##1. Visualisasi untuk antar peubah numerik #Hubungan Antar Peubah Numerik
library(readxl)
data <- read_xlsx("C:/Users/Asus/Downloads/TA Anreg 8.xlsx", sheet = 5)
data
## # A tibble: 25 × 9
## `Kabupaten/Kota` `Luas Tanam` Persentase Jumlah Peta…¹ Jumlah Pupuk Urea (T…²
## <chr> <dbl> <dbl> <dbl>
## 1 Bogor 81843 5.94 0.27
## 2 Sukabumi 156947 11.3 0.32
## 3 Cianjur 156882 9.46 0.28
## 4 Bandung 98215 5.13 0.42
## 5 Garut 135295 10.2 0.72
## 6 Tasikmalaya 112094 9.52 0.55
## 7 Ciamis 77302 6.16 0.19
## 8 Kuningan 59490 3.68 0.31
## 9 Cirebon 91383 2.55 0.28
## 10 Majalengka 104346 4.53 0.32
## # ℹ 15 more rows
## # ℹ abbreviated names: ¹​`Persentase Jumlah Petani`,
## # ²​`Jumlah Pupuk Urea (Ton/Ha)`
## # ℹ 5 more variables: `Jumlah Pupuk NPK (Ton/Ha)` <dbl>,
## # `Jumlah Usaha Tani Padi (Unit)` <dbl>, `Jumlah Teknologi (Unit)` <dbl>,
## # `Harga Beras (Rp/Kg)` <dbl>, `Produksi Padi 2023 (Ton)` <dbl>
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggplot2)
X1 <- data$`Luas Tanam`
X2 <- data$`Persentase Jumlah Petani`
X3 <- data$`Jumlah Pupuk Urea (Ton/Ha)`
X4 <- data$`Jumlah Pupuk NPK (Ton/Ha)`
X5 <- data$`Jumlah Usaha Tani Padi (Unit)`
X6 <- data$`Jumlah Teknologi (Unit)`
X7 <- data$`Harga Beras (Rp/Kg)`
X8 <- data$`Produksi Padi 2023 (Ton)`
plot(X2,X1,col = "darkgreen",main = "Hubungan antara Jumlah Petani dan Luas Tanam",xlab = "Persentase Jumlah Petani",ylab = "Luas Tanam")
abline(lm(X1 ~ X2),col = "black")
## Interpretasi Pada plot ini, sumbu X adalah Persentase jumlah petani
dan sumbu Y adalah Luas Tanah. Plot ini menunjukkan bahwa hubungan antar
dua peubah numerik ini relatif positif yang artinya semakin banyak
jumlah petani maka semakin luas tanah yang dipunyai.
library(reshape2)
##
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
## smiths
library(ggplot2)
datanum <- data[,-1]
kor <- cor(datanum)
meltnum <- melt(kor)
ggplot(meltnum, aes(Var1, Var2, fill = value)) +
geom_tile(color = "white") +
scale_fill_gradient2(low = "darkslategrey", mid = "white", high = "darkorange", midpoint = 0, limits = c(-1,1), name="Nilai Korelasi") +
labs(title = "Korelasi antar Peubah") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1))
## Interpretasi Dari plot korelasi ini dapat dilihat korelasi korelasi
antar peubah yang mempengaruhi Produktivitas Padi.
library(readr)
databca <- read.csv("C:/Users/Asus/Downloads/BBCA.JK (1).csv")
databca
## Date Open High Low Close Adj.Close Volume
## 1 2019-05-13 5560 5630 5180 5180 4654.208 349011500
## 2 2019-05-20 5180 5630 5140 5610 5040.561 282982500
## 3 2019-05-27 5535 5895 5530 5820 5229.244 508406500
## 4 2019-06-03 5820 5820 5820 5820 5229.244 0
## 5 2019-06-10 6000 6190 5790 5800 5211.275 457417500
## 6 2019-06-17 5810 5960 5790 5880 5283.154 433010000
## 7 2019-06-24 5895 5995 5805 5995 5386.481 288424000
## 8 2019-07-01 5995 6025 5940 5970 5364.020 209763000
## 9 2019-07-08 5935 6040 5865 6010 5399.959 202402500
## 10 2019-07-15 6060 6210 6035 6200 5570.673 232614500
## 11 2019-07-22 6260 6290 6165 6195 5566.180 233062500
## 12 2019-07-29 6220 6270 6160 6165 5539.226 312081500
## 13 2019-08-05 6215 6215 5765 6065 5449.376 472736000
## 14 2019-08-12 6070 6080 5860 5960 5355.034 321436000
## 15 2019-08-19 6030 6035 5905 5995 5386.481 243911500
## 16 2019-08-26 5940 6100 5860 6100 5480.824 346032000
## 17 2019-09-02 6100 6100 6000 6025 5413.436 235151000
## 18 2019-09-09 6050 6105 5980 6030 5417.929 179900000
## 19 2019-09-16 6000 6050 5985 5990 5381.989 393415000
## 20 2019-09-23 6030 6075 5780 6070 5453.868 373439000
## 21 2019-09-30 6070 6070 5950 6045 5431.406 272984000
## 22 2019-10-07 6070 6155 6015 6125 5503.286 251869500
## 23 2019-10-14 6130 6215 6105 6160 5534.733 230901000
## 24 2019-10-21 6200 6325 6175 6200 5570.673 324480500
## 25 2019-10-28 6200 6325 6150 6325 5682.986 284350000
## 26 2019-11-04 6350 6380 6250 6280 5642.553 325361500
## 27 2019-11-11 6335 6340 6210 6275 5638.060 242926000
## 28 2019-11-18 6245 6350 6210 6305 5665.015 282502000
## 29 2019-11-25 6330 6335 6225 6280 5642.553 403953000
## 30 2019-12-02 6280 6425 6270 6395 5745.879 254372500
## 31 2019-12-09 6370 6420 6340 6360 5732.516 307811500
## 32 2019-12-16 6340 6800 6340 6660 6002.918 537026500
## 33 2019-12-23 6680 6730 6650 6695 6034.464 114692000
## 34 2019-12-30 6680 6800 6670 6800 6129.105 158368500
## 35 2020-01-06 6720 6825 6670 6725 6061.505 239740500
## 36 2020-01-13 6740 7060 6735 6875 6196.706 364241500
## 37 2020-01-20 6950 6975 6810 6810 6138.119 449232000
## 38 2020-01-27 6865 6940 6480 6480 5840.676 401241500
## 39 2020-02-03 6480 6780 6370 6760 6093.052 623418500
## 40 2020-02-10 6760 6820 6630 6680 6020.945 410842000
## 41 2020-02-17 6680 6760 6565 6615 5962.357 523335000
## 42 2020-02-24 6565 6600 6035 6290 5669.422 563382000
## 43 2020-03-02 6290 6540 6035 6200 5588.302 497978500
## 44 2020-03-09 6000 6040 5460 5560 5011.445 497606500
## 45 2020-03-16 5560 5560 4325 4735 4267.840 991804500
## 46 2020-03-23 4760 5895 4405 5510 4966.378 1073130500
## 47 2020-03-30 5480 5750 5155 5495 4952.858 742564000
## 48 2020-04-06 5520 6100 5480 5595 5042.992 423446000
## 49 2020-04-13 5540 5630 5185 5425 4889.764 587107000
## 50 2020-04-20 5430 5500 4920 4920 4434.588 508007500
## 51 2020-04-27 4940 5250 4800 5170 4740.479 626833500
## 52 2020-05-04 5150 5400 5000 5245 4809.249 442564500
## 53 2020-05-11 5245 5340 4680 4785 4387.465 591306500
## 54 2020-05-18 4800 4960 4680 4765 4369.127 387660000
## 55 2020-05-25 4765 5320 4765 5190 4758.818 956477000
## 56 2020-06-01 5190 5990 5190 5725 5249.371 785359000
## 57 2020-06-08 5755 5995 5480 5670 5198.940 570281500
## 58 2020-06-15 5680 5800 5500 5575 5111.833 450266000
## 59 2020-06-22 5595 5760 5520 5645 5176.017 287760000
## 60 2020-06-29 5640 5905 5585 5870 5382.325 315034000
## 61 2020-07-06 5860 6265 5850 6200 5684.908 409180000
## 62 2020-07-13 6230 6240 6040 6120 5611.554 332959000
## 63 2020-07-20 6120 6250 6060 6100 5593.216 331072500
## 64 2020-07-27 6100 6240 6000 6240 5721.585 238047500
## 65 2020-08-03 6220 6295 5825 6180 5666.570 364708500
## 66 2020-08-10 6180 6405 6105 6405 5872.877 218079000
## 67 2020-08-17 6405 6425 6300 6330 5804.108 140357000
## 68 2020-08-24 6340 6600 6280 6495 5955.399 279695000
## 69 2020-08-31 6500 6560 6240 6380 5849.954 379365000
## 70 2020-09-07 6335 6360 5620 5905 5414.416 731951000
## 71 2020-09-14 6000 6115 5570 5630 5162.264 922475500
## 72 2020-09-21 5640 5735 5390 5610 5143.925 565726000
## 73 2020-09-28 5650 5695 5420 5505 5047.647 442418500
## 74 2020-10-05 5515 5800 5460 5775 5295.217 421819000
## 75 2020-10-12 5840 5900 5730 5760 5281.463 385405000
## 76 2020-10-19 5750 5900 5705 5770 5290.632 373011500
## 77 2020-10-26 5725 5835 5725 5790 5308.971 159934500
## 78 2020-11-02 5760 6300 5720 6300 5776.600 606178000
## 79 2020-11-09 6300 6600 6215 6390 5859.124 570653500
## 80 2020-11-16 6485 6650 6385 6600 6051.676 490293000
## 81 2020-11-23 6600 6610 6300 6385 5854.538 469456000
## 82 2020-11-30 6385 6525 6135 6390 5859.124 764758000
## 83 2020-12-07 6500 6780 6425 6735 6175.460 532778000
## 84 2020-12-14 6800 7000 6605 6800 6253.948 721642500
## 85 2020-12-21 6890 6905 6620 6725 6184.971 232431000
## 86 2020-12-28 6790 6820 6660 6770 6226.357 147122000
## 87 2021-01-04 6800 7090 6720 7050 6483.872 388915000
## 88 2021-01-11 7150 7380 6840 6955 6396.500 520024000
## 89 2021-01-18 6955 7300 6845 7080 6511.463 414593000
## 90 2021-01-25 7200 7200 6705 6760 6217.159 510804000
## 91 2021-02-01 6760 7000 6595 6915 6359.713 399713500
## 92 2021-02-08 7050 7055 6840 6880 6327.523 203088500
## 93 2021-02-15 6830 6960 6720 6825 6276.940 358846000
## 94 2021-02-22 6900 6940 6645 6710 6171.175 451461500
## 95 2021-03-01 6830 7160 6720 6800 6253.948 604129500
## 96 2021-03-08 6950 6950 6600 6765 6221.758 351095000
## 97 2021-03-15 6815 6820 6605 6760 6217.159 395566500
## 98 2021-03-22 6640 6720 6300 6415 5899.863 600905000
## 99 2021-03-29 6410 6515 6145 6225 5725.121 532162500
## 100 2021-04-05 6250 6320 6080 6200 5702.129 502093000
## 101 2021-04-12 6295 6370 5980 6275 5852.004 547122500
## 102 2021-04-19 6275 6395 6165 6390 5959.252 360469500
## 103 2021-04-26 6395 6460 6280 6405 5973.241 452236500
## 104 2021-05-03 6480 6480 6340 6400 5968.578 230853500
## 105 2021-05-10 6400 6480 6305 6480 6043.185 138860500
## 106 2021-05-17 6500 6500 6260 6360 5931.274 425104000
## 107 2021-05-24 6355 6480 6270 6340 5912.622 786760000
## 108 2021-05-31 6360 6620 6325 6580 6136.445 439093500
## 109 2021-06-07 6560 6620 6360 6470 6033.859 350165000
## 110 2021-06-14 6520 6520 6275 6325 5898.634 384753000
## 111 2021-06-21 6300 6390 6190 6190 5772.734 304048000
## 112 2021-06-28 6100 6150 6000 6100 5688.801 329465000
## 113 2021-07-05 6100 6180 5980 6020 5614.193 197589500
## 114 2021-07-12 6070 6180 5980 6110 5698.127 288971500
## 115 2021-07-19 6110 6190 6005 6035 5628.183 242858500
## 116 2021-07-26 6040 6100 5960 5970 5567.564 365702000
## 117 2021-08-02 6060 6360 5905 6160 5744.756 432218000
## 118 2021-08-09 6135 6435 6105 6410 5977.903 318559000
## 119 2021-08-16 6420 6760 6305 6600 6155.096 476726000
## 120 2021-08-23 6515 6605 6470 6510 6071.164 354475500
## 121 2021-08-30 6530 6600 6455 6600 6155.096 346322000
## 122 2021-09-06 6600 6605 6410 6520 6080.489 320127500
## 123 2021-09-13 6560 6595 6480 6520 6080.489 302646000
## 124 2021-09-20 6570 6590 6470 6585 6141.107 320533000
## 125 2021-09-27 6585 7000 6500 6760 6304.310 470120000
## 126 2021-10-04 6740 7300 6740 7290 6798.583 505924500
## 127 2021-10-11 7240 8250 7230 7650 7134.315 630351400
## 128 2021-10-18 7650 7675 7350 7525 7017.742 454096300
## 129 2021-10-25 7400 7600 7350 7475 6971.113 323410900
## 130 2021-11-01 7550 7550 7250 7450 6947.798 294952100
## 131 2021-11-08 7500 7750 7450 7525 7017.742 343111500
## 132 2021-11-15 7625 7625 7325 7425 6924.483 374972500
## 133 2021-11-22 7425 7575 7250 7275 6807.361 298491700
## 134 2021-11-29 7275 7525 7175 7375 6900.933 439484400
## 135 2021-12-06 7450 7475 7275 7375 6900.933 328956100
## 136 2021-12-13 7375 7500 7275 7500 7017.898 364486500
## 137 2021-12-20 7350 7425 7300 7300 6830.754 228309600
## 138 2021-12-27 7300 7400 7300 7300 6830.754 152100100
## 139 2022-01-03 7325 7700 7300 7650 7158.257 408166700
## 140 2022-01-10 7575 7850 7550 7850 7345.400 334216400
## 141 2022-01-17 7900 7950 7550 7950 7438.972 319064600
## 142 2022-01-24 7825 7850 7625 7775 7275.221 342965500
## 143 2022-01-31 7775 7825 7625 7725 7228.436 207855400
## 144 2022-02-07 7775 7950 7650 7825 7322.007 392864300
## 145 2022-02-14 7750 7975 7700 7925 7415.580 295900800
## 146 2022-02-21 7925 8175 7850 8050 7532.544 484005100
## 147 2022-02-28 8050 8225 7900 7900 7392.187 369901200
## 148 2022-03-07 7800 7975 7650 7950 7438.972 530599800
## 149 2022-03-14 8050 8300 7900 7900 7392.187 615829000
## 150 2022-03-21 7800 7950 7800 7950 7438.972 408050700
## 151 2022-03-28 7825 8075 7800 7925 7415.580 435790000
## 152 2022-04-04 7925 7925 7700 7850 7457.973 363523500
## 153 2022-04-11 7825 7875 7700 7700 7315.465 287212500
## 154 2022-04-18 7700 7925 7625 7875 7481.725 506765000
## 155 2022-04-25 7875 8250 7825 8125 7719.241 442834200
## 156 2022-05-02 8125 8125 8125 8125 7719.241 0
## 157 2022-05-09 7875 7900 7250 7325 6959.192 1335275700
## 158 2022-05-16 7325 7575 7275 7400 7030.447 540601000
## 159 2022-05-23 7450 7575 7325 7575 7196.707 341398600
## 160 2022-05-30 7575 7750 7475 7600 7220.458 621493500
## 161 2022-06-06 7550 7600 7300 7350 6982.943 538890200
## 162 2022-06-13 7300 7600 7250 7500 7125.453 547277400
## 163 2022-06-20 7600 7650 7450 7475 7101.701 303875800
## 164 2022-06-27 7475 7500 7250 7250 6887.938 491032700
## 165 2022-07-04 7250 7325 7000 7150 6792.932 388651800
## 166 2022-07-11 7200 7250 7000 7000 6650.422 283824200
## 167 2022-07-18 7025 7400 7025 7325 6959.192 328805200
## 168 2022-07-25 7350 7475 7250 7350 6982.943 352555700
## 169 2022-08-01 7350 7875 7350 7875 7481.725 554434300
## 170 2022-08-08 7875 7975 7725 7925 7529.229 414166900
## 171 2022-08-15 7950 8050 7850 7900 7505.477 309299500
## 172 2022-08-22 7850 8125 7825 8000 7600.483 457833400
## 173 2022-08-29 8000 8275 7950 8225 7814.246 466280400
## 174 2022-09-05 8225 8500 8200 8375 7956.755 471929600
## 175 2022-09-12 8325 8875 8325 8450 8028.009 847055300
## 176 2022-09-19 8475 8750 8375 8375 7956.755 405178800
## 177 2022-09-26 8200 8575 8200 8550 8123.016 524117200
## 178 2022-10-03 8450 8625 8200 8200 7790.495 415402900
## 179 2022-10-10 8150 8375 8125 8250 7837.998 324793600
## 180 2022-10-17 8250 8725 8175 8650 8218.021 423396400
## 181 2022-10-24 8750 8900 8550 8750 8313.027 435058900
## 182 2022-10-31 8850 9000 8675 8775 8336.778 491679400
## 183 2022-11-07 8725 8925 8675 8850 8408.033 382979900
## 184 2022-11-14 8875 8900 8550 8825 8384.282 407962600
## 185 2022-11-21 8875 9000 8725 8975 8526.792 333796400
## 186 2022-11-28 9050 9400 8850 8900 8455.537 1118888900
## 187 2022-12-05 8800 8900 8350 8575 8178.574 787960200
## 188 2022-12-12 8525 8700 8400 8600 8202.417 620368700
## 189 2022-12-19 8650 8700 8500 8500 8107.040 249328800
## 190 2022-12-26 8500 8650 8500 8550 8154.729 179812200
## 191 2023-01-02 8575 8600 8100 8300 7916.287 327096900
## 192 2023-01-09 8325 8450 8000 8050 7677.844 508297900
## 193 2023-01-16 8050 8375 8050 8300 7916.287 454472500
## 194 2023-01-23 8300 8850 8200 8700 8297.794 382986000
## 195 2023-01-30 8725 8775 8400 8700 8297.794 517355700
## 196 2023-02-06 8750 8900 8650 8825 8417.016 422710500
## 197 2023-02-13 8875 8950 8700 8725 8321.638 293119500
## 198 2023-02-20 8725 8850 8625 8675 8273.949 201675100
## 199 2023-02-27 8675 8775 8475 8475 8083.196 385416900
## 200 2023-03-06 8550 8650 8350 8450 8059.351 391900000
## 201 2023-03-13 8450 8625 8250 8375 7987.819 563773000
## 202 2023-03-20 8400 8825 8375 8825 8417.016 274498900
## 203 2023-03-27 8825 8900 8625 8750 8345.482 526116600
## 204 2023-04-03 8825 8825 8650 8750 8512.294 203676200
## 205 2023-04-10 8725 9000 8700 9000 8755.502 331534600
## 206 2023-04-17 9025 9175 8900 9125 8877.106 175125600
## 207 2023-04-24 9125 9200 9000 9050 8804.145 387545900
## 208 2023-05-01 9050 9100 8875 9000 8755.502 299754800
## 209 2023-05-08 9000 9075 8725 8800 8560.937 349526200
## 210 2023-05-15 8875 9000 8700 9000 8755.502 307915900
## 211 2023-05-22 9000 9200 8925 9150 8901.428 403375000
## 212 2023-05-29 9250 9325 9050 9050 8804.145 899165600
## 213 2023-06-05 9150 9325 9050 9100 8852.786 423720800
## 214 2023-06-12 9150 9175 8975 9050 8804.145 327701000
## 215 2023-06-19 9000 9150 8950 9050 8804.145 226101600
## 216 2023-06-26 9025 9150 9025 9150 8901.428 72615000
## 217 2023-07-03 9025 9150 9025 9025 8779.823 278688100
## 218 2023-07-10 9100 9225 9025 9200 8950.069 255036900
## 219 2023-07-17 9200 9250 9100 9150 8901.428 241619100
## 220 2023-07-24 9200 9400 9100 9125 8877.106 451091200
## 221 2023-07-31 9175 9300 9100 9150 8901.428 308526300
## 222 2023-08-07 9150 9450 9150 9400 9144.636 321656200
## 223 2023-08-14 9325 9375 9225 9250 8998.710 267568000
## 224 2023-08-21 9225 9325 9150 9275 9023.032 307092300
## 225 2023-08-28 9250 9300 9100 9225 8974.390 324338500
## 226 2023-09-04 9225 9275 9050 9125 8877.106 274073700
## 227 2023-09-11 9075 9125 9000 9000 8755.502 422888300
## 228 2023-09-18 9050 9175 8975 9075 8828.465 204955800
## 229 2023-09-25 9075 9075 8825 8825 8585.257 332981900
## 230 2023-10-02 8900 9250 8875 9025 8779.823 430826100
## 231 2023-10-09 9025 9125 8925 9075 8828.465 334052700
## 232 2023-10-16 9125 9125 8725 8975 8731.182 294018600
## 233 2023-10-23 8875 8950 8700 8700 8463.652 297995200
## 234 2023-10-30 8700 8950 8600 8900 8658.219 300358400
## 235 2023-11-06 8975 9050 8825 8825 8585.257 274303100
## 236 2023-11-13 8875 9075 8850 9075 8828.465 248766100
## 237 2023-11-20 8975 9025 8775 8925 8682.540 296369600
## 238 2023-11-27 8900 8975 8850 8950 8706.860 445343700
## 239 2023-12-04 8950 9025 8725 8750 8512.294 366178200
## 240 2023-12-11 8675 9225 8675 9225 9017.209 608138900
## 241 2023-12-18 9200 9350 9125 9325 9114.956 402391100
## 242 2023-12-25 9325 9450 9325 9400 9188.268 214552700
## 243 2024-01-01 9400 9600 9325 9575 9359.325 206940400
## 244 2024-01-08 9600 9700 9475 9700 9481.510 271154400
## 245 2024-01-15 9750 9775 9600 9625 9408.199 375200200
## 246 2024-01-22 9600 9650 9300 9350 9139.394 372312900
## 247 2024-01-29 9400 9800 9375 9700 9481.510 452703100
## 248 2024-02-05 9675 9750 9525 9700 9481.510 238587800
## 249 2024-02-12 9750 10000 9700 9950 9725.879 461047900
## 250 2024-02-19 9900 10025 9800 9825 9603.694 314815900
## 251 2024-02-26 9750 10000 9725 9825 9603.694 317326700
## 252 2024-03-04 9800 10300 9750 10150 9921.374 395334500
## 253 2024-03-11 10400 10400 10000 10150 9921.374 406480500
## 254 2024-03-18 10175 10275 9950 10100 9872.500 365966200
## 255 2024-03-25 10075 10100 9925 10075 9848.062 251457500
## 256 2024-04-01 10075 10100 9525 9825 9825.000 479852300
## 257 2024-04-08 9825 9825 9825 9825 9825.000 0
## 258 2024-04-15 9350 9675 9250 9475 9475.000 653804900
## 259 2024-04-22 9400 10000 9350 9625 9625.000 646380700
## 260 2024-04-29 9525 10050 9500 9850 9850.000 377966300
## 261 2024-05-06 9850 9875 9375 9375 9375.000 232631900
## 262 2024-05-13 9200 9525 9200 9525 9525.000 145469900
## 263 2024-05-14 9625 9675 9525 9550 9550.000 95363500
library(ggplot2)
databca$Date <- as.Date(databca$Date)
ggplot(databca, aes(x = Date, y = Adj.Close)) +
geom_line(color = "blue") +
labs(
title = "Time Series Plot",
x = "Date",
y = "Value"
) +
theme_minimal() +
theme(
plot.title = element_text(hjust = 0.5),
axis.text.x = element_text(angle = 45, hjust = 1)
)
## Interpretasi Data time series yang digunakan diatas adalah data saham
bank BCA dari tahun 2019-2024, dimana setiap tahun selalu mengalaming
peningkatan dan yang paling tinggi adalah pada tahun 2024.