EJERCICIO MULTICOLIEALIDAD
Datos del modelo
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
1. Estimación del modelo
options(scipen= 99999999)
library(stargazer)
modelo_es<- lm(price~lotsize+sqrft+bdrms,data = hprice1)
stargazer(modelo_es, title = "Modelo estimado", type = "text", digits = 4)##
## Modelo estimado
## ===============================================
## Dependent variable:
## ---------------------------
## price
## -----------------------------------------------
## lotsize 0.0021***
## (0.0006)
##
## sqrft 0.1228***
## (0.0132)
##
## bdrms 13.8525
## (9.0101)
##
## Constant -21.7703
## (29.4750)
##
## -----------------------------------------------
## Observations 88
## R2 0.6724
## Adjusted R2 0.6607
## Residual Std. Error 59.8335 (df = 84)
## F Statistic 57.4602*** (df = 3; 84)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
2. Verificar si hay evidencia de la independencia de los regresores
a) Indice de condición y prueba FG
Indice de condición
Calculo manual
Matriz X
##
## =================================
## (Intercept) lotsize sqrft bdrms
## ---------------------------------
## 1 1 6,126 2,438 4
## 2 1 9,903 2,076 3
## 3 1 5,200 1,374 3
## 4 1 4,600 1,448 3
## 5 1 6,095 2,514 4
## 6 1 8,566 2,754 5
## ---------------------------------
Matriz XX
##
## ==============================================================
## (Intercept) lotsize sqrft bdrms
## --------------------------------------------------------------
## (Intercept) 88 793,748 177,205 314
## lotsize 793,748 16,165,159,010 1,692,290,257 2,933,767
## sqrft 177,205 1,692,290,257 385,820,561 654,755
## bdrms 314 2,933,767 654,755 1,182
## --------------------------------------------------------------
Cálculo de la matriz de normalización
library(stargazer)
options(scipen = 999)
Sn<-solve(diag(sqrt(diag(matriz_XX))))
stargazer(Sn,type = "text")##
## ==========================
## 0.107 0 0 0
## 0 0.00001 0 0
## 0 0 0.0001 0
## 0 0 0 0.029
## --------------------------
Matriz \({X^t X}\) normalizada
##
## ===========================
## 1 0.6655 0.9617 0.9736
## 0.6655 1 0.6776 0.6712
## 0.9617 0.6776 1 0.9696
## 0.9736 0.6712 0.9696 1
## ---------------------------
Cálculo del Indice de Condición usando librería “mctest”
##
## Call:
## omcdiag(mod = mod, Inter = TRUE, detr = detr, red = red, conf = conf,
## theil = theil, cn = cn)
##
##
## Overall Multicollinearity Diagnostics
##
## MC Results detection
## Determinant |X'X|: 0.6918 0
## Farrar Chi-Square: 31.3812 1
## Red Indicator: 0.3341 0
## Sum of Lambda Inverse: 3.8525 0
## Theil's Method: -0.7297 0
## Condition Number: 11.8678 0
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
Cálculo del Indice de Condición usando librería “olsrr”
## Eigenvalue Condition Index intercept lotsize sqrft bdrms
## 1 3.48158596 1.000000 0.003663034 0.0277802824 0.004156293 0.002939554
## 2 0.45518380 2.765637 0.006800735 0.9670803174 0.006067321 0.005096396
## 3 0.03851083 9.508174 0.472581427 0.0051085488 0.816079307 0.016938178
## 4 0.02471941 11.867781 0.516954804 0.0000308514 0.173697079 0.975025872
Prueba de Farrar-Glaubar
Cálculo manual
Calculo de |R|
##
## =======================
## lotsize sqrft bdrms
## -----------------------
## 1 -0.284 0.735 0.513
## 2 0.087 0.108 -0.675
## 3 -0.375 -1.108 -0.675
## 4 -0.434 -0.980 -0.675
## 5 -0.287 0.867 0.513
## 6 -0.045 1.283 1.702
## -----------------------
Calcular la matriz R
##
## =============================
## lotsize sqrft bdrms
## -----------------------------
## lotsize 1 0.1838 0.1363
## sqrft 0.1838 1 0.5315
## bdrms 0.1363 0.5315 1
## -----------------------------
Aplicando la prueba de Farrer Glaubar (Bartlett)
Estadistico \(\chi_{FG}^2\)
## [1] 31.38122
Valor critico
## [1] 7.814728
Dado que \(\chi^2_{FG} \geq V.C.\) se rechaza Ho, por lo tanto hay evidencia de colinealidad en los regresores.
Cálculo de FG usando “mctest”
##
## Call:
## mctest::omcdiag(mod = modelo_es)
##
##
## Overall Multicollinearity Diagnostics
##
## MC Results detection
## Determinant |X'X|: 0.6918 0
## Farrar Chi-Square: 31.3812 1
## Red Indicator: 0.3341 0
## Sum of Lambda Inverse: 3.8525 0
## Theil's Method: -0.7297 0
## Condition Number: 11.8678 0
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
Cálculo de FG usando la “psych”
## $chisq
## [1] 31.38122
##
## $p.value
## [1] 0.0000007065806
##
## $df
## [1] 3
b) Factores inflacionarios de la varianza
Referencia entre \(R^2_j\)
library(dplyr)
R.cuadrado.regresores<-c(0,0.5,.8,.9)
as.data.frame(R.cuadrado.regresores) %>% mutate(VIF=1/(1-R.cuadrado.regresores))## R.cuadrado.regresores VIF
## 1 0.0 1
## 2 0.5 2
## 3 0.8 5
## 4 0.9 10
Calculo manual
Matriz de Correlación de los regresores del modelo
## lotsize sqrft bdrms
## lotsize 1.0000000 0.1838422 0.1363256
## sqrft 0.1838422 1.0000000 0.5314736
## bdrms 0.1363256 0.5314736 1.0000000
Inversa de la matriz de correlación \(R^{-1}\)
## lotsize sqrft bdrms
## lotsize 1.03721145 -0.1610145 -0.05582352
## sqrft -0.16101454 1.4186543 -0.73202696
## bdrms -0.05582352 -0.7320270 1.39666321
VIF’s para el modelo estimado:
## lotsize sqrft bdrms
## 1.037211 1.418654 1.396663
Cálculo de los VIF’s usando “performance”
## # Check for Multicollinearity
##
## Low Correlation
##
## Term VIF VIF 95% CI Increased SE Tolerance Tolerance 95% CI
## lotsize 1.04 [1.00, 11.02] 1.02 0.96 [0.09, 1.00]
## sqrft 1.42 [1.18, 1.98] 1.19 0.70 [0.51, 0.85]
## bdrms 1.40 [1.17, 1.95] 1.18 0.72 [0.51, 0.86]
Cálculo de los VIF’s usando “car”
## lotsize sqrft bdrms
## 1.037211 1.418654 1.396663