Base de datos
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
1. Estimación del modelo
\[price = α + α*~1(lotsize) + α~2(sqrft) + α~3(bdrms) + ϵ\]
library(stargazer)
modelo_estimado<-lm(formula = price~lotsize+sqrft+bdrms, data=hprice1)
stargazer(modelo_estimado, title = "Estimación del Modelo", type = "html")| Dependent variable: | |
| price | |
| lotsize | 0.002*** |
| (0.001) | |
| sqrft | 0.123*** |
| (0.013) | |
| bdrms | 13.853 |
| (9.010) | |
| Constant | -21.770 |
| (29.475) | |
| Observations | 88 |
| R2 | 0.672 |
| Adjusted R2 | 0.661 |
| Residual Std. Error | 59.833 (df = 84) |
| F Statistic | 57.460*** (df = 3; 84) |
| Note: | p<0.1; p<0.05; p<0.01 |
2.1 Indice de Condición
2.1.1 Indice de Condición “Calculo Manual”
Calculo manual
| (Intercept) | lotsize | sqrft | bdrms | |
| 1 | 1 | 6,126 | 2,438 | 4 |
| 2 | 1 | 9,903 | 2,076 | 3 |
| 3 | 1 | 5,200 | 1,374 | 3 |
| 4 | 1 | 4,600 | 1,448 | 3 |
| 5 | 1 | 6,095 | 2,514 | 4 |
Construcción de la Matriz X
| (Intercept) | lotsize | sqrft | bdrms | |
| 1 | 1 | 6,126 | 2,438 | 4 |
| 2 | 1 | 9,903 | 2,076 | 3 |
| 3 | 1 | 5,200 | 1,374 | 3 |
| 4 | 1 | 4,600 | 1,448 | 3 |
| 5 | 1 | 6,095 | 2,514 | 4 |
Construcción de la Matriz XX
| (Intercept) | lotsize | sqrft | bdrms | |
| (Intercept) | 88 | 793,748 | 177,205 | 314 |
| lotsize | 793,748 | 16,165,159,010 | 1,692,290,257 | 2,933,767 |
| sqrft | 177,205 | 1,692,290,257 | 385,820,561 | 654,755 |
| bdrms | 314 | 2,933,767 | 654,755 | 1,182 |
Normalización de la Matriz XX
library(stargazer)
options(scipen = 999)
Sn<-solve(diag(sqrt(diag(XX_matrix))))
stargazer(Sn,type="html")| 0.107 | 0 | 0 | 0 |
| 0 | 0.00001 | 0 | 0 |
| 0 | 0 | 0.0001 | 0 |
| 0 | 0 | 0 | 0.029 |
Normalización de la Matriz de Información
| 1 | 0.6655 | 0.9617 | 0.9736 |
| 0.6655 | 1 | 0.6776 | 0.6712 |
| 0.9617 | 0.6776 | 1 | 0.9696 |
| 0.9736 | 0.6712 | 0.9696 | 1 |
2.1.2 Indice de Condición usando la librería “mctest”
##
## Call:
## omcdiag(mod = mod, Inter = TRUE, detr = detr, red = red, conf = conf,
## theil = theil, cn = cn)
##
##
## Overall Multicollinearity Diagnostics
##
## MC Results detection
## Determinant |X'X|: 0.6918 0
## Farrar Chi-Square: 31.3812 1
## Red Indicator: 0.3341 0
## Sum of Lambda Inverse: 3.8525 0
## Theil's Method: -0.7297 0
## Condition Number: 11.8678 0
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
2.1.3 Indice de Condición usando la librería “olsrr”
## Eigenvalue Condition Index intercept lotsize sqrft bdrms
## 1 3.48158596 1.000000 0.003663034 0.0277802824 0.004156293 0.002939554
## 2 0.45518380 2.765637 0.006800735 0.9670803174 0.006067321 0.005096396
## 3 0.03851083 9.508174 0.472581427 0.0051085488 0.816079307 0.016938178
## 4 0.02471941 11.867781 0.516954804 0.0000308514 0.173697079 0.975025872
2.2 Prueba de Fabrrar-Glaubar
Calculo manual del determiante del la matriz de correlación
1. Construcción de la matriz de información
| lotsize | sqrft | bdrms | |
| 1 | -0.284 | 0.735 | 0.513 |
| 2 | 0.087 | 0.108 | -0.675 |
| 3 | -0.375 | -1.108 | -0.675 |
| 4 | -0.434 | -0.980 | -0.675 |
| 5 | -0.287 | 0.867 | 0.513 |
2. Calculo de la matriz de correlación R
| lotsize | sqrft | bdrms | |
| lotsize | 1 | 0.1838 | 0.1363 |
| sqrft | 0.1838 | 1 | 0.5315 |
| bdrms | 0.1363 | 0.5315 | 1 |
Aplicando la prueba de Farrar-Glaubar (Bartlett)
Estadistico
m <- ncol(X_mat[,-1])
n <- nrow(X_mat[,-1])
chi_FG <--(n-1-(2*m+5)/6) * log(determinante_R)
print(chi_FG)## [1] 31.38122
Regla de decisión
Como x^2FG ≥ V.C ( 31.38122 ≥ 7.814728), se rechaza la hipótesis nula, por lo tanto hay evidencia de colinealidad en los regresores.
Gráfica
alpha_sig<-0.05
chi_FG <--(n-1-(2* m + 5)/ 6) * log(determinante_R)
gl <- m * (m - 1)/2
vc<- qchisq(p = 0.95, df = gl)
library(fastGraph)
shadeDist(chi_FG, ddist = "dchisq", parm1 = gl, lower.tail = FALSE, xmin = 0, xlab = "Valor de chi-cuadrado",
main = "Prueba de Bartlett")
abline(v = vc, col = "red", lty = 2)
axis(1, at = vc, labels = paste("vc:", round(vc, 2)), col.axis = "black", las = 1)
if (chi_FG > vc) {
text(x = vc + 0, y = 0.22, labels = "Rechazar H0", col = "blue", cex = 0.8)
} else {
text(x = vc + 0, y = 0.22, labels = "No rechazar H0", col = "blue", cex = 0.8)
}
text(vc, 0, expression(alpha == 0.05), pos = 4, col = "black", cex = 0.8)- Calculo de FG usando “mctest”
##
## Call:
## mctest::omcdiag(mod = modelo_estimado)
##
##
## Overall Multicollinearity Diagnostics
##
## MC Results detection
## Determinant |X'X|: 0.6918 0
## Farrar Chi-Square: 31.3812 1
## Red Indicator: 0.3341 0
## Sum of Lambda Inverse: 3.8525 0
## Theil's Method: -0.7297 0
## Condition Number: 11.8678 0
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
2.3 Factores Inflacionarios de la Varianza
Referencia
library(dplyr)
R.cuadrado.regresores<-c(0,0.5,.8,.9)
as.data.frame(R.cuadrado.regresores)%>% mutate(VIF=1/(1-R.cuadrado.regresores))## R.cuadrado.regresores VIF
## 1 0.0 1
## 2 0.5 2
## 3 0.8 5
## 4 0.9 10
2.3.1 Calculo Manual de FIV
Calculo de la matriz de correlación
print(R)
## lotsize sqrft bdrms
## lotsize 1.0000000 0.1838422 0.1363256
## sqrft 0.1838422 1.0000000 0.5314736
## bdrms 0.1363256 0.5314736 1.0000000
Inversa de la matriz de correlación
## lotsize sqrft bdrms
## lotsize 1.03721145 -0.1610145 -0.05582352
## sqrft -0.16101454 1.4186543 -0.73202696
## bdrms -0.05582352 -0.7320270 1.39666321
2.3.2 Calculo de los VIF’s usando la librería “performance”
## # Check for Multicollinearity
##
## Low Correlation
##
## Term VIF VIF 95% CI Increased SE Tolerance Tolerance 95% CI
## lotsize 1.04 [1.00, 11.02] 1.02 0.96 [0.09, 1.00]
## sqrft 1.42 [1.18, 1.98] 1.19 0.70 [0.51, 0.85]
## bdrms 1.40 [1.17, 1.95] 1.18 0.72 [0.51, 0.86]
## Variable `Component` is not in your data frame :/
2.3.3 Calculo de los VIF’s usando la librería “car”
## lotsize sqrft bdrms
## 1.037211 1.418654 1.396663