library(wooldridge)
data(hprice1)
head(force(hprice1),n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
modelo_precio<-lm(formula = price~lotsize+sqrft+bdrms, data=hprice1)
summary(modelo_precio)
##
## Call:
## lm(formula = price ~ lotsize + sqrft + bdrms, data = hprice1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -120.026 -38.530 -6.555 32.323 209.376
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.177e+01 2.948e+01 -0.739 0.46221
## lotsize 2.068e-03 6.421e-04 3.220 0.00182 **
## sqrft 1.228e-01 1.324e-02 9.275 1.66e-14 ***
## bdrms 1.385e+01 9.010e+00 1.537 0.12795
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 59.83 on 84 degrees of freedom
## Multiple R-squared: 0.6724, Adjusted R-squared: 0.6607
## F-statistic: 57.46 on 3 and 84 DF, p-value: < 2.2e-16
options(scipen = 99999)
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
library(fastGraph)
X<-model.matrix(modelo_precio)
stargazer(head(X,n=5),type = "text",align=FALSE,no.space=FALSE)
##
## =================================
## (Intercept) lotsize sqrft bdrms
## ---------------------------------
## 1 1 6,126 2,438 4
## 2 1 9,903 2,076 3
## 3 1 5,200 1,374 3
## 4 1 4,600 1,448 3
## 5 1 6,095 2,514 4
## ---------------------------------
XX<-t(X)%*%X
stargazer(XX,type="text")
##
## ==============================================================
## (Intercept) lotsize sqrft bdrms
## --------------------------------------------------------------
## (Intercept) 88 793,748 177,205 314
## lotsize 793,748 16,165,159,010 1,692,290,257 2,933,767
## sqrft 177,205 1,692,290,257 385,820,561 654,755
## bdrms 314 2,933,767 654,755 1,182
## --------------------------------------------------------------
library (stargazer)
options (scipen = 99999)
Sn<-solve(diag(sqrt(diag(XX))))
stargazer(Sn,type="text")
##
## ==========================
## 0.107 0 0 0
## 0 0.00001 0 0
## 0 0 0.0001 0
## 0 0 0 0.029
## --------------------------
XX_norm<-(Sn%*%XX)%*%Sn
stargazer(XX_norm,type="text")
##
## =======================
## 1 0.666 0.962 0.974
## 0.666 1 0.678 0.671
## 0.962 0.678 1 0.970
## 0.974 0.671 0.970 1
## -----------------------
library(stargazer)
lambdas<-eigen(XX,symmetric = TRUE)
stargazer(lambdas$values,type="text")
##
## ===============================================
## 16,344,612,181.000 206,368,583.000 73.019 3.974
## -----------------------------------------------
K<-sqrt(max(lambdas$values)/(lambdas$values))
print(K)
## [1] 1.000000 8.899498 14961.305923 64134.107095
library(stargazer)
Zn<-scale(X[,-1])
stargazer(head(Zn,n=5),type="text")
##
## =======================
## lotsize sqrft bdrms
## -----------------------
## 1 -0.284 0.735 0.513
## 2 0.087 0.108 -0.675
## 3 -0.375 -1.108 -0.675
## 4 -0.434 -0.980 -0.675
## 5 -0.287 0.867 0.513
## -----------------------
library(stargazer)
n<-nrow(Zn)
R<-(t(Zn)%*%Zn)*(1/(n-1))
stargazer(R,digits = 4,type="text")
##
## =============================
## lotsize sqrft bdrms
## -----------------------------
## lotsize 1 0.1838 0.1363
## sqrft 0.1838 1 0.5315
## bdrms 0.1363 0.5315 1
## -----------------------------
det_R<-det(R)
print(det_R)
## [1] 0.6917931
m<-ncol(X[,-1])
n<-nrow(X[,-1])
chi_FG<--(n-1-(2*m+5)/6)*log(det_R)
print(chi_FG)
## [1] 31.38122
gl<-m*(m-1)/2
VC<-qchisq(p=0.95,df=gl)
print(VC)
## [1] 7.814728
library(fastGraph)
shadeDist(xshade = chi_FG ,ddist = "dchisq", parm1 = gl, lower.tail = FALSE,col=c("black","magenta"), sub = paste("VC: ", VC, "FG: ", chi_FG) )
#Hay evidencia de que hay multicolinealidad entre las variables #Factores inflacionarios de la varianza.
IR<-solve(R)
print(IR)
## lotsize sqrft bdrms
## lotsize 1.03721145 -0.1610145 -0.05582352
## sqrft -0.16101454 1.4186543 -0.73202696
## bdrms -0.05582352 -0.7320270 1.39666321
VIF<-diag(IR)
print(VIF)
## lotsize sqrft bdrms
## 1.037211 1.418654 1.396663