##1. Visualisasi untuk antar peubah numerik #Hubungan Antar Peubah Numerik

library(readxl)
data <- read_xlsx("C:/Users/Asus/Downloads/TA Anreg 8.xlsx", sheet = 5)
data
## # A tibble: 25 × 9
##    `Kabupaten/Kota` `Luas Tanam` Persentase Jumlah Peta…¹ Jumlah Pupuk Urea (T…²
##    <chr>                   <dbl>                    <dbl>                  <dbl>
##  1 Bogor                   81843                     5.94                   0.27
##  2 Sukabumi               156947                    11.3                    0.32
##  3 Cianjur                156882                     9.46                   0.28
##  4 Bandung                 98215                     5.13                   0.42
##  5 Garut                  135295                    10.2                    0.72
##  6 Tasikmalaya            112094                     9.52                   0.55
##  7 Ciamis                  77302                     6.16                   0.19
##  8 Kuningan                59490                     3.68                   0.31
##  9 Cirebon                 91383                     2.55                   0.28
## 10 Majalengka             104346                     4.53                   0.32
## # ℹ 15 more rows
## # ℹ abbreviated names: ¹​`Persentase Jumlah Petani`,
## #   ²​`Jumlah Pupuk Urea (Ton/Ha)`
## # ℹ 5 more variables: `Jumlah Pupuk NPK (Ton/Ha)` <dbl>,
## #   `Jumlah Usaha Tani Padi (Unit)` <dbl>, `Jumlah Teknologi (Unit)` <dbl>,
## #   `Harga Beras (Rp/Kg)` <dbl>, `Produksi Padi 2023 (Ton)` <dbl>
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggplot2)
X1 <- data$`Luas Tanam`
X2 <- data$`Persentase Jumlah Petani`
X3 <- data$`Jumlah Pupuk Urea (Ton/Ha)`
X4 <- data$`Jumlah Pupuk NPK (Ton/Ha)`
X5 <- data$`Jumlah Usaha Tani Padi (Unit)`
X6 <- data$`Jumlah Teknologi (Unit)`
X7 <- data$`Harga Beras (Rp/Kg)`
X8 <- data$`Produksi Padi 2023 (Ton)`

plot(X2,X1,col = "darkgreen",main = "Hubungan antara Jumlah Petani dan Luas Tanam",xlab = "Persentase Jumlah Petani",ylab = "Luas Tanam")
abline(lm(X1 ~ X2),col = "black")

## Interpretasi Pada plot ini, sumbu X adalah Persentase jumlah petani dan sumbu Y adalah Luas Tanah. Plot ini menunjukkan bahwa hubungan antar dua peubah numerik ini relatif positif yang artinya semakin banyak jumlah petani maka semakin luas tanah yang dipunyai.

library(reshape2)
## 
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
## 
##     smiths
library(ggplot2)

datanum <- data[,-1]
kor <- cor(datanum)
meltnum <- melt(kor)

ggplot(meltnum, aes(Var1, Var2, fill = value)) +
  geom_tile(color = "white") +
  scale_fill_gradient2(low = "darkslategrey", mid = "white", high = "darkorange", midpoint = 0, limits = c(-1,1), name="Nilai Korelasi") +
  labs(title = "Korelasi antar Peubah") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1))

## Interpretasi Dari plot korelasi ini dapat dilihat korelasi korelasi antar peubah yang mempengaruhi Produktivitas Padi.

library(readr)
databca <- read.csv("C:/Users/Asus/Downloads/BBCA.JK (1).csv")
databca
##           Date  Open  High   Low Close Adj.Close     Volume
## 1   2019-05-13  5560  5630  5180  5180  4654.208  349011500
## 2   2019-05-20  5180  5630  5140  5610  5040.561  282982500
## 3   2019-05-27  5535  5895  5530  5820  5229.244  508406500
## 4   2019-06-03  5820  5820  5820  5820  5229.244          0
## 5   2019-06-10  6000  6190  5790  5800  5211.275  457417500
## 6   2019-06-17  5810  5960  5790  5880  5283.154  433010000
## 7   2019-06-24  5895  5995  5805  5995  5386.481  288424000
## 8   2019-07-01  5995  6025  5940  5970  5364.020  209763000
## 9   2019-07-08  5935  6040  5865  6010  5399.959  202402500
## 10  2019-07-15  6060  6210  6035  6200  5570.673  232614500
## 11  2019-07-22  6260  6290  6165  6195  5566.180  233062500
## 12  2019-07-29  6220  6270  6160  6165  5539.226  312081500
## 13  2019-08-05  6215  6215  5765  6065  5449.376  472736000
## 14  2019-08-12  6070  6080  5860  5960  5355.034  321436000
## 15  2019-08-19  6030  6035  5905  5995  5386.481  243911500
## 16  2019-08-26  5940  6100  5860  6100  5480.824  346032000
## 17  2019-09-02  6100  6100  6000  6025  5413.436  235151000
## 18  2019-09-09  6050  6105  5980  6030  5417.929  179900000
## 19  2019-09-16  6000  6050  5985  5990  5381.989  393415000
## 20  2019-09-23  6030  6075  5780  6070  5453.868  373439000
## 21  2019-09-30  6070  6070  5950  6045  5431.406  272984000
## 22  2019-10-07  6070  6155  6015  6125  5503.286  251869500
## 23  2019-10-14  6130  6215  6105  6160  5534.733  230901000
## 24  2019-10-21  6200  6325  6175  6200  5570.673  324480500
## 25  2019-10-28  6200  6325  6150  6325  5682.986  284350000
## 26  2019-11-04  6350  6380  6250  6280  5642.553  325361500
## 27  2019-11-11  6335  6340  6210  6275  5638.060  242926000
## 28  2019-11-18  6245  6350  6210  6305  5665.015  282502000
## 29  2019-11-25  6330  6335  6225  6280  5642.553  403953000
## 30  2019-12-02  6280  6425  6270  6395  5745.879  254372500
## 31  2019-12-09  6370  6420  6340  6360  5732.516  307811500
## 32  2019-12-16  6340  6800  6340  6660  6002.918  537026500
## 33  2019-12-23  6680  6730  6650  6695  6034.464  114692000
## 34  2019-12-30  6680  6800  6670  6800  6129.105  158368500
## 35  2020-01-06  6720  6825  6670  6725  6061.505  239740500
## 36  2020-01-13  6740  7060  6735  6875  6196.706  364241500
## 37  2020-01-20  6950  6975  6810  6810  6138.119  449232000
## 38  2020-01-27  6865  6940  6480  6480  5840.676  401241500
## 39  2020-02-03  6480  6780  6370  6760  6093.052  623418500
## 40  2020-02-10  6760  6820  6630  6680  6020.945  410842000
## 41  2020-02-17  6680  6760  6565  6615  5962.357  523335000
## 42  2020-02-24  6565  6600  6035  6290  5669.422  563382000
## 43  2020-03-02  6290  6540  6035  6200  5588.302  497978500
## 44  2020-03-09  6000  6040  5460  5560  5011.445  497606500
## 45  2020-03-16  5560  5560  4325  4735  4267.840  991804500
## 46  2020-03-23  4760  5895  4405  5510  4966.378 1073130500
## 47  2020-03-30  5480  5750  5155  5495  4952.858  742564000
## 48  2020-04-06  5520  6100  5480  5595  5042.992  423446000
## 49  2020-04-13  5540  5630  5185  5425  4889.764  587107000
## 50  2020-04-20  5430  5500  4920  4920  4434.588  508007500
## 51  2020-04-27  4940  5250  4800  5170  4740.479  626833500
## 52  2020-05-04  5150  5400  5000  5245  4809.249  442564500
## 53  2020-05-11  5245  5340  4680  4785  4387.465  591306500
## 54  2020-05-18  4800  4960  4680  4765  4369.127  387660000
## 55  2020-05-25  4765  5320  4765  5190  4758.818  956477000
## 56  2020-06-01  5190  5990  5190  5725  5249.371  785359000
## 57  2020-06-08  5755  5995  5480  5670  5198.940  570281500
## 58  2020-06-15  5680  5800  5500  5575  5111.833  450266000
## 59  2020-06-22  5595  5760  5520  5645  5176.017  287760000
## 60  2020-06-29  5640  5905  5585  5870  5382.325  315034000
## 61  2020-07-06  5860  6265  5850  6200  5684.908  409180000
## 62  2020-07-13  6230  6240  6040  6120  5611.554  332959000
## 63  2020-07-20  6120  6250  6060  6100  5593.216  331072500
## 64  2020-07-27  6100  6240  6000  6240  5721.585  238047500
## 65  2020-08-03  6220  6295  5825  6180  5666.570  364708500
## 66  2020-08-10  6180  6405  6105  6405  5872.877  218079000
## 67  2020-08-17  6405  6425  6300  6330  5804.108  140357000
## 68  2020-08-24  6340  6600  6280  6495  5955.399  279695000
## 69  2020-08-31  6500  6560  6240  6380  5849.954  379365000
## 70  2020-09-07  6335  6360  5620  5905  5414.416  731951000
## 71  2020-09-14  6000  6115  5570  5630  5162.264  922475500
## 72  2020-09-21  5640  5735  5390  5610  5143.925  565726000
## 73  2020-09-28  5650  5695  5420  5505  5047.647  442418500
## 74  2020-10-05  5515  5800  5460  5775  5295.217  421819000
## 75  2020-10-12  5840  5900  5730  5760  5281.463  385405000
## 76  2020-10-19  5750  5900  5705  5770  5290.632  373011500
## 77  2020-10-26  5725  5835  5725  5790  5308.971  159934500
## 78  2020-11-02  5760  6300  5720  6300  5776.600  606178000
## 79  2020-11-09  6300  6600  6215  6390  5859.124  570653500
## 80  2020-11-16  6485  6650  6385  6600  6051.676  490293000
## 81  2020-11-23  6600  6610  6300  6385  5854.538  469456000
## 82  2020-11-30  6385  6525  6135  6390  5859.124  764758000
## 83  2020-12-07  6500  6780  6425  6735  6175.460  532778000
## 84  2020-12-14  6800  7000  6605  6800  6253.948  721642500
## 85  2020-12-21  6890  6905  6620  6725  6184.971  232431000
## 86  2020-12-28  6790  6820  6660  6770  6226.357  147122000
## 87  2021-01-04  6800  7090  6720  7050  6483.872  388915000
## 88  2021-01-11  7150  7380  6840  6955  6396.500  520024000
## 89  2021-01-18  6955  7300  6845  7080  6511.463  414593000
## 90  2021-01-25  7200  7200  6705  6760  6217.159  510804000
## 91  2021-02-01  6760  7000  6595  6915  6359.713  399713500
## 92  2021-02-08  7050  7055  6840  6880  6327.523  203088500
## 93  2021-02-15  6830  6960  6720  6825  6276.940  358846000
## 94  2021-02-22  6900  6940  6645  6710  6171.175  451461500
## 95  2021-03-01  6830  7160  6720  6800  6253.948  604129500
## 96  2021-03-08  6950  6950  6600  6765  6221.758  351095000
## 97  2021-03-15  6815  6820  6605  6760  6217.159  395566500
## 98  2021-03-22  6640  6720  6300  6415  5899.863  600905000
## 99  2021-03-29  6410  6515  6145  6225  5725.121  532162500
## 100 2021-04-05  6250  6320  6080  6200  5702.129  502093000
## 101 2021-04-12  6295  6370  5980  6275  5852.004  547122500
## 102 2021-04-19  6275  6395  6165  6390  5959.252  360469500
## 103 2021-04-26  6395  6460  6280  6405  5973.241  452236500
## 104 2021-05-03  6480  6480  6340  6400  5968.578  230853500
## 105 2021-05-10  6400  6480  6305  6480  6043.185  138860500
## 106 2021-05-17  6500  6500  6260  6360  5931.274  425104000
## 107 2021-05-24  6355  6480  6270  6340  5912.622  786760000
## 108 2021-05-31  6360  6620  6325  6580  6136.445  439093500
## 109 2021-06-07  6560  6620  6360  6470  6033.859  350165000
## 110 2021-06-14  6520  6520  6275  6325  5898.634  384753000
## 111 2021-06-21  6300  6390  6190  6190  5772.734  304048000
## 112 2021-06-28  6100  6150  6000  6100  5688.801  329465000
## 113 2021-07-05  6100  6180  5980  6020  5614.193  197589500
## 114 2021-07-12  6070  6180  5980  6110  5698.127  288971500
## 115 2021-07-19  6110  6190  6005  6035  5628.183  242858500
## 116 2021-07-26  6040  6100  5960  5970  5567.564  365702000
## 117 2021-08-02  6060  6360  5905  6160  5744.756  432218000
## 118 2021-08-09  6135  6435  6105  6410  5977.903  318559000
## 119 2021-08-16  6420  6760  6305  6600  6155.096  476726000
## 120 2021-08-23  6515  6605  6470  6510  6071.164  354475500
## 121 2021-08-30  6530  6600  6455  6600  6155.096  346322000
## 122 2021-09-06  6600  6605  6410  6520  6080.489  320127500
## 123 2021-09-13  6560  6595  6480  6520  6080.489  302646000
## 124 2021-09-20  6570  6590  6470  6585  6141.107  320533000
## 125 2021-09-27  6585  7000  6500  6760  6304.310  470120000
## 126 2021-10-04  6740  7300  6740  7290  6798.583  505924500
## 127 2021-10-11  7240  8250  7230  7650  7134.315  630351400
## 128 2021-10-18  7650  7675  7350  7525  7017.742  454096300
## 129 2021-10-25  7400  7600  7350  7475  6971.113  323410900
## 130 2021-11-01  7550  7550  7250  7450  6947.798  294952100
## 131 2021-11-08  7500  7750  7450  7525  7017.742  343111500
## 132 2021-11-15  7625  7625  7325  7425  6924.483  374972500
## 133 2021-11-22  7425  7575  7250  7275  6807.361  298491700
## 134 2021-11-29  7275  7525  7175  7375  6900.933  439484400
## 135 2021-12-06  7450  7475  7275  7375  6900.933  328956100
## 136 2021-12-13  7375  7500  7275  7500  7017.898  364486500
## 137 2021-12-20  7350  7425  7300  7300  6830.754  228309600
## 138 2021-12-27  7300  7400  7300  7300  6830.754  152100100
## 139 2022-01-03  7325  7700  7300  7650  7158.257  408166700
## 140 2022-01-10  7575  7850  7550  7850  7345.400  334216400
## 141 2022-01-17  7900  7950  7550  7950  7438.972  319064600
## 142 2022-01-24  7825  7850  7625  7775  7275.221  342965500
## 143 2022-01-31  7775  7825  7625  7725  7228.436  207855400
## 144 2022-02-07  7775  7950  7650  7825  7322.007  392864300
## 145 2022-02-14  7750  7975  7700  7925  7415.580  295900800
## 146 2022-02-21  7925  8175  7850  8050  7532.544  484005100
## 147 2022-02-28  8050  8225  7900  7900  7392.187  369901200
## 148 2022-03-07  7800  7975  7650  7950  7438.972  530599800
## 149 2022-03-14  8050  8300  7900  7900  7392.187  615829000
## 150 2022-03-21  7800  7950  7800  7950  7438.972  408050700
## 151 2022-03-28  7825  8075  7800  7925  7415.580  435790000
## 152 2022-04-04  7925  7925  7700  7850  7457.973  363523500
## 153 2022-04-11  7825  7875  7700  7700  7315.465  287212500
## 154 2022-04-18  7700  7925  7625  7875  7481.725  506765000
## 155 2022-04-25  7875  8250  7825  8125  7719.241  442834200
## 156 2022-05-02  8125  8125  8125  8125  7719.241          0
## 157 2022-05-09  7875  7900  7250  7325  6959.192 1335275700
## 158 2022-05-16  7325  7575  7275  7400  7030.447  540601000
## 159 2022-05-23  7450  7575  7325  7575  7196.707  341398600
## 160 2022-05-30  7575  7750  7475  7600  7220.458  621493500
## 161 2022-06-06  7550  7600  7300  7350  6982.943  538890200
## 162 2022-06-13  7300  7600  7250  7500  7125.453  547277400
## 163 2022-06-20  7600  7650  7450  7475  7101.701  303875800
## 164 2022-06-27  7475  7500  7250  7250  6887.938  491032700
## 165 2022-07-04  7250  7325  7000  7150  6792.932  388651800
## 166 2022-07-11  7200  7250  7000  7000  6650.422  283824200
## 167 2022-07-18  7025  7400  7025  7325  6959.192  328805200
## 168 2022-07-25  7350  7475  7250  7350  6982.943  352555700
## 169 2022-08-01  7350  7875  7350  7875  7481.725  554434300
## 170 2022-08-08  7875  7975  7725  7925  7529.229  414166900
## 171 2022-08-15  7950  8050  7850  7900  7505.477  309299500
## 172 2022-08-22  7850  8125  7825  8000  7600.483  457833400
## 173 2022-08-29  8000  8275  7950  8225  7814.246  466280400
## 174 2022-09-05  8225  8500  8200  8375  7956.755  471929600
## 175 2022-09-12  8325  8875  8325  8450  8028.009  847055300
## 176 2022-09-19  8475  8750  8375  8375  7956.755  405178800
## 177 2022-09-26  8200  8575  8200  8550  8123.016  524117200
## 178 2022-10-03  8450  8625  8200  8200  7790.495  415402900
## 179 2022-10-10  8150  8375  8125  8250  7837.998  324793600
## 180 2022-10-17  8250  8725  8175  8650  8218.021  423396400
## 181 2022-10-24  8750  8900  8550  8750  8313.027  435058900
## 182 2022-10-31  8850  9000  8675  8775  8336.778  491679400
## 183 2022-11-07  8725  8925  8675  8850  8408.033  382979900
## 184 2022-11-14  8875  8900  8550  8825  8384.282  407962600
## 185 2022-11-21  8875  9000  8725  8975  8526.792  333796400
## 186 2022-11-28  9050  9400  8850  8900  8455.537 1118888900
## 187 2022-12-05  8800  8900  8350  8575  8178.574  787960200
## 188 2022-12-12  8525  8700  8400  8600  8202.417  620368700
## 189 2022-12-19  8650  8700  8500  8500  8107.040  249328800
## 190 2022-12-26  8500  8650  8500  8550  8154.729  179812200
## 191 2023-01-02  8575  8600  8100  8300  7916.287  327096900
## 192 2023-01-09  8325  8450  8000  8050  7677.844  508297900
## 193 2023-01-16  8050  8375  8050  8300  7916.287  454472500
## 194 2023-01-23  8300  8850  8200  8700  8297.794  382986000
## 195 2023-01-30  8725  8775  8400  8700  8297.794  517355700
## 196 2023-02-06  8750  8900  8650  8825  8417.016  422710500
## 197 2023-02-13  8875  8950  8700  8725  8321.638  293119500
## 198 2023-02-20  8725  8850  8625  8675  8273.949  201675100
## 199 2023-02-27  8675  8775  8475  8475  8083.196  385416900
## 200 2023-03-06  8550  8650  8350  8450  8059.351  391900000
## 201 2023-03-13  8450  8625  8250  8375  7987.819  563773000
## 202 2023-03-20  8400  8825  8375  8825  8417.016  274498900
## 203 2023-03-27  8825  8900  8625  8750  8345.482  526116600
## 204 2023-04-03  8825  8825  8650  8750  8512.294  203676200
## 205 2023-04-10  8725  9000  8700  9000  8755.502  331534600
## 206 2023-04-17  9025  9175  8900  9125  8877.106  175125600
## 207 2023-04-24  9125  9200  9000  9050  8804.145  387545900
## 208 2023-05-01  9050  9100  8875  9000  8755.502  299754800
## 209 2023-05-08  9000  9075  8725  8800  8560.937  349526200
## 210 2023-05-15  8875  9000  8700  9000  8755.502  307915900
## 211 2023-05-22  9000  9200  8925  9150  8901.428  403375000
## 212 2023-05-29  9250  9325  9050  9050  8804.145  899165600
## 213 2023-06-05  9150  9325  9050  9100  8852.786  423720800
## 214 2023-06-12  9150  9175  8975  9050  8804.145  327701000
## 215 2023-06-19  9000  9150  8950  9050  8804.145  226101600
## 216 2023-06-26  9025  9150  9025  9150  8901.428   72615000
## 217 2023-07-03  9025  9150  9025  9025  8779.823  278688100
## 218 2023-07-10  9100  9225  9025  9200  8950.069  255036900
## 219 2023-07-17  9200  9250  9100  9150  8901.428  241619100
## 220 2023-07-24  9200  9400  9100  9125  8877.106  451091200
## 221 2023-07-31  9175  9300  9100  9150  8901.428  308526300
## 222 2023-08-07  9150  9450  9150  9400  9144.636  321656200
## 223 2023-08-14  9325  9375  9225  9250  8998.710  267568000
## 224 2023-08-21  9225  9325  9150  9275  9023.032  307092300
## 225 2023-08-28  9250  9300  9100  9225  8974.390  324338500
## 226 2023-09-04  9225  9275  9050  9125  8877.106  274073700
## 227 2023-09-11  9075  9125  9000  9000  8755.502  422888300
## 228 2023-09-18  9050  9175  8975  9075  8828.465  204955800
## 229 2023-09-25  9075  9075  8825  8825  8585.257  332981900
## 230 2023-10-02  8900  9250  8875  9025  8779.823  430826100
## 231 2023-10-09  9025  9125  8925  9075  8828.465  334052700
## 232 2023-10-16  9125  9125  8725  8975  8731.182  294018600
## 233 2023-10-23  8875  8950  8700  8700  8463.652  297995200
## 234 2023-10-30  8700  8950  8600  8900  8658.219  300358400
## 235 2023-11-06  8975  9050  8825  8825  8585.257  274303100
## 236 2023-11-13  8875  9075  8850  9075  8828.465  248766100
## 237 2023-11-20  8975  9025  8775  8925  8682.540  296369600
## 238 2023-11-27  8900  8975  8850  8950  8706.860  445343700
## 239 2023-12-04  8950  9025  8725  8750  8512.294  366178200
## 240 2023-12-11  8675  9225  8675  9225  9017.209  608138900
## 241 2023-12-18  9200  9350  9125  9325  9114.956  402391100
## 242 2023-12-25  9325  9450  9325  9400  9188.268  214552700
## 243 2024-01-01  9400  9600  9325  9575  9359.325  206940400
## 244 2024-01-08  9600  9700  9475  9700  9481.510  271154400
## 245 2024-01-15  9750  9775  9600  9625  9408.199  375200200
## 246 2024-01-22  9600  9650  9300  9350  9139.394  372312900
## 247 2024-01-29  9400  9800  9375  9700  9481.510  452703100
## 248 2024-02-05  9675  9750  9525  9700  9481.510  238587800
## 249 2024-02-12  9750 10000  9700  9950  9725.879  461047900
## 250 2024-02-19  9900 10025  9800  9825  9603.694  314815900
## 251 2024-02-26  9750 10000  9725  9825  9603.694  317326700
## 252 2024-03-04  9800 10300  9750 10150  9921.374  395334500
## 253 2024-03-11 10400 10400 10000 10150  9921.374  406480500
## 254 2024-03-18 10175 10275  9950 10100  9872.500  365966200
## 255 2024-03-25 10075 10100  9925 10075  9848.062  251457500
## 256 2024-04-01 10075 10100  9525  9825  9825.000  479852300
## 257 2024-04-08  9825  9825  9825  9825  9825.000          0
## 258 2024-04-15  9350  9675  9250  9475  9475.000  653804900
## 259 2024-04-22  9400 10000  9350  9625  9625.000  646380700
## 260 2024-04-29  9525 10050  9500  9850  9850.000  377966300
## 261 2024-05-06  9850  9875  9375  9375  9375.000  232631900
## 262 2024-05-13  9200  9525  9200  9525  9525.000  145469900
## 263 2024-05-14  9625  9675  9525  9550  9550.000   95363500
library(ggplot2)

databca$Date <- as.Date(databca$Date)

ggplot(databca, aes(x = Date, y = Adj.Close)) +
  geom_line(color = "blue") + 
  labs(
    title = "Time Series Plot",
    x = "Date",
    y = "Value"
  ) +
  theme_minimal() +  
  theme(
    plot.title = element_text(hjust = 0.5),  
    axis.text.x = element_text(angle = 45, hjust = 1)  
  )

## Interpretasi Data time series yang digunakan diatas adalah data saham bank BCA dari tahun 2019-2024, dimana setiap tahun selalu mengalaming peningkatan dan yang paling tinggi adalah pada tahun 2024.