# Install the required package
install.packages("kknn")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.4'
## (as 'lib' is unspecified)
# Load required libraries
library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.2.0 ──
## ✔ broom        1.0.5      ✔ recipes      1.0.10
## ✔ dials        1.2.1      ✔ rsample      1.2.1 
## ✔ dplyr        1.1.4      ✔ tibble       3.2.1 
## ✔ ggplot2      3.5.1      ✔ tidyr        1.3.1 
## ✔ infer        1.0.7      ✔ tune         1.2.1 
## ✔ modeldata    1.3.0      ✔ workflows    1.1.4 
## ✔ parsnip      1.2.1      ✔ workflowsets 1.1.0 
## ✔ purrr        1.0.2      ✔ yardstick    1.3.1
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ purrr::discard() masks scales::discard()
## ✖ dplyr::filter()  masks stats::filter()
## ✖ dplyr::lag()     masks stats::lag()
## ✖ recipes::step()  masks stats::step()
## • Dig deeper into tidy modeling with R at https://www.tmwr.org
library(dplyr) # For data manipulation
library(ggplot2) # For plotting
library(ISLR) # For the Smarket data set
library(ISLR2) # For the Bikeshare data set
## 
## Attaching package: 'ISLR2'
## The following objects are masked from 'package:ISLR':
## 
##     Auto, Credit
library(discrim)
## 
## Attaching package: 'discrim'
## The following object is masked from 'package:dials':
## 
##     smoothness
library(poissonreg)
library(corrr)
library(paletteer)

# Correlation plot for Smarket dataset
cor_Smarket <- Smarket %>%
  select(-Direction) %>%
  correlate()
## Correlation computed with
## • Method: 'pearson'
## • Missing treated using: 'pairwise.complete.obs'
rplot(cor_Smarket, colours = c("indianred2", "black", "skyblue1"))

cor_Smarket %>%
  stretch() %>%
  ggplot(aes(x, y, fill = r)) +
  geom_tile() +
  geom_text(aes(label = as.character(fashion(r)))) +
  scale_fill_paletteer_c("scico::roma", limits = c(-1, 1), direction = -1)

ggplot(Smarket, aes(Year, Volume)) +
  geom_jitter(height = 0)

# Logistic Regression Model
lr_spec <- logistic_reg() %>%
  set_engine("glm") %>%
  set_mode("classification")

lr_fit <- lr_spec %>%
  fit(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, data = Smarket)

summary(lr_fit$fit)
## 
## Call:
## stats::glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + 
##     Lag5 + Volume, family = stats::binomial, data = data)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.126000   0.240736  -0.523    0.601
## Lag1        -0.073074   0.050167  -1.457    0.145
## Lag2        -0.042301   0.050086  -0.845    0.398
## Lag3         0.011085   0.049939   0.222    0.824
## Lag4         0.009359   0.049974   0.187    0.851
## Lag5         0.010313   0.049511   0.208    0.835
## Volume       0.135441   0.158360   0.855    0.392
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1731.2  on 1249  degrees of freedom
## Residual deviance: 1727.6  on 1243  degrees of freedom
## AIC: 1741.6
## 
## Number of Fisher Scoring iterations: 3
tidy(lr_fit)
## # A tibble: 7 × 5
##   term        estimate std.error statistic p.value
##   <chr>          <dbl>     <dbl>     <dbl>   <dbl>
## 1 (Intercept) -0.126      0.241     -0.523   0.601
## 2 Lag1        -0.0731     0.0502    -1.46    0.145
## 3 Lag2        -0.0423     0.0501    -0.845   0.398
## 4 Lag3         0.0111     0.0499     0.222   0.824
## 5 Lag4         0.00936    0.0500     0.187   0.851
## 6 Lag5         0.0103     0.0495     0.208   0.835
## 7 Volume       0.135      0.158      0.855   0.392
predict(lr_fit, new_data = Smarket)
## # A tibble: 1,250 × 1
##    .pred_class
##    <fct>      
##  1 Up         
##  2 Down       
##  3 Down       
##  4 Up         
##  5 Up         
##  6 Up         
##  7 Down       
##  8 Up         
##  9 Up         
## 10 Down       
## # ℹ 1,240 more rows
predict(lr_fit, new_data = Smarket, type = "prob")
## # A tibble: 1,250 × 2
##    .pred_Down .pred_Up
##         <dbl>    <dbl>
##  1      0.493    0.507
##  2      0.519    0.481
##  3      0.519    0.481
##  4      0.485    0.515
##  5      0.489    0.511
##  6      0.493    0.507
##  7      0.507    0.493
##  8      0.491    0.509
##  9      0.482    0.518
## 10      0.511    0.489
## # ℹ 1,240 more rows
# Evaluate logistic regression model on full data
augmented_lr <- augment(lr_fit, new_data = Smarket)
conf_mat(augmented_lr, truth = Direction, estimate = .pred_class) %>%
  autoplot(type = "heatmap")

accuracy(augmented_lr, truth = Direction, estimate = .pred_class)
## # A tibble: 1 × 3
##   .metric  .estimator .estimate
##   <chr>    <chr>          <dbl>
## 1 accuracy binary         0.522
# Split data into training and testing sets
Smarket_train <- Smarket %>%
  filter(Year != 2005)

Smarket_test <- Smarket %>%
  filter(Year == 2005)

# Logistic Regression with training data
lr_fit2 <- lr_spec %>%
  fit(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, data = Smarket_train)

augmented_lr2 <- augment(lr_fit2, new_data = Smarket_test)
conf_mat(augmented_lr2, truth = Direction, estimate = .pred_class) %>%
  autoplot(type = "heatmap")

accuracy(augmented_lr2, truth = Direction, estimate = .pred_class)
## # A tibble: 1 × 3
##   .metric  .estimator .estimate
##   <chr>    <chr>          <dbl>
## 1 accuracy binary         0.480
# Logistic Regression with fewer predictors
lr_fit3 <- lr_spec %>%
  fit(Direction ~ Lag1 + Lag2, data = Smarket_train)

augmented_lr3 <- augment(lr_fit3, new_data = Smarket_test)
conf_mat(augmented_lr3, truth = Direction, estimate = .pred_class) %>%
  autoplot(type = "heatmap")

accuracy(augmented_lr3, truth = Direction, estimate = .pred_class)
## # A tibble: 1 × 3
##   .metric  .estimator .estimate
##   <chr>    <chr>          <dbl>
## 1 accuracy binary         0.560
# Predictions for new data
Smarket_new <- tibble(
  Lag1 = c(1.2, 1.5), 
  Lag2 = c(1.1, -0.8)
)
predict(lr_fit3, new_data = Smarket_new, type = "prob")
## # A tibble: 2 × 2
##   .pred_Down .pred_Up
##        <dbl>    <dbl>
## 1      0.521    0.479
## 2      0.504    0.496
# Linear Discriminant Analysis (LDA)
lda_spec <- discrim_linear() %>%
  set_mode("classification") %>%
  set_engine("MASS")

lda_fit <- lda_spec %>%
  fit(Direction ~ Lag1 + Lag2, data = Smarket_train)

predict(lda_fit, new_data = Smarket_test)
## # A tibble: 252 × 1
##    .pred_class
##    <fct>      
##  1 Up         
##  2 Up         
##  3 Up         
##  4 Up         
##  5 Up         
##  6 Up         
##  7 Up         
##  8 Up         
##  9 Up         
## 10 Up         
## # ℹ 242 more rows
predict(lda_fit, new_data = Smarket_test, type = "prob")
## # A tibble: 252 × 2
##    .pred_Down .pred_Up
##         <dbl>    <dbl>
##  1      0.490    0.510
##  2      0.479    0.521
##  3      0.467    0.533
##  4      0.474    0.526
##  5      0.493    0.507
##  6      0.494    0.506
##  7      0.495    0.505
##  8      0.487    0.513
##  9      0.491    0.509
## 10      0.484    0.516
## # ℹ 242 more rows
augmented_lda <- augment(lda_fit, new_data = Smarket_test)
conf_mat(augmented_lda, truth = Direction, estimate = .pred_class) %>%
  autoplot(type = "heatmap")

accuracy(augmented_lda, truth = Direction, estimate = .pred_class)
## # A tibble: 1 × 3
##   .metric  .estimator .estimate
##   <chr>    <chr>          <dbl>
## 1 accuracy binary         0.560
# Quadratic Discriminant Analysis (QDA)
qda_spec <- discrim_quad() %>%
  set_mode("classification") %>%
  set_engine("MASS")

qda_fit <- qda_spec %>%
  fit(Direction ~ Lag1 + Lag2, data = Smarket_train)

augmented_qda <- augment(qda_fit, new_data = Smarket_test)
conf_mat(augmented_qda, truth = Direction, estimate = .pred_class) %>%
  autoplot(type = "heatmap")

accuracy(augmented_qda, truth = Direction, estimate = .pred_class)
## # A tibble: 1 × 3
##   .metric  .estimator .estimate
##   <chr>    <chr>          <dbl>
## 1 accuracy binary         0.599
# Naive Bayes
nb_spec <- naive_Bayes() %>% 
  set_mode("classification") %>% 
  set_engine("klaR") %>% 
  set_args(usekernel = FALSE)

nb_fit <- nb_spec %>% 
  fit(Direction ~ Lag1 + Lag2, data = Smarket_train)

augmented_nb <- augment(nb_fit, new_data = Smarket_test)
conf_mat(augmented_nb, truth = Direction, estimate = .pred_class) %>%
  autoplot(type = "heatmap")

accuracy(augmented_nb, truth = Direction, estimate = .pred_class)
## # A tibble: 1 × 3
##   .metric  .estimator .estimate
##   <chr>    <chr>          <dbl>
## 1 accuracy binary         0.591
# K-Nearest Neighbors (KNN)
ggplot(Smarket, aes(Lag1, Lag2)) +
  geom_point(alpha = 0.1, size = 2) +
  geom_smooth(method = "lm", se = FALSE) +
  labs(title = "No apparent correlation between Lag1 and Lag2")
## `geom_smooth()` using formula = 'y ~ x'

knn_spec <- nearest_neighbor(neighbors = 3) %>%
  set_mode("classification") %>%
  set_engine("kknn")

knn_fit <- knn_spec %>%
  fit(Direction ~ Lag1 + Lag2, data = Smarket_train)

augmented_knn <- augment(knn_fit, new_data = Smarket_test)
conf_mat(augmented_knn, truth = Direction, estimate = .pred_class) %>%
  autoplot(type = "heatmap")

accuracy(augmented_knn, truth = Direction, estimate = .pred_class)
## # A tibble: 1 × 3
##   .metric  .estimator .estimate
##   <chr>    <chr>          <dbl>
## 1 accuracy binary           0.5
# Caravan dataset for KNN
Caravan_test <- Caravan[seq_len(1000), ]
Caravan_train <- Caravan[-seq_len(1000), ]

rec_spec <- recipe(Purchase ~ ., data = Caravan_train) %>%
  step_normalize(all_numeric_predictors())

Caravan_wf <- workflow() %>%
  add_recipe(rec_spec)

knn_spec <- nearest_neighbor() %>%
  set_mode("classification") %>%
  set_engine("kknn")

knn1_wf <- Caravan_wf %>%
  add_model(knn_spec %>% set_args(neighbors = 1))

knn3_wf <- Caravan_wf %>%
  add_model(knn_spec %>% set_args(neighbors = 3))

knn5_wf <- Caravan_wf %>%
  add_model(knn_spec %>% set_args(neighbors = 5))

knn1_fit <- fit(knn1_wf, data = Caravan_train)
knn3_fit <- fit(knn3_wf, data = Caravan_train)
knn5_fit <- fit(knn5_wf, data = Caravan_train)

# Evaluate KNN models
augmented_knn1 <- augment(knn1_fit, new_data = Caravan_test)
augmented_knn3 <- augment(knn3_fit, new_data = Caravan_test)
augmented_knn5 <- augment(knn5_fit, new_data = Caravan_test)

conf_mat(augmented_knn1, truth = Purchase, estimate = .pred_class)
##           Truth
## Prediction  No Yes
##        No  874  50
##        Yes  67   9
accuracy(augmented_knn1, truth = Purchase, estimate = .pred_class)
## # A tibble: 1 × 3
##   .metric  .estimator .estimate
##   <chr>    <chr>          <dbl>
## 1 accuracy binary         0.883
conf_mat(augmented_knn3, truth = Purchase, estimate = .pred_class)
##           Truth
## Prediction  No Yes
##        No  875  50
##        Yes  66   9
accuracy(augmented_knn3, truth = Purchase, estimate = .pred_class)
## # A tibble: 1 × 3
##   .metric  .estimator .estimate
##   <chr>    <chr>          <dbl>
## 1 accuracy binary         0.884
conf_mat(augmented_knn5, truth = Purchase, estimate = .pred_class)
##           Truth
## Prediction  No Yes
##        No  874  50
##        Yes  67   9
accuracy(augmented_knn5, truth = Purchase, estimate = .pred_class)
## # A tibble: 1 × 3
##   .metric  .estimator .estimate
##   <chr>    <chr>          <dbl>
## 1 accuracy binary         0.883