library(conflicted)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.0 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
library(tidygraph)
library(igraph)
library(ggplot2)
library(bibliometrix)
## Please note that our software is open source and available for use, distributed under the MIT license.
## When it is used in a publication, we ask that authors properly cite the following reference:
##
## Aria, M. & Cuccurullo, C. (2017) bibliometrix: An R-tool for comprehensive science mapping analysis,
## Journal of Informetrics, 11(4), pp 959-975, Elsevier.
##
## Failure to properly cite the software is considered a violation of the license.
##
## For information and bug reports:
## - Take a look at https://www.bibliometrix.org
## - Send an email to info@bibliometrix.org
## - Write a post on https://github.com/massimoaria/bibliometrix/issues
##
## Help us to keep Bibliometrix and Biblioshiny free to download and use by contributing with a small donation to support our research team (https://bibliometrix.org/donate.html)
##
##
## To start with the Biblioshiny app, please digit:
## biblioshiny()
library(tosr)
library(here)
## here() starts at /home/sebas/Escritorio/datos_viviana
library(lubridate)
#library(sjrdata)
library(openxlsx)
library(zoo)
library(RSQLite)
library(dplyr)
library(plyr)
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------
library(journalabbr)
library(ggraph)
library(XML)
library(readxl)
source("verbs.R")
mi_fuente <- "Times New Roman"
par(family = mi_fuente)
giant.component <- function(graph) {
cl <- igraph::clusters(graph)
igraph::induced.subgraph(graph,
which(cl$membership == which.max(cl$csize)))
}
year_start = 2000
year_end = 2022
table_1 <-
tibble(wos = length(wos$AU), # Create a dataframe with the values.
scopus = length(scopus$AU),
total = length(wos_scopus$AU))
table_1 %>%
DT::datatable(class = "cell-border stripe",
rownames = F,
filter = "top",
editable = FALSE,
extensions = "Buttons",
options = list(dom = "Bfrtip",
buttons = c("copy",
"csv",
"excel",
"pdf",
"print")))
wos_scopus %>%
tidyr::separate_rows(DT, sep = ";") %>%
dplyr::count(DT, sort = TRUE)%>%
dplyr::mutate(percentage = n /sum(n),
percentage = percentage * 100,
percentage = round(percentage, digits = 2)) %>%
dplyr::rename(total = n) %>%
DT::datatable(class = "cell-border stripe",
rownames = F,
filter = "top",
editable = FALSE,
extensions = "Buttons",
options = list(dom = "Bfrtip",
buttons = c("copy",
"csv",
"excel",
"pdf",
"print")))
Combine charts using Python Matplotlib & Reticulate
library(reticulate)
plt <- import("matplotlib")
np <- import("numpy")
TC_all$TC_sum_all <- as.integer(TC_all$TC_sum_all)
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import FuncFormatter
# ax=axes
fig, ax = plt.subplots()
# First plot Total Publications - time series
ax.plot(tpx, tpy, color='r',marker='o', label='Total Publications')
ax.set_xlabel('Year')
ax.set_ylabel('Total Publications', color='r')
# Customization for bar charts
barw = 0.5
ax.bar(sx, sy, color='g', label = 'Scopus', alpha = 0.5, width=barw)
ax.bar(wx1, wy, color='orange', label = 'WoS', alpha=0.8, width=barw)
# Y2 - Total citations
twin_axes = ax.twinx()
twin_axes.plot(tcx, tcy, color = 'purple',marker='o', label='Total Citations')
twin_axes.set_ylabel('Total Citations', color='purple')
# Customize
plt.title('Total Scientific Production vs. Total Citations')
# y2 Total Citation label location
plt.legend(loc='center left')
# True or False to get the grid at the background
ax.grid(False)
# y1 label location
ax.legend(loc='upper left')
# Y2 limit depends of tcy scale in this case 1400 improves label location
plt.ylim(0, 10000) ######### <-----Important--------- """"Change Y2 Coordinate"""""
## (0.0, 10000.0)
# plt.annotate() customize numbers for each position
for i, label in enumerate(tcy):
plt.annotate(label, (tcx[i], tcy[i] + 0.5), color='purple', size=8)
for i, label in enumerate(tpy):
ax.annotate(label, (tpx[i], tpy[i] + 0.8), color='red', size=8)
for i, label in enumerate(wy):
ax.annotate(label, (wx1[i], wy[i] + 0.1), color='brown', size=8)
for i, label in enumerate(sy):
ax.annotate(label, (sx[i], sy[i] + 0.2),color='green', size=8)
# Rotate x ticks
plt.xticks(tpx)
## ([<matplotlib.axis.XTick object at 0x745b43c428d0>, <matplotlib.axis.XTick object at 0x745b43c41d90>, <matplotlib.axis.XTick object at 0x745b43a79340>, <matplotlib.axis.XTick object at 0x745b43bf3500>, <matplotlib.axis.XTick object at 0x745b43af33b0>, <matplotlib.axis.XTick object at 0x745b43af2720>, <matplotlib.axis.XTick object at 0x745b43b04260>, <matplotlib.axis.XTick object at 0x745b43b04b60>, <matplotlib.axis.XTick object at 0x745b43b05430>, <matplotlib.axis.XTick object at 0x745b43c42e40>, <matplotlib.axis.XTick object at 0x745b43b04dd0>, <matplotlib.axis.XTick object at 0x745b43b062d0>, <matplotlib.axis.XTick object at 0x745b43b06c30>, <matplotlib.axis.XTick object at 0x745b43b07590>, <matplotlib.axis.XTick object at 0x745b43b07e60>, <matplotlib.axis.XTick object at 0x745b43b065d0>, <matplotlib.axis.XTick object at 0x745b43b28440>, <matplotlib.axis.XTick object at 0x745b43b28d70>, <matplotlib.axis.XTick object at 0x745b43b296d0>, <matplotlib.axis.XTick object at 0x745b43b29fd0>, <matplotlib.axis.XTick object at 0x745b43a788c0>, <matplotlib.axis.XTick object at 0x745b43b2a660>, <matplotlib.axis.XTick object at 0x745b43b2af60>, <matplotlib.axis.XTick object at 0x745b43b2b8f0>], [Text(2023.0, 0, '2023'), Text(2022.0, 0, '2022'), Text(2021.0, 0, '2021'), Text(2020.0, 0, '2020'), Text(2019.0, 0, '2019'), Text(2018.0, 0, '2018'), Text(2017.0, 0, '2017'), Text(2016.0, 0, '2016'), Text(2015.0, 0, '2015'), Text(2014.0, 0, '2014'), Text(2013.0, 0, '2013'), Text(2012.0, 0, '2012'), Text(2011.0, 0, '2011'), Text(2010.0, 0, '2010'), Text(2009.0, 0, '2009'), Text(2008.0, 0, '2008'), Text(2007.0, 0, '2007'), Text(2006.0, 0, '2006'), Text(2005.0, 0, '2005'), Text(2004.0, 0, '2004'), Text(2003.0, 0, '2003'), Text(2002.0, 0, '2002'), Text(2001.0, 0, '2001'), Text(2000.0, 0, '2000')])
fig.autofmt_xdate(rotation = 70)
# The Y1 ticks depends from tpy scale limits
yticks = [0,40,80,120,160,200] ########## <-----Important---- Choose scale .. just specify which numbers you want
ax.set_yticks(yticks)
# Export Figure as SVG
plt.savefig("./figura_uno/figura_1.svg")
plt.show()
table_2_country |>
DT::datatable(class = "cell-border stripe",
rownames = F,
filter = "top",
editable = FALSE,
extensions = "Buttons",
options = list(dom = "Bfrtip",
buttons = c("copy",
"csv",
"excel",
"pdf",
"print")))
figure_2a <-
figure_2_country_wos_scopus_1 |>
activate(edges) |>
# tidygraph::rename(weight = n) |>
ggraph(layout = "graphopt") +
geom_edge_link(aes(width = Weight),
colour = "lightgray") +
scale_edge_width(name = "Link strength") +
geom_node_point(aes(color = community,
size = degree)) +
geom_node_text(aes(label = name), repel = TRUE) +
scale_size(name = "Degree") +
# scale_color_binned(name = "Communities") +
theme_graph()
figure_2a
ggsave("./figura_dos/figura_2a.svg",
plot = figure_2a,
device = "svg")
figure_2b <-
figure_2_country_wos_scopus_1 |>
activate(nodes) |>
data.frame() |>
group_by(community) |>
dplyr::count(community, sort = TRUE) |>
slice(1:10) |>
ggplot(aes(x = reorder(community, n), y = n)) +
geom_point(stat = "identity") +
geom_line(group = 1) +
# geom_text(label = as.numeric(community),
# nudge_x = 0.5,
# nudge_y = 0.5,
# check_overlap = T) +
labs(title = "Communities by size",
x = "communities",
y = "Countries") +
theme(text = element_text(color = "black",
face = "bold",
family = "Times"),
plot.title = element_text(size = 25),
panel.background = element_rect(fill = "white"),
axis.text.y = element_text(size = 15,
colour = "black"),
axis.text.x = element_text(size = 15,
colour = "black"),
axis.title.x = element_text(size = 20),
axis.title.y = element_text(size = 20)
)
figure_2b
ggsave("./figura_dos/figura_2b.svg",
plot = figure_2b,
device = "svg")
# Create a dataframe with links
figure_2c_edges <-
figure_2_country_wos_scopus |>
dplyr::filter(from != to) |>
tidygraph::as_tbl_graph() |>
activate(edges) |>
as_tibble() |>
dplyr::select(year = PY) |>
dplyr::count(year) |>
dplyr::filter(year >= year_start,
year <= year_end) |>
dplyr::mutate(percentage = n/max(n)) |>
dplyr::select(year, percentage)
# Create a data frame with author and year
figure_2c_nodes <- # 21 row
figure_2_country_wos_scopus |>
dplyr::filter(from != to) |>
tidygraph::as_tbl_graph() |>
activate(edges) |>
as_tibble() |>
dplyr::select(CO = from,
year = PY) |>
bind_rows(figure_2_country_wos_scopus |>
tidygraph::as_tbl_graph() |>
tidygraph::activate(edges) |>
tidygraph::as_tibble() |>
dplyr::select(CO = to,
year = PY)) |>
unique() |>
dplyr::group_by(CO) |>
dplyr::slice(which.min(year)) |>
dplyr::ungroup() |>
dplyr::select(year) |>
dplyr::group_by(year) |>
dplyr::count(year) |>
dplyr::filter(year >= year_start,
year <= year_end) |>
dplyr::ungroup() |>
dplyr::mutate(percentage = n / max(n)) |>
select(year, percentage)
## Warning in which.min(year): NAs introducidos por coerción
## Warning in which.min(year): NAs introducidos por coerción
## Warning in which.min(year): NAs introducidos por coerción
## Warning in which.min(year): NAs introducidos por coerción
## Warning in which.min(year): NAs introducidos por coerción
## Warning in which.min(year): NAs introducidos por coerción
## Warning in which.min(year): NAs introducidos por coerción
## Warning in which.min(year): NAs introducidos por coerción
## Warning in which.min(year): NAs introducidos por coerción
figure_2c <-
figure_2c_nodes |>
dplyr::mutate(type = "nodes",
year = as.numeric(year)) |>
bind_rows(figure_2c_edges |>
dplyr::mutate(type = "links",
year = as.numeric(year))) |>
ggplot(aes(x = year,
y = percentage,
color = type)) +
geom_point() +
geom_line() +
theme(legend.position = "right",
text = element_text(color = "black",
face = "bold",
family = "Times"),
plot.title = element_text(size = 25),
panel.background = element_rect(fill = "white"),
axis.text.y = element_text(size = 15,
colour = "black"),
axis.text.x = element_text(size = 15,
colour = "black",
angle = 45, vjust = 0.5
),
axis.title.x = element_text(size = 20),
axis.title.y = element_text(size = 20),
legend.text = element_text(size = "15"),
legend.title = element_blank()) +
labs(title = "Nodes and links through time",
y = "Percentage") +
scale_y_continuous(labels = scales::percent) +
scale_x_continuous(breaks = seq(year_start, year_end, by = 1))
figure_2c
ggsave("./figura_dos/figura_2c.svg",
plot = figure_2c,
device = "svg")
table_3_journal |>
dplyr::arrange(desc(total)) |>
DT::datatable(class = "cell-border stripe",
rownames = F,
filter = "top",
editable = FALSE,
extensions = "Buttons",
options = list(dom = "Bfrtip",
buttons = c("copy",
"csv",
"excel",
"pdf",
"print")))
Creating the graph object
journal_citation_graph_weighted_tbl_small <-
journal_df |>
dplyr::select(JI_main, JI_ref) |>
dplyr::group_by(JI_main, JI_ref) |>
dplyr::count() |>
dplyr::rename(weight = n) |>
as_tbl_graph(directed = FALSE) |>
# convert(to_simple) |>
activate(nodes) |>
dplyr::mutate(components = tidygraph::group_components(type = "weak")) |>
dplyr::filter(components == 1) |>
activate(nodes) |>
dplyr::mutate(degree = centrality_degree(),
community = tidygraph::group_louvain()) |>
dplyr::select(-components) |>
dplyr::filter(degree >= 1)
Selecting nodes to show
figure_3a_1 <-
SO_edges %>%
tidygraph::as_tbl_graph() %>%
tidygraph::activate(nodes) %>%
tidygraph::mutate(id = SO_nodes$id) %>%
#tidygraph::mutate(id = name)
tidygraph::left_join(SO_nodes) %>%
tidygraph::select(-id) %>%
tidygraph::rename(name = Label) %>%
ggraph(layout = "graphopt") +
geom_edge_link(aes(width = weight),
colour = "lightgray") +
scale_edge_width(name = "Link strength") +
geom_node_point(aes(color = community,
size = degree)) +
geom_node_text(aes(label = name), repel = TRUE) +
scale_size(name = "Degree") +
# scale_color_binned(name = "Communities") +
theme_graph()
figure_3a_1
ggsave("./figura_tres/figura_3a_1.svg",
plot = figure_3a_1,
device = "svg")
figure_3b <-
journal_citation_graph_weighted_tbl_small |>
activate(nodes) |>
data.frame() |>
dplyr::select(community) |>
dplyr::count(community, sort = TRUE) |>
dplyr::slice(1:10) |>
ggplot(aes(x = reorder(community, n), y = n)) +
geom_point(stat = "identity") +
geom_line(group = 1) +
# geom_text(label = as.numeric(community),
# nudge_x = 0.5,
# nudge_y = 0.5,
# check_overlap = T) +
labs(title = "Communities by size",
x = "communities",
y = "Journals") +
theme(text = element_text(color = "black",
face = "bold",
family = "Times"),
plot.title = element_text(size = 25),
panel.background = element_rect(fill = "white"),
axis.text.y = element_text(size = 15,
colour = "black"),
axis.text.x = element_text(size = 15,
colour = "black"),
axis.title.x = element_text(size = 20),
axis.title.y = element_text(size = 20)
)
figure_3b
ggsave("./figura_tres/figura_3b.svg",
plot = figure_3b,
device = "svg")
# Create a dataframe with links
figure_3c_edges <-
journal_df |>
select(from = JI_main, to = JI_ref, PY = PY_ref) %>%
dplyr::filter(from != to) |>
tidygraph::as_tbl_graph() |>
activate(edges) |>
as_tibble() |>
dplyr::select(year = PY) |>
dplyr::count(year) |>
dplyr::filter(year >= year_start,
year <= year_end) |>
dplyr::mutate(percentage = n/max(n)) |>
dplyr::select(year, percentage)
# Create a data frame with author and year
figure_3c_nodes <- # 21 row
journal_df |>
select(from = JI_main, to = JI_ref, PY = PY_ref) %>%
dplyr::filter(from != to) |>
tidygraph::as_tbl_graph() |>
activate(edges) |>
as_tibble() |>
dplyr::select(CO = from,
year = PY) |>
bind_rows(journal_df |>
select(from = JI_main,
to = JI_ref,
PY = PY_ref) %>%
tidygraph::as_tbl_graph() |>
tidygraph::activate(edges) |>
tidygraph::as_tibble() |>
dplyr::select(CO = to,
year = PY)) |>
unique() |>
dplyr::group_by(CO) |>
dplyr::slice(which.min(year)) |>
dplyr::ungroup() |>
dplyr::select(year) |>
dplyr::group_by(year) |>
dplyr::count(year) |>
dplyr::filter(year >= year_start,
year <= year_end) |>
dplyr::ungroup() |>
dplyr::mutate(percentage = n / max(n)) |>
select(year, percentage)
plotting figure 3b
figure_3c <-
figure_3c_nodes |>
dplyr::mutate(type = "nodes") |>
bind_rows(figure_3c_edges |>
dplyr::mutate(type = "links")) |>
ggplot(aes(x = year,
y = percentage,
color = type)) +
geom_point() +
geom_line() +
theme(legend.position = "right",
text = element_text(color = "black",
face = "bold",
family = "Times"),
plot.title = element_text(size = 25),
panel.background = element_rect(fill = "white"),
axis.text.y = element_text(size = 15,
colour = "black"),
axis.text.x = element_text(size = 15,
colour = "black",
angle = 60, vjust = 0.5
),
axis.title.x = element_text(size = 20),
axis.title.y = element_text(size = 20),
legend.text = element_text(size = "15"),
legend.title = element_blank()) +
labs(title = "Nodes and links through time",
y = "Percentage") +
scale_y_continuous(labels = scales::percent) +
scale_x_continuous(breaks = seq(year_start, year_end, by = 1))
figure_3c
ggsave("./figura_tres/figura_3c.svg",
plot = figure_3c,
device = "svg")
{r message=FALSE, warning=FALSE} # egos <- # AU_ego_edges %>% # tidygraph::as_tbl_graph() %>% # tidygraph::activate(nodes) %>% # tidygraph::mutate(id = AU_ego_nodes$id) %>% # dplyr::left_join(AU_ego_nodes %>% # tidygraph::mutate(id = as.character(id))) %>% # dplyr::mutate(component = as.character(community)) # # # # egos |> # ggraph(layout = "graphopt") + # geom_edge_link(aes(width = weight), # colour = "lightgray") + # scale_edge_width(name = "Link strength") + # geom_node_point(aes(color = component, # size = degree)) + # geom_node_text(aes(label = Label), repel = TRUE) + # scale_size(name = "Degree") + # # scale_color_binned(name = "Communities") + # theme_graph() # #
tos %>%
DT::datatable(class = "cell-border stripe",
rownames = F,
filter = "top",
editable = FALSE,
extensions = "Buttons",
options = list(dom = "Bfrtip",
buttons = c("copy",
"csv",
"excel",
"pdf",
"print")))