O intercepto (β0) representa o rendimento potencial (0% sveridade). O coeficiente angular (β1) representa a magnitude do incremento/decrescimento no rendimento (kg/ha) por cada ponto porcentual (pp) de incremento da severidade.
##
## Random-Effects Model (k = 26; tau^2 estimator: ML)
##
## logLik deviance AIC BIC AICc
## -113.0589 83.5525 230.1177 232.6339 230.6395
##
## tau^2 (estimated amount of total heterogeneity): 252.9034 (SE = 83.6136)
## tau (square root of estimated tau^2 value): 15.9029
## I^2 (total heterogeneity / total variability): 91.58%
## H^2 (total variability / sampling variability): 11.88
##
## Test for Heterogeneity:
## Q(df = 25) = 192.6181, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -24.0635 3.4347 -7.0059 <.0001 -30.7955 -17.3316
##
## Random-Effects Model (k = 26; tau^2 estimator: ML)
##
## tau^2 (estimated amount of total heterogeneity): 521071.0538 (SE = 149678.0291)
## tau (square root of estimated tau^2 value): 721.8525
## I^2 (total heterogeneity / total variability): 98.35%
## H^2 (total variability / sampling variability): 60.76
##
## Test for Heterogeneity:
## Q(df = 25) = 1820.3373, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 3541.2686 144.1147 24.5726 <.0001 3258.8090 3823.7282
Incluindo uma variavel moderadora qualitativa: pressão de doença (Resposta em rendimento, sendo Baixa pressão quando a resposta máxima da aplicação de fungicida foi de <30%, ou “Alta pressão” se Ry máxima >30%)
##
## Mixed-Effects Model (k = 26; tau^2 estimator: ML)
##
## logLik deviance AIC BIC AICc
## -109.8112 77.0572 225.6224 229.3967 226.7134
##
## tau^2 (estimated amount of residual heterogeneity): 178.3367 (SE = 62.0017)
## tau (square root of estimated tau^2 value): 13.3543
## I^2 (residual heterogeneity / unaccounted variability): 88.00%
## H^2 (unaccounted variability / sampling variability): 8.34
##
## Test for Residual Heterogeneity:
## QE(df = 24) = 122.9217, p-val < .0001
##
## Test of Moderators (coefficient(s) 1,2):
## QM(df = 2) = 69.9524, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## Ry_pres21Low -15.7775 4.0866 -3.8608 0.0001 -23.7872 -7.7679
## Ry_pres22High -32.0371 4.3180 -7.4194 <.0001 -40.5003 -23.5739
##
## Mixed-Effects Model (k = 26; tau^2 estimator: ML)
##
## logLik deviance AIC BIC AICc
## -206.9530 120.9769 419.9060 423.6803 420.9969
##
## tau^2 (estimated amount of residual heterogeneity): 464040.8071 (SE = 133830.1195)
## tau (square root of estimated tau^2 value): 681.2054
## I^2 (residual heterogeneity / unaccounted variability): 98.10%
## H^2 (unaccounted variability / sampling variability): 52.67
##
## Test for Residual Heterogeneity:
## QE(df = 24) = 1292.1657, p-val < .0001
##
## Test of Moderators (coefficient(s) 1,2):
## QM(df = 2) = 677.9612, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## Ry_pres21Low 3772.5637 192.4454 19.6033 <.0001 3395.3776 4149.7498
## Ry_pres22High 3307.7264 193.0182 17.1369 <.0001 2929.4178 3686.0351
| b0.est | b0.inf | b0.sup | |
|---|---|---|---|
| Low | 3772.56 | 3395.38 | 4149.75 |
| High | 3307.73 | 2929.42 | 3686.04 |
| b1.est | b1.inf | b1.sup | |
|---|---|---|---|
| Low | -15.78 | -23.79 | -7.77 |
| High | -32.04 | -40.50 | -23.57 |