Exercise 1
x <- c(5.6, 6.3, 7, 7.7, 8.4)
y <- c(8.8, 12.4, 14.8, 18.2, 20.8)
# Fit linear regression model
model <- lm(y ~ x)
# Get coefficients of the regression line
intercept <- coef(model)[1]
slope <- coef(model)[2]
# Print the equation of the regression line
cat("Regression equation: y =", round(intercept, 2), "+", round(slope, 2), "x\n")
## Regression equation: y = -14.8 + 4.26 x
Exercise 2
Partial derivative with respect to \(x\): \[
\frac{\partial f}{\partial x} = 24 - 6y^2 \] Setting it equal to
zero: \[ 24 - 6y^2 = 0 \] \[ y^2 = 4 \] \[
y = \pm 2 \]
Partial derivative with respect to \(y\): \[
\frac{\partial f}{\partial y} = -12xy - 24y^2 \] Setting it equal
to zero: \[ -12xy - 24y^2 = 0 \] \[ -12x - 24y = 0 \] \[ x = -2y \]
Substitute the values of \(y\) into
\(x\) from step 1: \[ x = -2(2) \] or \[ x = -2(-2) \] \[ x = -4 \] or \[ x = 4 \]
So, the critical points are \((-4,
2)\) and \((4, -2)\).
Exercice 3
# Define the prices
x <- 2.30
y <- 4.10
# Calculate the revenue function
R <- function(x, y) {
return(x * (81 - 21*x + 17*y) + y * (40 + 11*x - 23*y))
}
# Calculate revenue
revenue <- R(x, y)
revenue
## [1] 116.62
Exercice 4
The constraint equation is \(x + y =
96\), so \(y = 96 - x\).
Substitute \(y = 96 - x\) into the cost
function \(C(x, y)\):
\[
C(x) = \frac{1}{6}x^2 + \frac{1}{6}(96-x)^2 + 7x + 25(96-x) + 700
\]
Simplify \(C(x)\):
\[
C(x) = \frac{1}{6}x^2 + \frac{1}{6}(9216 - 192x + x^2) + 7x + 2400 - 25x
+ 700
\] \[
C(x) = \frac{1}{3}x^2 - 50x + 4636
\]
Find the derivative of \(C(x)\) with
respect to \(x\) and set it equal to
zero:
\[
C'(x) = \frac{2}{3}x - 50 = 0
\] \[
\frac{2}{3}x = 50
\] \[
x = 75
\]
Use the constraint equation \(x + y =
96\) to find \(y\):
\[
y = 96 - x = 96 - 75 = 21
\]
Therefore, to minimize the total weekly cost, the company should
produce 75 units in Los Angeles and 21 units in Denver.
Exercice 5
To evaluate the given double integral over the region \(R: 2 \leq x \leq 4\) and \(2 \leq y \leq 4\), we integrate the
function \(e^{8x + 3y}\) with respect
to \(x\) and \(y\) over the specified region.
The integral can be expressed as:
\[
\iint_R e^{8x + 3y} \, dA
\]
Let’s first integrate with respect to \(x\) and then with respect to \(y\):
\[
\int_{2}^{4} \int_{2}^{4} e^{8x + 3y} \, dx \, dy
\]
Let’s perform these integrations:
\[
\int_{2}^{4} \left( \int_{2}^{4} e^{8x + 3y} \, dx \right) \, dy
\]
\[
= \int_{2}^{4} \left( \frac{1}{8} e^{8x + 3y} \Big|_{x=2}^{x=4} \right)
\, dy
\]
\[
= \int_{2}^{4} \left( \frac{1}{8} (e^{32 + 3y} - e^{16 + 3y}) \right) \,
dy
\]
\[
= \frac{1}{8} \int_{2}^{4} (e^{32 + 3y} - e^{16 + 3y}) \, dy
\]
\[
= \frac{1}{8} \left( \int_{2}^{4} e^{32 + 3y} \, dy - \int_{2}^{4} e^{16
+ 3y} \, dy \right)
\]
Now, we evaluate each integral individually:
\[
= \frac{1}{8} \left( \frac{1}{3} e^{32 + 3y} \Big|_{y=2}^{y=4} -
\frac{1}{3} e^{16 + 3y} \Big|_{y=2}^{y=4} \right)
\]
\[
= \frac{1}{8} \left( \frac{1}{3} (e^{44} - e^{38}) - \frac{1}{3} (e^{28}
- e^{22}) \right)
\]
\[
= \frac{1}{24} (e^{44} - e^{38} - e^{28} + e^{22})
\]
So, the exact value of the given double integral is \(\frac{1}{24} (e^{44} - e^{38} - e^{28} +
e^{22})\).
…
LS0tDQp0aXRsZTogIldlZWsgMTUiDQphdXRob3I6ICJLb3NzaSBBa3BsYWthIg0KZGF0ZTogImByIFN5cy5EYXRlKClgIg0Kb3V0cHV0OiBvcGVuaW50cm86OmxhYl9yZXBvcnQNCi0tLQ0KDQoNCiMjIyBFeGVyY2lzZSAxDQoNCmBgYHtyfQ0KeCA8LSBjKDUuNiwgNi4zLCA3LCA3LjcsIDguNCkNCnkgPC0gYyg4LjgsIDEyLjQsIDE0LjgsIDE4LjIsIDIwLjgpDQoNCiMgRml0IGxpbmVhciByZWdyZXNzaW9uIG1vZGVsDQptb2RlbCA8LSBsbSh5IH4geCkNCg0KIyBHZXQgY29lZmZpY2llbnRzIG9mIHRoZSByZWdyZXNzaW9uIGxpbmUNCmludGVyY2VwdCA8LSBjb2VmKG1vZGVsKVsxXQ0Kc2xvcGUgPC0gY29lZihtb2RlbClbMl0NCg0KIyBQcmludCB0aGUgZXF1YXRpb24gb2YgdGhlIHJlZ3Jlc3Npb24gbGluZQ0KY2F0KCJSZWdyZXNzaW9uIGVxdWF0aW9uOiB5ID0iLCByb3VuZChpbnRlcmNlcHQsIDIpLCAiKyIsIHJvdW5kKHNsb3BlLCAyKSwgInhcbiIpDQoNCmBgYA0KDQoNCiMjIyBFeGVyY2lzZSAyDQoNCjEuIFBhcnRpYWwgZGVyaXZhdGl2ZSB3aXRoIHJlc3BlY3QgdG8gXCggeCBcKToNClxbIFxmcmFje1xwYXJ0aWFsIGZ9e1xwYXJ0aWFsIHh9ID0gMjQgLSA2eV4yIFxdDQpTZXR0aW5nIGl0IGVxdWFsIHRvIHplcm86DQpcWyAyNCAtIDZ5XjIgPSAwIFxdDQpcWyB5XjIgPSA0IFxdDQpcWyB5ID0gXHBtIDIgXF0NCg0KMi4gUGFydGlhbCBkZXJpdmF0aXZlIHdpdGggcmVzcGVjdCB0byBcKCB5IFwpOg0KXFsgXGZyYWN7XHBhcnRpYWwgZn17XHBhcnRpYWwgeX0gPSAtMTJ4eSAtIDI0eV4yIFxdDQpTZXR0aW5nIGl0IGVxdWFsIHRvIHplcm86DQpcWyAtMTJ4eSAtIDI0eV4yID0gMCBcXQ0KXFsgLTEyeCAtIDI0eSA9IDAgXF0NClxbIHggPSAtMnkgXF0NCg0KU3Vic3RpdHV0ZSB0aGUgdmFsdWVzIG9mIFwoIHkgXCkgaW50byBcKCB4IFwpIGZyb20gc3RlcCAxOg0KXFsgeCA9IC0yKDIpIFxdIG9yIFxbIHggPSAtMigtMikgXF0NClxbIHggPSAtNCBcXSBvciBcWyB4ID0gNCBcXQ0KDQpTbywgdGhlIGNyaXRpY2FsIHBvaW50cyBhcmUgXCggKC00LCAyKSBcKSBhbmQgXCggKDQsIC0yKSBcKS4NCg0KDQojIyMgRXhlcmNpY2UgMw0KDQpgYGB7cn0NCiMgRGVmaW5lIHRoZSBwcmljZXMNCnggPC0gMi4zMCAgDQp5IDwtIDQuMTAgIA0KDQojIENhbGN1bGF0ZSB0aGUgcmV2ZW51ZSBmdW5jdGlvbg0KUiA8LSBmdW5jdGlvbih4LCB5KSB7DQogIHJldHVybih4ICogKDgxIC0gMjEqeCArIDE3KnkpICsgeSAqICg0MCArIDExKnggLSAyMyp5KSkNCn0NCg0KIyBDYWxjdWxhdGUgcmV2ZW51ZQ0KcmV2ZW51ZSA8LSBSKHgsIHkpDQpyZXZlbnVlDQoNCmBgYA0KDQojIyMgRXhlcmNpY2UgNA0KDQoNClRoZSBjb25zdHJhaW50IGVxdWF0aW9uIGlzIFwoIHggKyB5ID0gOTYgXCksIHNvIFwoIHkgPSA5NiAtIHggXCkuDQpTdWJzdGl0dXRlIFwoIHkgPSA5NiAtIHggXCkgaW50byB0aGUgY29zdCBmdW5jdGlvbiBcKCBDKHgsIHkpIFwpOg0KDQpcWw0KQyh4KSA9IFxmcmFjezF9ezZ9eF4yICsgXGZyYWN7MX17Nn0oOTYteCleMiArIDd4ICsgMjUoOTYteCkgKyA3MDANClxdDQoNClNpbXBsaWZ5IFwoIEMoeCkgXCk6DQoNClxbDQpDKHgpID0gXGZyYWN7MX17Nn14XjIgKyBcZnJhY3sxfXs2fSg5MjE2IC0gMTkyeCArIHheMikgKyA3eCArIDI0MDAgLSAyNXggKyA3MDANClxdDQpcWw0KQyh4KSA9IFxmcmFjezF9ezN9eF4yIC0gNTB4ICsgNDYzNg0KXF0NCg0KRmluZCB0aGUgZGVyaXZhdGl2ZSBvZiBcKCBDKHgpIFwpIHdpdGggcmVzcGVjdCB0byBcKCB4IFwpIGFuZCBzZXQgaXQgZXF1YWwgdG8gemVybzoNCg0KXFsNCkMnKHgpID0gXGZyYWN7Mn17M314IC0gNTAgPSAwDQpcXQ0KXFsNClxmcmFjezJ9ezN9eCA9IDUwDQpcXQ0KXFsNCnggPSA3NQ0KXF0NCg0KVXNlIHRoZSBjb25zdHJhaW50IGVxdWF0aW9uIFwoIHggKyB5ID0gOTYgXCkgdG8gZmluZCBcKCB5IFwpOg0KDQpcWw0KeSA9IDk2IC0geCA9IDk2IC0gNzUgPSAyMQ0KXF0NCg0KVGhlcmVmb3JlLCB0byBtaW5pbWl6ZSB0aGUgdG90YWwgd2Vla2x5IGNvc3QsIHRoZSBjb21wYW55IHNob3VsZCBwcm9kdWNlIDc1IHVuaXRzIGluIExvcyBBbmdlbGVzIGFuZCAyMSB1bml0cyBpbiBEZW52ZXIuDQoNCg0KIyMjIEV4ZXJjaWNlIDUNCg0KDQpUbyBldmFsdWF0ZSB0aGUgZ2l2ZW4gZG91YmxlIGludGVncmFsIG92ZXIgdGhlIHJlZ2lvbiBcKCBSOiAyIFxsZXEgeCBcbGVxIDQgXCkgYW5kIFwoIDIgXGxlcSB5IFxsZXEgNCBcKSwgd2UgaW50ZWdyYXRlIHRoZSBmdW5jdGlvbiBcKCBlXns4eCArIDN5fSBcKSB3aXRoIHJlc3BlY3QgdG8gXCggeCBcKSBhbmQgXCggeSBcKSBvdmVyIHRoZSBzcGVjaWZpZWQgcmVnaW9uLg0KDQpUaGUgaW50ZWdyYWwgY2FuIGJlIGV4cHJlc3NlZCBhczoNCg0KXFsNClxpaW50X1IgZV57OHggKyAzeX0gXCwgZEENClxdDQoNCkxldCdzIGZpcnN0IGludGVncmF0ZSB3aXRoIHJlc3BlY3QgdG8gXCggeCBcKSBhbmQgdGhlbiB3aXRoIHJlc3BlY3QgdG8gXCggeSBcKToNCg0KXFsNClxpbnRfezJ9Xns0fSBcaW50X3syfV57NH0gZV57OHggKyAzeX0gXCwgZHggXCwgZHkNClxdDQoNCkxldCdzIHBlcmZvcm0gdGhlc2UgaW50ZWdyYXRpb25zOg0KDQpcWw0KXGludF97Mn1eezR9IFxsZWZ0KCBcaW50X3syfV57NH0gZV57OHggKyAzeX0gXCwgZHggXHJpZ2h0KSBcLCBkeQ0KXF0NCg0KXFsNCj0gXGludF97Mn1eezR9IFxsZWZ0KCBcZnJhY3sxfXs4fSBlXns4eCArIDN5fSBcQmlnfF97eD0yfV57eD00fSBccmlnaHQpIFwsIGR5DQpcXQ0KDQpcWw0KPSBcaW50X3syfV57NH0gXGxlZnQoIFxmcmFjezF9ezh9IChlXnszMiArIDN5fSAtIGVeezE2ICsgM3l9KSBccmlnaHQpIFwsIGR5DQpcXQ0KDQpcWw0KPSBcZnJhY3sxfXs4fSBcaW50X3syfV57NH0gKGVeezMyICsgM3l9IC0gZV57MTYgKyAzeX0pIFwsIGR5DQpcXQ0KDQpcWw0KPSBcZnJhY3sxfXs4fSBcbGVmdCggXGludF97Mn1eezR9IGVeezMyICsgM3l9IFwsIGR5IC0gXGludF97Mn1eezR9IGVeezE2ICsgM3l9IFwsIGR5IFxyaWdodCkNClxdDQoNCk5vdywgd2UgZXZhbHVhdGUgZWFjaCBpbnRlZ3JhbCBpbmRpdmlkdWFsbHk6DQoNClxbDQo9IFxmcmFjezF9ezh9IFxsZWZ0KCBcZnJhY3sxfXszfSBlXnszMiArIDN5fSBcQmlnfF97eT0yfV57eT00fSAtIFxmcmFjezF9ezN9IGVeezE2ICsgM3l9IFxCaWd8X3t5PTJ9Xnt5PTR9IFxyaWdodCkNClxdDQoNClxbDQo9IFxmcmFjezF9ezh9IFxsZWZ0KCBcZnJhY3sxfXszfSAoZV57NDR9IC0gZV57Mzh9KSAtIFxmcmFjezF9ezN9IChlXnsyOH0gLSBlXnsyMn0pIFxyaWdodCkNClxdDQoNClxbDQo9IFxmcmFjezF9ezI0fSAoZV57NDR9IC0gZV57Mzh9IC0gZV57Mjh9ICsgZV57MjJ9KQ0KXF0NCg0KU28sIHRoZSBleGFjdCB2YWx1ZSBvZiB0aGUgZ2l2ZW4gZG91YmxlIGludGVncmFsIGlzIFwoIFxmcmFjezF9ezI0fSAoZV57NDR9IC0gZV57Mzh9IC0gZV57Mjh9ICsgZV57MjJ9KSBcKS4NCg0KDQouLi4NCg0K