Customer Journey Mapping and Statistical Analysis
By: Omkar Nitin Sadekar

Project Report



INTRODUCTION
The goal of lead generation is to attract prospects by capturing and stoking interest in a company’s services and products within the targeted demographic. Building a sales pipeline and nurturing leads until they become clients are the main goals of the process. All businesses—small, medium- sized, and large—as well as B2C and B2B organizations across industries—rely on lead generation to grow their businesses. Even 60% of marketers think that lead generation is an important tactic. The company X Education, which offers consumers online education services, is represented in the dataset used in this project. Lead generation analytics is essential for businesses to analyze and monitor the Lead generation funnel as the ED-tech market is growing daily. It provides the sales and marketing teams with practical information that enable them to take calculated risks when investing in brand development and advertising.

Big Data Analytics for Customer-Centered Processes
Companies such as P&G pioneered the Marketing-Mixed Analytics discipline in order to communicate with individual customers while putting a competitive product on the market. They began by gathering data from vendors to better understand how different channels influenced their customers (grocers) and consumers (Product Users). Companies can harness the power of Big Data and utilize these tools to test marketing campaigns for various groups of society. It is now necessary to stay up with the pace of Analytics 4.0, which is the introduction of AI in analytics and automated data channeling systems. Many organizations have yet to implement technologies and methods in the recent period of Analytics 2.0 and Analytics 3.0 when Big data hit the market and executives recognized its powers to provide high-quality actionable insights from a large pool of data. Making an entire firm data literate and expecting employees and senior management to interact fluidly in order to exploit data to achieve corporate goals is not as simple as it seems.[1]

Business Objectives


Plan of Action
The plan involves cleansing and analyzing the dataset to understand the factors affecting customer retention. Through exploratory data analysis and segmentation, key drivers influencing conversion rates, such as website engagement and lead origin, will be identified. Actionable insights will be derived to optimize these touchpoints and improve overall customer experience. Strategies will be implemented, monitored, and evaluated for their effectiveness, with documentation and knowledge sharing ensuring continuous improvement in retention efforts.





ANALYSIS

## 'data.frame':    9240 obs. of  20 variables:
##  $ Lead.Origin                           : chr  "API" "API" "Landing Page Submission" "Landing Page Submission" ...
##  $ Lead.Source                           : chr  "Olark Chat" "Organic Search" "Direct Traffic" "Direct Traffic" ...
##  $ Do.Not.Email                          : chr  "No" "No" "No" "No" ...
##  $ Converted                             : num  0 0 1 0 1 0 1 0 0 0 ...
##  $ TotalVisits                           : num  0 5 2 1 2 0 2 0 2 4 ...
##  $ Total.Time.Spent.on.Website           : num  0 674 1532 305 1428 ...
##  $ Page.Views.Per.Visit                  : num  0 2.5 2 1 1 0 2 0 2 4 ...
##  $ Last.Activity                         : chr  "Page Visited on Website" "Email Opened" "Email Opened" "Unreachable" ...
##  $ Specialization                        : chr  "Select" "Select" "Business Administration" "Media and Advertising" ...
##  $ How.did.you.hear.about.X.Education    : chr  "Select" "Select" "Select" "Word Of Mouth" ...
##  $ What.is.your.current.occupation       : chr  "Unemployed" "Unemployed" "Student" "Unemployed" ...
##  $ Tags                                  : chr  "Interested in other courses" "Ringing" "Will revert after reading the email" "Ringing" ...
##  $ Lead.Quality                          : chr  "Low in Relevance" NA "Might be" "Not Sure" ...
##  $ Lead.Profile                          : chr  "Select" "Select" "Potential Lead" "Select" ...
##  $ Asymmetrique.Activity.Index           : chr  "02.Medium" "02.Medium" "02.Medium" "02.Medium" ...
##  $ Asymmetrique.Profile.Index            : chr  "02.Medium" "02.Medium" "01.High" "01.High" ...
##  $ Asymmetrique.Activity.Score           : num  15 15 14 13 15 17 14 15 14 13 ...
##  $ Asymmetrique.Profile.Score            : num  15 15 20 17 18 15 20 15 14 16 ...
##  $ A.free.copy.of.Mastering.The.Interview: chr  "No" "No" "Yes" "No" ...
##  $ Last.Notable.Activity                 : chr  "Modified" "Email Opened" "Email Opened" "Modified" ...
## [1] 9240   20
## Warning: Returning more (or less) than 1 row per `summarise()` group was deprecated in
## dplyr 1.1.0.
## ℹ Please use `reframe()` instead.
## ℹ When switching from `summarise()` to `reframe()`, remember that `reframe()`
##   always returns an ungrouped data frame and adjust accordingly.
## ℹ The deprecated feature was likely used in the dplyr package.
##   Please report the issue at <https://github.com/tidyverse/dplyr/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
x
Lead.Origin 0.0000000
Lead.Source 0.3896104
Do.Not.Email 0.0000000
Converted 0.0000000
TotalVisits 1.4826840
Total.Time.Spent.on.Website 0.0000000
Page.Views.Per.Visit 1.4826840
Last.Activity 1.1147186
Specialization 15.5627706
How.did.you.hear.about.X.Education 23.8852814
What.is.your.current.occupation 29.1125541
Tags 36.2878788
Lead.Quality 51.5909091
Lead.Profile 29.3181818
Asymmetrique.Activity.Index 45.6493506
Asymmetrique.Profile.Index 45.6493506
Asymmetrique.Activity.Score 45.6493506
Asymmetrique.Profile.Score 45.6493506
A.free.copy.of.Mastering.The.Interview 0.0000000
Last.Notable.Activity 0.0000000
## [1] 6372   14
## Rows: 6,372
## Columns: 14
## $ Lead.Origin                            <chr> "API", "API", "Landing Page Sub…
## $ Lead.Source                            <chr> "Olark Chat", "Organic Search",…
## $ Do.Not.Email                           <chr> "No", "No", "No", "No", "No", "…
## $ Converted                              <fct> No, No, Yes, No, Yes, Yes, Yes,…
## $ TotalVisits                            <dbl> 0, 5, 2, 1, 2, 2, 8, 8, 11, 5, …
## $ Total.Time.Spent.on.Website            <dbl> 0, 674, 1532, 305, 1428, 1640, …
## $ Page.Views.Per.Visit                   <dbl> 0.00, 2.50, 2.00, 1.00, 1.00, 2…
## $ Last.Activity                          <chr> "Page Visited on Website", "Ema…
## $ Specialization                         <chr> "Select", "Select", "Business A…
## $ How.did.you.hear.about.X.Education     <chr> "Select", "Select", "Select", "…
## $ What.is.your.current.occupation        <chr> "Unemployed", "Unemployed", "St…
## $ Lead.Profile                           <chr> "Select", "Select", "Potential …
## $ A.free.copy.of.Mastering.The.Interview <chr> "No", "No", "Yes", "No", "No", …
## $ Last.Notable.Activity                  <chr> "Modified", "Email Opened", "Em…
## [1] 6098   14
Index Variable_Name Variable_Type Sample_n Missing_Count Per_of_Missing No_of_distinct_values mean median var
1 Lead.Origin character 6098 0 0 4 NA NA NA
2 Lead.Source character 6098 0 0 16 NA NA NA
3 Do.Not.Email character 6098 0 0 2 NA NA NA
4 Converted factor 6098 0 0 2 NA NA NA
5 TotalVisits numeric 6098 0 0 11 3.04 3 5.99
6 Total.Time.Spent.on.Website numeric 6098 0 0 1584 524.87 275 316517.80
7 Page.Views.Per.Visit numeric 6098 0 0 30 2.36 2 3.68
8 Last.Activity character 6098 0 0 16 NA NA NA
9 Specialization character 6098 0 0 19 NA NA NA
10 How.did.you.hear.about.X.Education character 6098 0 0 10 NA NA NA
11 What.is.your.current.occupation character 6098 0 0 6 NA NA NA
12 Lead.Profile character 6098 0 0 6 NA NA NA
13 A.free.copy.of.Mastering.The.Interview character 6098 0 0 2 NA NA NA
14 Last.Notable.Activity character 6098 0 0 14 NA NA NA
Summary Statistics
Variable N Mean Std. Dev. Min Pctl. 25 Pctl. 75 Max
Lead.Origin 6098
… API 2071 34%
… Landing Page Submission 3423 56%
… Lead Add Form 577 9%
… Lead Import 27 0%
Do.Not.Email 6098
… No 5688 93%
… Yes 410 7%
Converted 6098
… No 3184 52%
… Yes 2914 48%
TotalVisits 6098 3 2.4 0 1 4 10
Total.Time.Spent.on.Website 6098 525 563 0 27 1013 2272
Page.Views.Per.Visit 6098 2.4 1.9 0 1 3 10
What.is.your.current.occupation 6098
… Businessman 5 0%
… Housewife 9 0%
… Other 13 0%
… Student 189 3%
… Unemployed 5238 86%
… Working Professional 644 11%
Lead.Profile 6098
… Dual Specialization Student 19 0%
… Lateral Student 19 0%
… Other Leads 458 8%
… Potential Lead 1489 24%
… Select 3879 64%
… Student of SomeSchool 234 4%
A.free.copy.of.Mastering.The.Interview 6098
… No 4087 67%
… Yes 2011 33%
Vname Group TN nNeg nZero nPos NegInf PosInf NA_Value Per_of_Missing sum min max mean median SD CV IQR Skewness Kurtosis X0. X10. X20. X30. X40. X50. X60. X70. X80. X90. X100. LB.25. UB.75. nOutliers
3 Page.Views.Per.Visit All 6098 0 1347 4751 0 0 0 0 14415.54 0 10 2.36 2 1.92 0.81 2.00 0.87 0.95 0 0 0 1.33 2.0 2 2.5 3 4.0 5 10 -2.00 6.00 207
2 Total.Time.Spent.on.Website All 6098 0 1351 4747 0 0 0 0 3200676.00 0 2272 524.87 275 562.60 1.07 985.75 0.82 -0.69 0 0 0 70.00 165.8 275 426.2 861 1138.6 1412 2272 -1451.38 2491.62 0
1 TotalVisits All 6098 0 1347 4751 0 0 0 0 18508.00 0 10 3.04 3 2.45 0.81 3.00 0.66 -0.03 0 0 0 2.00 2.0 3 3.0 4 5.0 6 10 -3.50 8.50 204
## $`0`

## $`0`

## $`0`

## $`0`

Lead.Origin Lead.Source Attribute Count sum mean median
API Olark Chat TotalVisits 881 332 0.3768445 0
API Organic Search TotalVisits 310 1296 4.1806452 4
Landing Page Submission Direct Traffic TotalVisits 1726 5964 3.4553882 3
Landing Page Submission Google TotalVisits 1218 5357 4.3981938 4
Landing Page Submission Organic Search TotalVisits 458 2451 5.3515284 5
API Referral Sites TotalVisits 51 232 4.5490196 4
API Google TotalVisits 762 2365 3.1036745 3
API Direct Traffic TotalVisits 65 294 4.5230769 4
Landing Page Submission Referral Sites TotalVisits 13 71 5.4615385 5
Lead Add Form Reference TotalVisits 441 86 0.1950113 0
Lead Add Form Welingak Website TotalVisits 128 15 0.1171875 0
Lead Add Form Google TotalVisits 1 0 0.0000000 0
Lead Import Facebook TotalVisits 27 8 0.2962963 0
Lead Add Form Olark Chat TotalVisits 2 2 1.0000000 1
Landing Page Submission Pay per Click Ads TotalVisits 1 3 3.0000000 3
Landing Page Submission bing TotalVisits 2 6 3.0000000 3
API Social Media TotalVisits 1 2 2.0000000 2
Landing Page Submission WeLearn TotalVisits 1 2 2.0000000 2
Lead Add Form Live Chat TotalVisits 2 0 0.0000000 0
API bing TotalVisits 1 2 2.0000000 2
Lead Add Form Click2call TotalVisits 3 2 0.6666667 0
Landing Page Submission testone TotalVisits 1 5 5.0000000 5
Landing Page Submission Facebook TotalVisits 1 4 4.0000000 4
Landing Page Submission Press_Release TotalVisits 1 6 6.0000000 6
Landing Page Submission Social Media TotalVisits 1 3 3.0000000 3
VARIABLE CATEGORY Converted:No Converted:Yes TOTAL
Lead.Origin API 1159 912 2071
Lead.Origin Landing Page Submission 1970 1453 3423
Lead.Origin Lead Add Form 37 540 577
Lead.Origin Lead Import 18 9 27
Lead.Origin TOTAL 3184 2914 6098
Do.Not.Email No 2859 2829 5688
Do.Not.Email Yes 325 85 410
Do.Not.Email TOTAL 3184 2914 6098
How.did.you.hear.about.X.Education Advertisements 21 26 47
How.did.you.hear.about.X.Education Email 9 12 21
How.did.you.hear.about.X.Education Multiple Sources 63 48 111
How.did.you.hear.about.X.Education Online Search 272 292 564
How.did.you.hear.about.X.Education Other 73 66 139
How.did.you.hear.about.X.Education Select 2484 2207 4691
How.did.you.hear.about.X.Education SMS 7 5 12
How.did.you.hear.about.X.Education Social Media 26 23 49
How.did.you.hear.about.X.Education Student of SomeSchool 113 117 230
How.did.you.hear.about.X.Education Word Of Mouth 116 118 234
How.did.you.hear.about.X.Education TOTAL 3184 2914 6098
What.is.your.current.occupation Businessman 1 4 5
What.is.your.current.occupation Housewife 0 9 9
What.is.your.current.occupation Other 6 7 13
What.is.your.current.occupation Student 118 71 189
What.is.your.current.occupation Unemployed 3008 2230 5238
What.is.your.current.occupation Working Professional 51 593 644
What.is.your.current.occupation TOTAL 3184 2914 6098
Lead.Profile Dual Specialization Student 0 19 19
Lead.Profile Lateral Student 0 19 19
Lead.Profile Other Leads 291 167 458
Lead.Profile Potential Lead 326 1163 1489
Lead.Profile Select 2341 1538 3879
Lead.Profile Student of SomeSchool 226 8 234
Lead.Profile TOTAL 3184 2914 6098
A.free.copy.of.Mastering.The.Interview No 1995 2092 4087
A.free.copy.of.Mastering.The.Interview Yes 1189 822 2011
A.free.copy.of.Mastering.The.Interview TOTAL 3184 2914 6098
## Warning in FUN(X[[i]], ...): NAs introduced by coercion
Variable Target Unique Chi-squared p-value df IV Value Cramers V Degree of Association Predictive Power
Lead.Origin Converted 4 538.136 0.000 NA 0.57 0.30 Strong Highly Predictive
Do.Not.Email Converted 2 128.944 0.000 NA 0.09 0.15 Weak Somewhat Predictive
How.did.you.hear.about.X.Education Converted 10 9.073 0.423 NA 0.00 0.04 Very Weak Not Predictive
What.is.your.current.occupation Converted 6 583.465 0.000 NA 0.45 0.31 Strong Highly Predictive
Lead.Profile Converted 6 901.205 0.000 NA 0.50 0.38 Strong Highly Predictive
A.free.copy.of.Mastering.The.Interview Converted 2 57.436 0.000 NA 0.03 0.10 Weak Not Predictive
TotalVisits Converted 6 11.992 0.032 NA 0.00 0.04 Very Weak Not Predictive
Total.Time.Spent.on.Website Converted 8 1166.617 0.000 NA 0.86 0.44 Strong Highly Predictive
Page.Views.Per.Visit Converted 7 78.101 0.000 NA 0.05 0.11 Weak Not Predictive
## Warning in FUN(X[[i]], ...): NAs introduced by coercion

## Warning in FUN(X[[i]], ...): NAs introduced by coercion
Variable Target Unique Chi-squared p-value df IV Value Cramers V Degree of Association Predictive Power
Lead.Origin Converted 4 538.136 0.000 NA 0.57 0.30 Strong Highly Predictive
Do.Not.Email Converted 2 128.944 0.000 NA 0.09 0.15 Weak Somewhat Predictive
How.did.you.hear.about.X.Education Converted 10 9.073 0.422 NA 0.00 0.04 Very Weak Not Predictive
What.is.your.current.occupation Converted 6 583.465 0.000 NA 0.45 0.31 Strong Highly Predictive
Lead.Profile Converted 6 901.205 0.000 NA 0.50 0.38 Strong Highly Predictive
A.free.copy.of.Mastering.The.Interview Converted 2 57.436 0.000 NA 0.03 0.10 Weak Not Predictive
TotalVisits Converted 6 11.992 0.038 NA 0.00 0.04 Very Weak Not Predictive
Total.Time.Spent.on.Website Converted 8 1166.617 0.000 NA 0.86 0.44 Strong Highly Predictive
Page.Views.Per.Visit Converted 7 78.101 0.000 NA 0.05 0.11 Weak Not Predictive
##  [1] "Lead.Origin"                           
##  [2] "Lead.Source"                           
##  [3] "Do.Not.Email"                          
##  [4] "Converted"                             
##  [5] "TotalVisits"                           
##  [6] "Total.Time.Spent.on.Website"           
##  [7] "Page.Views.Per.Visit"                  
##  [8] "Last.Activity"                         
##  [9] "Specialization"                        
## [10] "How.did.you.hear.about.X.Education"    
## [11] "What.is.your.current.occupation"       
## [12] "Lead.Profile"                          
## [13] "A.free.copy.of.Mastering.The.Interview"
## [14] "Last.Notable.Activity"

## 
##  One Sample t-test
## 
## data:  Leads_df$Total.Time.Spent.on.Website
## t = 38.153, df = 6097, p-value = 1
## alternative hypothesis: true mean is less than 250
## 95 percent confidence interval:
##      -Inf 536.7253
## sample estimates:
## mean of x 
##  524.8731
## 
##  One Sample t-test
## 
## data:  Leads_df$Total.Time.Spent.on.Website
## t = 38.153, df = 6097, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 250
## 95 percent confidence interval:
##  510.7497 538.9965
## sample estimates:
## mean of x 
##  524.8731

## 
##  Two Sample t-test
## 
## data:  Converted$Total.Time.Spent.on.Website and NotConverted$Total.Time.Spent.on.Website
## t = 13.716, df = 1998, p-value = 1
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
##      -Inf 373.9537
## sample estimates:
## mean of x mean of y 
##   701.317   367.424
## 
##  Two Sample t-test
## 
## data:  Converted$Total.Time.Spent.on.Website and NotConverted$Total.Time.Spent.on.Website
## t = 13.716, df = 1998, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  286.1509 381.6351
## sample estimates:
## mean of x mean of y 
##   701.317   367.424
## 
##  Pearson's Chi-squared test
## 
## data:  Leads_df$Lead.Origin and Leads_df$Converted
## X-squared = 538.14, df = 3, p-value < 2.2e-16
##                          Leads_df$Converted
## Leads_df$Lead.Origin              No        Yes
##   API                     1081.34864  989.65136
##   Landing Page Submission 1787.27976 1635.72024
##   Lead Add Form            301.27386  275.72614
##   Lead Import               14.09774   12.90226
## 
##                     API Landing Page Submission           Lead Add Form 
##                    2071                    3423                     577 
##             Lead Import 
##                      27
## 
##  Chi-squared test for given probabilities
## 
## data:  deg_count
## X-squared = 267.74, df = 3, p-value < 2.2e-16
##                     API Landing Page Submission           Lead Add Form 
##                 2012.34                 3231.94                  548.82 
##             Lead Import 
##                  304.90
##                   Lead.Origin    Lead.Source Do.Not.Email Converted TotalVisits
##                        <char>         <char>       <char>    <fctr>       <num>
##    1:                     API     Olark Chat           No        No           0
##    2:                     API Organic Search           No        No           5
##    3: Landing Page Submission Direct Traffic           No       Yes           2
##    4: Landing Page Submission Direct Traffic           No        No           1
##    5: Landing Page Submission         Google           No       Yes           2
##   ---                                                                          
## 6094: Landing Page Submission Direct Traffic           No       Yes           5
## 6095: Landing Page Submission Direct Traffic          Yes       Yes           8
## 6096: Landing Page Submission Direct Traffic           No        No           2
## 6097: Landing Page Submission Direct Traffic          Yes        No           2
## 6098: Landing Page Submission Direct Traffic           No       Yes           6
##       Total.Time.Spent.on.Website Page.Views.Per.Visit           Last.Activity
##                             <num>                <num>                  <char>
##    1:                           0                 0.00 Page Visited on Website
##    2:                         674                 2.50            Email Opened
##    3:                        1532                 2.00            Email Opened
##    4:                         305                 1.00             Unreachable
##    5:                        1428                 1.00       Converted to Lead
##   ---                                                                         
## 6094:                         210                 2.50                SMS Sent
## 6095:                        1845                 2.67       Email Marked Spam
## 6096:                         238                 2.00                SMS Sent
## 6097:                         199                 2.00                SMS Sent
## 6098:                        1279                 3.00                SMS Sent
##                Specialization How.did.you.hear.about.X.Education
##                        <char>                             <char>
##    1:                  Select                             Select
##    2:                  Select                             Select
##    3: Business Administration                             Select
##    4:   Media and Advertising                      Word Of Mouth
##    5:                  Select                              Other
##   ---                                                           
## 6094: Business Administration                             Select
## 6095:  IT Projects Management                             Select
## 6096:   Media and Advertising                             Select
## 6097: Business Administration                             Select
## 6098: Supply Chain Management                             Select
##       What.is.your.current.occupation   Lead.Profile
##                                <char>         <char>
##    1:                      Unemployed         Select
##    2:                      Unemployed         Select
##    3:                         Student Potential Lead
##    4:                      Unemployed         Select
##    5:                      Unemployed         Select
##   ---                                               
## 6094:                      Unemployed Potential Lead
## 6095:                      Unemployed Potential Lead
## 6096:                      Unemployed Potential Lead
## 6097:                      Unemployed Potential Lead
## 6098:                      Unemployed Potential Lead
##       A.free.copy.of.Mastering.The.Interview Last.Notable.Activity Converted_No
##                                       <char>                <char>        <int>
##    1:                                     No              Modified            1
##    2:                                     No          Email Opened            1
##    3:                                    Yes          Email Opened            0
##    4:                                     No              Modified            1
##    5:                                     No              Modified            0
##   ---                                                                          
## 6094:                                     No              Modified            0
## 6095:                                     No     Email Marked Spam            0
## 6096:                                    Yes              SMS Sent            1
## 6097:                                    Yes              SMS Sent            1
## 6098:                                    Yes              Modified            0
##       Converted_Yes
##               <int>
##    1:             0
##    2:             0
##    3:             1
##    4:             0
##    5:             1
##   ---              
## 6094:             1
## 6095:             1
## 6096:             0
## 6097:             0
## 6098:             1
##   TotalVisits     Total.Time.Spent.on.Website Page.Views.Per.Visit
##  Min.   : 0.000   Min.   :   0.0              Min.   : 0.000      
##  1st Qu.: 2.000   1st Qu.:  50.0              1st Qu.: 1.250      
##  Median : 3.000   Median : 206.0              Median : 2.000      
##  Mean   : 3.062   Mean   : 361.6              Mean   : 2.483      
##  3rd Qu.: 4.000   3rd Qu.: 418.2              3rd Qu.: 3.000      
##  Max.   :10.000   Max.   :2272.0              Max.   :10.000
##   TotalVisits     Total.Time.Spent.on.Website Page.Views.Per.Visit
##  Min.   : 0.000   Min.   :   0.0              Min.   : 0.000      
##  1st Qu.: 0.000   1st Qu.:   0.0              1st Qu.: 0.000      
##  Median : 3.000   Median : 766.0              Median : 2.000      
##  Mean   : 3.006   Mean   : 703.3              Mean   : 2.234      
##  3rd Qu.: 5.000   3rd Qu.:1250.0              3rd Qu.: 3.000      
##  Max.   :10.000   Max.   :2253.0              Max.   :10.000
## `geom_smooth()` using formula = 'y ~ x'
## Warning: The following aesthetics were dropped during statistical transformation:
## colour.
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## `geom_smooth()` using formula = 'y ~ x'
## Warning: The following aesthetics were dropped during statistical transformation:
## colour.
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

## `geom_smooth()` using formula = 'y ~ x'
## Warning: The following aesthetics were dropped during statistical transformation:
## colour.
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## `geom_smooth()` using formula = 'y ~ x'
## Warning: The following aesthetics were dropped during statistical transformation:
## colour.
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

## 
## Call:
## lm(formula = TotalVisits ~ Total.Time.Spent.on.Website + Page.Views.Per.Visit, 
##     data = S_no)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.1079 -0.5669 -0.5279 -0.4605  7.6913 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 5.279e-01  4.230e-02   12.48  < 2e-16 ***
## Total.Time.Spent.on.Website 2.720e-04  5.485e-05    4.96 7.43e-07 ***
## Page.Views.Per.Visit        9.810e-01  1.326e-02   73.97  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.355 on 3181 degrees of freedom
## Multiple R-squared:  0.6492, Adjusted R-squared:  0.6489 
## F-statistic:  2943 on 2 and 3181 DF,  p-value: < 2.2e-16
## `geom_smooth()` using formula = 'y ~ x'
## Warning: The following aesthetics were dropped during statistical transformation:
## colour.
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

## 
## Call:
## lm(formula = TotalVisits ~ Total.Time.Spent.on.Website + Page.Views.Per.Visit, 
##     data = S_yes)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.6996 -0.8847 -0.4719 -0.2560  8.2222 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                 4.719e-01  4.768e-02   9.897   <2e-16 ***
## Total.Time.Spent.on.Website 6.305e-04  5.512e-05  11.438   <2e-16 ***
## Page.Views.Per.Visit        9.357e-01  1.719e-02  54.442   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.572 on 2911 degrees of freedom
## Multiple R-squared:  0.6384, Adjusted R-squared:  0.6382 
## F-statistic:  2570 on 2 and 2911 DF,  p-value: < 2.2e-16
## `geom_smooth()` using formula = 'y ~ x'
## Warning: The following aesthetics were dropped during statistical transformation:
## colour.
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?