 2 0
## 976 7 8
## 977 16 9
## 978 4 0
## 979 11 8
## 980 7 7
## 981 0 0
## 982 2 2
## 983 2 3
## 984 11 11
## 985 3 4
## 986 2 7
## 987 4 4
## 988 2 2
## 989 2 3
## 990 4 3
## 991 4 2
## 992 2 2
## 993 4 5
## 994 2 2
## 995 3 2
## 996 7 8
## 997 2 4
## 998 2 7
## 999 3 1
## 1000 7 9
## 1001 4 4
## 1002 2 2
## 1003 2 2
## 1004 2 2
## 1005 7 7
## 1006 9 9
## 1007 3 3
## 1008 7 7
## 1009 7 7
## 1010 8 5
## 1011 7 0
## 1012 4 1
## 1013 0 0
## 1014 2 2
## 1015 2 0
## 1016 3 3
## 1017 0 0
## 1018 0 4
## 1019 4 8
## 1020 2 2
## 1021 5 2
## 1022 2 2
## 1023 5 3
## 1024 2 0
## 1025 17 6
## 1026 4 3
## 1027 3 3
## 1028 4 2
## 1029 2 3
## 1030 7 7
## 1031 7 9
## 1032 7 3
## 1033 0 0
## 1034 8 7
## 1035 7 7
## 1036 2 2
## 1037 2 2
## 1038 1 2
## 1039 2 2
## 1040 2 2
## 1041 8 8
## 1042 4 3
## 1043 2 3
## 1044 8 8
## 1045 2 2
## 1046 1 2
## 1047 2 3
## 1048 3 3
## 1049 9 12
## 1050 1 2
## 1051 9 8
## 1052 0 0
## 1053 0 0
## 1054 9 8
## 1055 7 7
## 1056 8 9
## 1057 2 2
## 1058 3 0
## 1059 9 10
## 1060 0 0
## 1061 0 0
## 1062 0 0
## 1063 2 2
## 1064 7 4
## 1065 3 3
## 1066 2 2
## 1067 4 2
## 1068 4 2
## 1069 0 0
## 1070 0 0
## 1071 2 3
## 1072 2 2
## 1073 2 2
## 1074 6 7
## 1075 0 0
## 1076 2 0
## 1077 9 12
## 1078 7 7
## 1079 6 17
## 1080 0 2
## 1081 12 1
## 1082 8 3
## 1083 3 2
## 1084 4 0
## 1085 9 6
## 1086 2 7
## 1087 6 9
## 1088 10 7
## 1089 0 0
## 1090 8 7
## 1091 7 7
## 1092 3 2
## 1093 4 3
## 1094 8 9
## 1095 4 1
## 1096 14 7
## 1097 7 7
## 1098 1 0
## 1099 2 2
## 1100 8 7
## 1101 3 2
## 1102 1 5
## 1103 2 2
## 1104 7 7
## 1105 0 0
## 1106 2 2
## 1107 8 7
## 1108 3 2
## 1109 0 2
## 1110 2 3
## 1111 0 0
## 1112 7 9
## 1113 2 4
## 1114 5 2
## 1115 2 6
## 1116 0 0
## 1117 6 13
## 1118 2 1
## 1119 0 0
## 1120 8 7
## 1121 2 2
## 1122 0 0
## 1123 9 5
## 1124 2 4
## 1125 6 6
## 1126 4 3
## 1127 0 0
## 1128 2 2
## 1129 2 2
## 1130 0 1
## 1131 9 8
## 1132 2 7
## 1133 4 2
## 1134 4 2
## 1135 0 1
## 1136 0 12
## 1137 1 0
## 1138 2 3
## 1139 8 13
## 1140 2 2
## 1141 7 10
## 1142 4 1
## 1143 7 4
## 1144 7 5
## 1145 2 3
## 1146 2 1
## 1147 7 2
## 1148 6 4
## 1149 7 7
## 1150 7 7
## 1151 15 10
## 1152 3 0
## 1153 2 2
## 1154 0 0
## 1155 2 0
## 1156 8 7
## 1157 15 12
## 1158 11 9
## 1159 3 2
## 1160 2 8
## 1161 7 9
## 1162 4 2
## 1163 12 0
## 1164 4 7
## 1165 2 3
## 1166 7 2
## 1167 2 2
## 1168 2 2
## 1169 3 3
## 1170 2 2
## 1171 2 2
## 1172 2 3
## 1173 2 4
## 1174 2 2
## 1175 7 7
## 1176 4 0
## 1177 2 2
## 1178 11 11
## 1179 2 2
## 1180 8 9
## 1181 3 3
## 1182 11 12
## 1183 2 2
## 1184 4 4
## 1185 8 7
## 1186 10 11
## 1187 9 7
## 1188 11 9
## 1189 0 9
## 1190 2 4
## 1191 5 6
## 1192 0 2
## 1193 2 2
## 1194 3 3
## 1195 2 2
## 1196 7 0
## 1197 0 2
## 1198 2 2
## 1199 5 2
## 1200 2 2
## 1201 2 2
## 1202 4 2
## 1203 0 0
## 1204 3 2
## 1205 7 7
## 1206 0 0
## 1207 7 7
## 1208 2 2
## 1209 10 13
## 1210 0 0
## 1211 11 13
## 1212 3 3
## 1213 9 7
## 1214 2 2
## 1215 7 7
## 1216 4 4
## 1217 9 8
## 1218 3 4
## 1219 8 7
## 1220 3 2
## 1221 7 7
## 1222 15 4
## 1223 0 0
## 1224 5 10
## 1225 2 2
## 1226 6 6
## 1227 2 3
## 1228 2 3
## 1229 2 2
## 1230 0 0
## 1231 2 2
## 1232 7 9
## 1233 7 7
## 1234 0 8
## 1235 0 0
## 1236 6 3
## 1237 2 2
## 1238 0 0
## 1239 2 2
## 1240 4 4
## 1241 8 8
## 1242 3 2
## 1243 8 8
## 1244 0 3
## 1245 7 7
## 1246 2 1
## 1247 2 2
## 1248 2 2
## 1249 2 4
## 1250 2 2
## 1251 2 2
## 1252 7 7
## 1253 0 2
## 1254 7 7
## 1255 1 4
## 1256 0 0
## 1257 1 5
## 1258 0 0
## 1259 0 0
## 1260 0 7
## 1261 7 7
## 1262 0 0
## 1263 0 0
## 1264 3 4
## 1265 0 0
## 1266 8 7
## 1267 3 4
## 1268 14 7
## 1269 2 2
## 1270 7 8
## 1271 2 2
## 1272 0 0
## 1273 4 4
## 1274 0 0
## 1275 7 7
## 1276 2 2
## 1277 2 3
## 1278 1 2
## 1279 8 7
## 1280 3 3
## 1281 0 7
## 1282 7 7
## 1283 8 6
## 1284 3 3
## 1285 3 2
## 1286 2 2
## 1287 3 2
## 1288 0 0
## 1289 7 7
## 1290 10 8
## 1291 1 7
## 1292 3 8
## 1293 1 2
## 1294 2 2
## 1295 2 2
## 1296 14 5
## 1297 7 2
## 1298 1 4
## 1299 7 7
## 1300 3 3
## 1301 8 8
## 1302 9 14
## 1303 4 3
## 1304 11 10
## 1305 4 7
## 1306 1 7
## 1307 2 2
## 1308 2 2
## 1309 2 3
## 1310 3 2
## 1311 2 2
## 1312 0 0
## 1313 0 0
## 1314 2 0
## 1315 7 7
## 1316 0 0
## 1317 7 7
## 1318 4 2
## 1319 8 10
## 1320 0 0
## 1321 3 3
## 1322 2 0
## 1323 8 7
## 1324 2 2
## 1325 0 6
## 1326 0 0
## 1327 2 2
## 1328 17 8
## 1329 8 8
## 1330 0 0
## 1331 12 14
## 1332 10 9
## 1333 0 0
## 1334 7 7
## 1335 6 3
## 1336 2 2
## 1337 2 4
## 1338 0 0
## 1339 0 0
## 1340 0 0
## 1341 9 7
## 1342 8 2
## 1343 3 0
## 1344 2 2
## 1345 3 4
## 1346 2 2
## 1347 8 8
## 1348 1 8
## 1349 7 16
## 1350 0 0
## 1351 7 7
## 1352 17 7
## 1353 0 2
## 1354 2 0
## 1355 2 0
## 1356 2 3
## 1357 4 4
## 1358 7 7
## 1359 2 4
## 1360 2 1
## 1361 2 2
## 1362 7 7
## 1363 2 3
## 1364 4 9
## 1365 7 7
## 1366 0 0
## 1367 2 2
## 1368 3 2
## 1369 10 11
## 1370 0 2
## 1371 7 7
## 1372 0 0
## 1373 0 9
## 1374 11 7
## 1375 0 0
## 1376 1 3
## 1377 2 3
## 1378 4 3
## 1379 0 0
## 1380 0 0
## 1381 3 4
## 1382 3 4
## 1383 2 3
## 1384 4 2
## 1385 8 1
## 1386 7 1
## 1387 7 6
## 1388 3 2
## 1389 1 2
## 1390 8 7
## 1391 1 3
## 1392 0 0
## 1393 8 9
## 1394 7 7
## 1395 0 0
## 1396 7 8
## 1397 2 2
## 1398 3 3
## 1399 7 8
## 1400 9 9
## 1401 2 2
## 1402 9 4
## 1403 0 0
## 1404 8 10
## 1405 9 7
## 1406 7 8
## 1407 2 4
## 1408 3 2
## 1409 2 4
## 1410 9 4
## 1411 8 10
## 1412 0 2
## 1413 8 7
## 1414 2 2
## 1415 14 11
## 1416 1 0
## 1417 13 8
## 1418 2 2
## 1419 3 7
## 1420 3 2
## 1421 3 0
## 1422 8 12
## 1423 2 2
## 1424 2 2
## 1425 7 8
## 1426 7 1
## 1427 2 1
## 1428 0 0
## 1429 2 2
## 1430 7 7
## 1431 16 11
## 1432 10 7
## 1433 11 8
## 1434 3 4
## 1435 8 0
## 1436 3 2
## 1437 2 2
## 1438 0 3
## 1439 0 0
## 1440 7 4
## 1441 2 2
## 1442 12 9
## 1443 2 2
## 1444 6 14
## 1445 9 8
## 1446 7 10
## 1447 7 7
## 1448 12 11
## 1449 4 4
## 1450 2 2
## 1451 0 7
## 1452 7 9
## 1453 3 1
## 1454 3 0
## 1455 3 1
## 1456 2 2
## 1457 2 2
## 1458 3 2
## 1459 3 1
## 1460 3 3
## 1461 4 4
## 1462 2 0
## 1463 9 6
## 1464 4 7
## 1465 2 0
## 1466 2 3
## 1467 7 7
## 1468 2 3
## 1469 6 8
## 1470 3 2
names(req_data)
## [1] "Age" "Attrition"
## [3] "BusinessTravel" "DailyRate"
## [5] "Department" "DistanceFromHome"
## [7] "EducationField" "EnvironmentSatisfaction"
## [9] "JobInvolvement" "JobLevel"
## [11] "JobRole" "JobSatisfaction"
## [13] "MaritalStatus" "MonthlyIncome"
## [15] "OverTime" "StockOptionLevel"
## [17] "TotalWorkingYears" "TrainingTimesLastYear"
## [19] "WorkLifeBalance" "YearsAtCompany"
## [21] "YearsInCurrentRole" "YearsWithCurrManager"
#scaling the req_data
attrition=req_data$Attrition
overtime=req_data$OverTime
businesstravell=req_data$BusinessTravel
department=req_data$Department
educationfield=req_data$EducationField
jobrole=req_data$JobRole
maritalstatus=req_data$MaritalStatus
req_data= req_data[,-which(names(req_data)%in% c("Attrition", "OverTime","BusinessTravel","Department",
"EducationField","JobRole","MaritalStatus"))]
scaled_data=scale(req_data)
scaled_data=cbind(Attrition=attrition, OverTime=overtime, BusinessTravel=businesstravell,
Department=department, EducationField=educationfield, jobrole=jobrole,
MaritalStatus=maritalstatus, as.data.frame(scaled_data))
#ANN-model
names(scaled_data)
## [1] "Attrition" "OverTime"
## [3] "BusinessTravel" "Department"
## [5] "EducationField" "jobrole"
## [7] "MaritalStatus" "Age"
## [9] "DailyRate" "DistanceFromHome"
## [11] "EnvironmentSatisfaction" "JobInvolvement"
## [13] "JobLevel" "JobSatisfaction"
## [15] "MonthlyIncome" "StockOptionLevel"
## [17] "TotalWorkingYears" "TrainingTimesLastYear"
## [19] "WorkLifeBalance" "YearsAtCompany"
## [21] "YearsInCurrentRole" "YearsWithCurrManager"
set.seed(123)
newdata=sample(2,nrow(scaled_data),replace=TRUE,
prob=c(0.75,0.25))
trainingdata=scaled_data[newdata==1,]
testingdata=scaled_data[newdata==2,]
library(neuralnet)
set.seed(123)
net=neuralnet(Attrition~.,
data=trainingdata,
hidden=3,
err.fct = "ce",
linear.output = FALSE,
learningrate = 0.01,
rep=6
)
plot(net)
#prediction
output=compute(net,testingdata[,-1])
head(output$net.result)
## [,1]
## 2 0.02286469
## 4 0.02286469
## 5 0.02286469
## 8 0.02286469
## 11 0.41711095
## 16 0.02286469
head(trainingdata[1,])
results=data.frame(DataActual=testingdata$Attrition,
pred_vals=output$net.result)
results
rounded_results=sapply(results,round,digits=0)
rounded_results
## DataActual pred_vals
## [1,] 0 0
## [2,] 0 0
## [3,] 0 0
## [4,] 0 0
## [5,] 0 0
## [6,] 0 0
## [7,] 0 0
## [8,] 0 0
## [9,] 0 0
## [10,] 0 0
## [11,] 0 0
## [12,] 1 0
## [13,] 1 0
## [14,] 0 0
## [15,] 0 0
## [16,] 0 0
## [17,] 0 0
## [18,] 0 0
## [19,] 0 0
## [20,] 0 0
## [21,] 0 0
## [22,] 0 0
## [23,] 0 0
## [24,] 0 0
## [25,] 0 0
## [26,] 0 0
## [27,] 0 0
## [28,] 0 0
## [29,] 0 0
## [30,] 0 0
## [31,] 0 0
## [32,] 0 0
## [33,] 0 0
## [34,] 0 0
## [35,] 0 0
## [36,] 1 0
## [37,] 0 0
## [38,] 0 0
## [39,] 0 0
## [40,] 0 0
## [41,] 0 0
## [42,] 0 0
## [43,] 0 1
## [44,] 0 0
## [45,] 0 0
## [46,] 1 1
## [47,] 0 0
## [48,] 0 0
## [49,] 1 0
## [50,] 0 0
## [51,] 0 0
## [52,] 0 0
## [53,] 1 1
## [54,] 0 0
## [55,] 1 1
## [56,] 0 0
## [57,] 0 0
## [58,] 0 0
## [59,] 1 0
## [60,] 0 0
## [61,] 0 0
## [62,] 0 0
## [63,] 0 0
## [64,] 0 0
## [65,] 0 0
## [66,] 0 0
## [67,] 1 1
## [68,] 0 0
## [69,] 0 0
## [70,] 1 1
## [71,] 0 0
## [72,] 0 0
## [73,] 0 0
## [74,] 0 0
## [75,] 0 0
## [76,] 0 0
## [77,] 0 0
## [78,] 0 0
## [79,] 0 0
## [80,] 0 0
## [81,] 0 0
## [82,] 0 0
## [83,] 0 0
## [84,] 0 0
## [85,] 0 0
## [86,] 0 1
## [87,] 0 0
## [88,] 0 0
## [89,] 0 0
## [90,] 0 0
## [91,] 0 0
## [92,] 0 0
## [93,] 0 1
## [94,] 1 1
## [95,] 0 0
## [96,] 0 0
## [97,] 0 0
## [98,] 0 0
## [99,] 0 0
## [100,] 0 1
## [101,] 0 0
## [102,] 0 0
## [103,] 0 0
## [104,] 0 0
## [105,] 0 0
## [106,] 0 0
## [107,] 0 0
## [108,] 0 0
## [109,] 0 0
## [110,] 0 0
## [111,] 1 0
## [112,] 0 0
## [113,] 0 0
## [114,] 0 0
## [115,] 0 0
## [116,] 0 0
## [117,] 0 0
## [118,] 1 0
## [119,] 0 0
## [120,] 0 0
## [121,] 0 1
## [122,] 0 0
## [123,] 0 0
## [124,] 0 0
## [125,] 1 0
## [126,] 0 0
## [127,] 0 0
## [128,] 0 0
## [129,] 1 1
## [130,] 0 0
## [131,] 0 0
## [132,] 0 0
## [133,] 1 0
## [134,] 0 0
## [135,] 0 1
## [136,] 0 0
## [137,] 1 0
## [138,] 0 0
## [139,] 0 0
## [140,] 0 1
## [141,] 0 0
## [142,] 0 0
## [143,] 0 0
## [144,] 0 0
## [145,] 0 0
## [146,] 0 0
## [147,] 0 0
## [148,] 1 0
## [149,] 1 0
## [150,] 0 0
## [151,] 1 0
## [152,] 0 1
## [153,] 0 0
## [154,] 0 0
## [155,] 0 0
## [156,] 0 1
## [157,] 0 0
## [158,] 0 0
## [159,] 0 0
## [160,] 0 0
## [161,] 0 0
## [162,] 0 0
## [163,] 1 0
## [164,] 0 0
## [165,] 0 0
## [166,] 0 0
## [167,] 0 0
## [168,] 0 0
## [169,] 0 0
## [170,] 0 0
## [171,] 1 1
## [172,] 1 0
## [173,] 0 0
## [174,] 1 0
## [175,] 0 0
## [176,] 0 1
## [177,] 1 1
## [178,] 0 0
## [179,] 1 0
## [180,] 0 1
## [181,] 0 0
## [182,] 0 0
## [183,] 1 1
## [184,] 0 0
## [185,] 0 0
## [186,] 1 1
## [187,] 0 0
## [188,] 0 0
## [189,] 0 0
## [190,] 0 0
## [191,] 0 0
## [192,] 1 0
## [193,] 0 0
## [194,] 0 0
## [195,] 0 0
## [196,] 0 0
## [197,] 1 0
## [198,] 0 0
## [199,] 0 0
## [200,] 1 0
## [201,] 0 0
## [202,] 0 1
## [203,] 0 0
## [204,] 1 0
## [205,] 0 0
## [206,] 0 0
## [207,] 1 0
## [208,] 0 0
## [209,] 0 0
## [210,] 0 0
## [211,] 0 1
## [212,] 0 1
## [213,] 0 0
## [214,] 0 0
## [215,] 0 0
## [216,] 0 0
## [217,] 0 0
## [218,] 0 0
## [219,] 0 0
## [220,] 0 1
## [221,] 0 0
## [222,] 0 0
## [223,] 0 0
## [224,] 0 0
## [225,] 0 0
## [226,] 0 0
## [227,] 0 1
## [228,] 1 1
## [229,] 0 0
## [230,] 0 0
## [231,] 0 1
## [232,] 0 0
## [233,] 1 0
## [234,] 0 1
## [235,] 0 0
## [236,] 0 0
## [237,] 1 0
## [238,] 1 0
## [239,] 0 0
## [240,] 0 0
## [241,] 0 0
## [242,] 0 0
## [243,] 0 0
## [244,] 0 0
## [245,] 0 0
## [246,] 0 0
## [247,] 1 0
## [248,] 0 1
## [249,] 0 1
## [250,] 0 0
## [251,] 1 0
## [252,] 0 0
## [253,] 1 1
## [254,] 0 0
## [255,] 0 0
## [256,] 0 1
## [257,] 0 0
## [258,] 0 0
## [259,] 0 1
## [260,] 1 1
## [261,] 0 0
## [262,] 0 0
## [263,] 0 0
## [264,] 0 0
## [265,] 0 1
## [266,] 0 0
## [267,] 0 0
## [268,] 0 0
## [269,] 0 0
## [270,] 0 0
## [271,] 0 0
## [272,] 0 0
## [273,] 0 0
## [274,] 1 0
## [275,] 0 0
## [276,] 0 0
## [277,] 0 0
## [278,] 0 1
## [279,] 0 0
## [280,] 0 0
## [281,] 0 0
## [282,] 1 1
## [283,] 0 0
## [284,] 0 0
## [285,] 0 0
## [286,] 0 0
## [287,] 0 0
## [288,] 0 0
## [289,] 0 0
## [290,] 0 0
## [291,] 0 0
## [292,] 0 0
## [293,] 1 1
## [294,] 1 0
## [295,] 0 0
## [296,] 0 0
## [297,] 0 1
## [298,] 0 0
## [299,] 0 0
## [300,] 1 1
## [301,] 0 0
## [302,] 0 0
## [303,] 0 1
## [304,] 0 0
## [305,] 0 0
## [306,] 1 1
## [307,] 0 0
## [308,] 0 0
## [309,] 0 0
## [310,] 0 0
## [311,] 1 0
## [312,] 0 0
## [313,] 1 0
## [314,] 0 1
## [315,] 0 0
## [316,] 1 0
## [317,] 0 0
## [318,] 1 0
## [319,] 0 0
## [320,] 0 0
## [321,] 0 0
## [322,] 0 0
## [323,] 1 0
## [324,] 0 1
## [325,] 0 0
## [326,] 0 0
## [327,] 1 1
## [328,] 0 0
## [329,] 0 0
## [330,] 0 0
## [331,] 0 0
## [332,] 1 0
## [333,] 1 0
## [334,] 0 0
## [335,] 0 1
## [336,] 0 0
## [337,] 0 1
## [338,] 0 0
## [339,] 0 0
## [340,] 0 0
## [341,] 0 0
## [342,] 0 0
## [343,] 0 0
## [344,] 0 0
## [345,] 0 0
## [346,] 0 0
## [347,] 0 0
## [348,] 0 0
## [349,] 0 0
## [350,] 0 1
## [351,] 0 0
## [352,] 0 0
## [353,] 0 0
#Accuracy
actual=round(testingdata$Attrition,digits = 0)
prediction_vals=round(output$net.result,digits = 0)
mtab=table(actual,prediction_vals)
mtab
## prediction_vals
## actual 0 1
## 0 267 31
## 1 36 19
confusion_mtx <- confusionMatrix(mtab)
# Extract the confusion matrix elements
TN <- confusion_mtx$table[1, 1]
FP <- confusion_mtx$table[1, 2]
FN <- confusion_mtx$table[2, 1]
TP <- confusion_mtx$table[2, 2]
# Calculate accuracy
accuracy <- sum(diag(confusion_mtx$table)) / sum(confusion_mtx$table)
# Calculate precision
precision <- TP / (TP + FP)
# Calculate recall (sensitivity)
recall <- TP / (TP + FN)
# Calculate specificity
specificity <- TN / (TN + FP)
# Calculate F1-score
f1_score <- 2 * (precision * recall) / (precision + recall)
# Print the calculated metrics
print(paste("Accuracy:", round(accuracy, 4)))
## [1] "Accuracy: 0.8102"
print(paste("Precision:", round(precision, 4)))
## [1] "Precision: 0.38"
print(paste("Recall (Sensitivity):", round(recall, 4)))
## [1] "Recall (Sensitivity): 0.3455"
print(paste("Specificity:", round(specificity, 4)))
## [1] "Specificity: 0.896"
print(paste("F1-score:", round(f1_score, 4)))
## [1] "F1-score: 0.3619"
Deploying the model with highg accuracy and testing it with new input from the original dataset > Random Forest model for employee attrition prediction
temp=test[-2]
temp
temp=temp[1:5,]
temp
y_pred=predict(classifier_RF,newdata=temp)
y_pred
## 1 5 9 10 16
## 1 0 1 1 0
## Levels: 0 1
The model is predicting from the given new input variables