library(rio)
data=import("V-Dem-2024 - V-Dem-2024.csv")
H2: El componente participativo (v2x_partip), el deliberativo (v2xdl_delib) y el igualitario (v2x_egal) explican el índice de democracia electoral (v2x_polyarchy).
modelo1= lm(data$v2x_partip~data$v2xdl_delib+data$v2x_polyarchy)
summary(modelo1)
##
## Call:
## lm(formula = data$v2x_partip ~ data$v2xdl_delib + data$v2x_polyarchy)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.35384 -0.06209 0.00602 0.07142 0.23084
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.16603 0.01965 8.448 1.08e-14 ***
## data$v2xdl_delib 0.18139 0.05095 3.560 0.000477 ***
## data$v2x_polyarchy 0.40797 0.05203 7.840 4.13e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.106 on 176 degrees of freedom
## Multiple R-squared: 0.6651, Adjusted R-squared: 0.6613
## F-statistic: 174.8 on 2 and 176 DF, p-value: < 2.2e-16
anova(modelo1)
## Analysis of Variance Table
##
## Response: data$v2x_partip
## Df Sum Sq Mean Sq F value Pr(>F)
## data$v2xdl_delib 1 3.2349 3.2349 288.097 < 2.2e-16 ***
## data$v2x_polyarchy 1 0.6903 0.6903 61.473 4.134e-13 ***
## Residuals 176 1.9762 0.0112
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Modelo 2: modelos influyentes
modelo2= lm(data$v2x_partip~data$v2xdl_delib+data$v2x_polyarchy+data$v2x_egal)
summary(modelo2)
##
## Call:
## lm(formula = data$v2x_partip ~ data$v2xdl_delib + data$v2x_polyarchy +
## data$v2x_egal)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.35199 -0.06023 0.00849 0.06725 0.23429
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.17935 0.02381 7.531 2.57e-12 ***
## data$v2xdl_delib 0.19598 0.05304 3.695 0.000294 ***
## data$v2x_polyarchy 0.43264 0.05769 7.499 3.09e-12 ***
## data$v2x_egal -0.05770 0.05825 -0.990 0.323348
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.106 on 175 degrees of freedom
## Multiple R-squared: 0.667, Adjusted R-squared: 0.6613
## F-statistic: 116.8 on 3 and 175 DF, p-value: < 2.2e-16
modelo3= lm(data$v2x_partip~data$v2xdl_delib+data$v2x_polyarchy+data$v2x_egal+data$v2x_liberal)
summary(modelo3)
##
## Call:
## lm(formula = data$v2x_partip ~ data$v2xdl_delib + data$v2x_polyarchy +
## data$v2x_egal + data$v2x_liberal)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.35099 -0.05978 0.00940 0.06708 0.23463
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.17965 0.02393 7.507 3.02e-12 ***
## data$v2xdl_delib 0.19053 0.06030 3.160 0.00186 **
## data$v2x_polyarchy 0.42290 0.07701 5.491 1.39e-07 ***
## data$v2x_egal -0.06036 0.06005 -1.005 0.31620
## data$v2x_liberal 0.01593 0.08315 0.192 0.84826
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1063 on 174 degrees of freedom
## Multiple R-squared: 0.6671, Adjusted R-squared: 0.6594
## F-statistic: 87.16 on 4 and 174 DF, p-value: < 2.2e-16
modelo4= lm(data$v2x_partip~data$v2x_egal+data$v2x_liberal)
summary(modelo4)
##
## Call:
## lm(formula = data$v2x_partip ~ data$v2x_egal + data$v2x_liberal)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.42387 -0.05328 0.01132 0.07539 0.23740
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.18455 0.02565 7.195 1.73e-11 ***
## data$v2x_egal 0.02382 0.06510 0.366 0.715
## data$v2x_liberal 0.47301 0.04984 9.491 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.118 on 176 degrees of freedom
## Multiple R-squared: 0.5848, Adjusted R-squared: 0.5801
## F-statistic: 123.9 on 2 and 176 DF, p-value: < 2.2e-16
plot(modelo4)
plot(modelo1)
plot(modelo2)
plot(modelo3)