library(rio)
data=import("V-Dem-2024 - V-Dem-2024.csv")
  1. Aplicar una regresión para comprobar la H2 El componente participativo (v2x_partip)

H2: El componente participativo (v2x_partip), el deliberativo (v2xdl_delib) y el igualitario (v2x_egal) explican el índice de democracia electoral (v2x_polyarchy).

modelo1= lm(data$v2x_partip~data$v2xdl_delib+data$v2x_polyarchy)
summary(modelo1)
## 
## Call:
## lm(formula = data$v2x_partip ~ data$v2xdl_delib + data$v2x_polyarchy)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.35384 -0.06209  0.00602  0.07142  0.23084 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         0.16603    0.01965   8.448 1.08e-14 ***
## data$v2xdl_delib    0.18139    0.05095   3.560 0.000477 ***
## data$v2x_polyarchy  0.40797    0.05203   7.840 4.13e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.106 on 176 degrees of freedom
## Multiple R-squared:  0.6651, Adjusted R-squared:  0.6613 
## F-statistic: 174.8 on 2 and 176 DF,  p-value: < 2.2e-16
anova(modelo1)
## Analysis of Variance Table
## 
## Response: data$v2x_partip
##                     Df Sum Sq Mean Sq F value    Pr(>F)    
## data$v2xdl_delib     1 3.2349  3.2349 288.097 < 2.2e-16 ***
## data$v2x_polyarchy   1 0.6903  0.6903  61.473 4.134e-13 ***
## Residuals          176 1.9762  0.0112                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Modelo 2: modelos influyentes

modelo2= lm(data$v2x_partip~data$v2xdl_delib+data$v2x_polyarchy+data$v2x_egal)
summary(modelo2)
## 
## Call:
## lm(formula = data$v2x_partip ~ data$v2xdl_delib + data$v2x_polyarchy + 
##     data$v2x_egal)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.35199 -0.06023  0.00849  0.06725  0.23429 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         0.17935    0.02381   7.531 2.57e-12 ***
## data$v2xdl_delib    0.19598    0.05304   3.695 0.000294 ***
## data$v2x_polyarchy  0.43264    0.05769   7.499 3.09e-12 ***
## data$v2x_egal      -0.05770    0.05825  -0.990 0.323348    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.106 on 175 degrees of freedom
## Multiple R-squared:  0.667,  Adjusted R-squared:  0.6613 
## F-statistic: 116.8 on 3 and 175 DF,  p-value: < 2.2e-16
modelo3= lm(data$v2x_partip~data$v2xdl_delib+data$v2x_polyarchy+data$v2x_egal+data$v2x_liberal)
summary(modelo3)
## 
## Call:
## lm(formula = data$v2x_partip ~ data$v2xdl_delib + data$v2x_polyarchy + 
##     data$v2x_egal + data$v2x_liberal)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.35099 -0.05978  0.00940  0.06708  0.23463 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         0.17965    0.02393   7.507 3.02e-12 ***
## data$v2xdl_delib    0.19053    0.06030   3.160  0.00186 ** 
## data$v2x_polyarchy  0.42290    0.07701   5.491 1.39e-07 ***
## data$v2x_egal      -0.06036    0.06005  -1.005  0.31620    
## data$v2x_liberal    0.01593    0.08315   0.192  0.84826    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1063 on 174 degrees of freedom
## Multiple R-squared:  0.6671, Adjusted R-squared:  0.6594 
## F-statistic: 87.16 on 4 and 174 DF,  p-value: < 2.2e-16
modelo4= lm(data$v2x_partip~data$v2x_egal+data$v2x_liberal)
summary(modelo4)
## 
## Call:
## lm(formula = data$v2x_partip ~ data$v2x_egal + data$v2x_liberal)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.42387 -0.05328  0.01132  0.07539  0.23740 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       0.18455    0.02565   7.195 1.73e-11 ***
## data$v2x_egal     0.02382    0.06510   0.366    0.715    
## data$v2x_liberal  0.47301    0.04984   9.491  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.118 on 176 degrees of freedom
## Multiple R-squared:  0.5848, Adjusted R-squared:  0.5801 
## F-statistic: 123.9 on 2 and 176 DF,  p-value: < 2.2e-16
plot(modelo4)

plot(modelo1)

plot(modelo2)

plot(modelo3)