\[f(x,y)=x^3−3x+y^2−6y\ at\ (−1,3)\]
#6.
f1 <- expression(x**3 - 3*x + y**2 - 6*y)
x <- -1
y <- 3
fx1 <- D(f1, "x")
fx1
## 3 * x^2 - 3
fy1 <- D(f1, "y")
fy1
## 2 * y - 6
eval(fx1)
## [1] 0
eval(fy1)
## [1] 0
\[f(x,y)=ln(xy)\ at \ (−2,−3)\]
#8.
f2<- expression(log(x*y))
x <- -2
y <- -3
fx2 <- D(f2, "x")
fx2
## y/(x * y)
fy2 <- D(f2, "y")
fy2
## x/(x * y)
eval(fx2)
## [1] -0.5
eval(fy2)
## [1] -0.3333333