library(plotly)
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.2.3
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2
## ──
## ✔ tibble 3.2.1 ✔ dplyr 1.1.2
## ✔ tidyr 1.3.0 ✔ stringr 1.5.0
## ✔ readr 2.1.3 ✔ forcats 0.5.2
## ✔ purrr 1.0.2
## Warning: package 'tibble' was built under R version 4.2.3
## Warning: package 'tidyr' was built under R version 4.2.3
## Warning: package 'purrr' was built under R version 4.2.3
## Warning: package 'dplyr' was built under R version 4.2.3
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks plotly::filter(), stats::filter()
## ✖ dplyr::lag() masks stats::lag()
df <- read.csv("https://raw.githubusercontent.com/tonyCUNY/tonyCUNY/main/Count.csv")
head(df)
## Leading.Production.Country Critical.Mineral Relationship
## 1 Australia Aluminum Ally
## 2 China Antimony Competitor
## 3 Peru Arsenic Neutral
## 4 India Barite Ally
## 5 United States Beryllium Ally
## 6 China Bismuth Competitor
df2 <- df |>
group_by(Leading.Production.Country) |>
summarise(Country_Count = n(),
Combined_Mineral = paste(unique(Critical.Mineral), collapse = ", "),
Relationship = first(Relationship))
df2
## # A tibble: 10 × 4
## Leading.Production.Country Country_Count Combined_Mineral Relationship
## <chr> <int> <chr> <chr>
## 1 Australia 3 Aluminum, Lithium, Zir… Ally
## 2 Brazil 1 Niobium Ally
## 3 China 16 Antimony, Bismuth, Flu… Competitor
## 4 Congo (Kinshasa) 2 Cobalt, Tantalum Neutral
## 5 India 1 Barite Ally
## 6 Indonesia 1 Nickel Neutral
## 7 Peru 1 Arsenic Neutral
## 8 Russia 1 Palladium Competitor
## 9 South Africa 3 Chromium, Manganese, P… Neutral
## 10 United States 1 Beryllium Ally
write.csv(df2, file = "df2.csv", row.names = FALSE)
df3 <- read.csv("https://raw.githubusercontent.com/tonyCUNY/tonyCUNY/main/Count2.csv")
head(df3)
## Primary.import.source Critical.mineral Relationship
## 1 Jamaica Aluminum Ally
## 2 China Antimony Competitor
## 3 China Arsenic Competitor
## 4 China Barite Competitor
## 5 Kazakhstan Beryllium Neutral
## 6 China Bismuth Competitor
df4 <- df3 |>
group_by(Primary.import.source) |>
summarise(Country_Count = n(),
Combined_Mineral = paste(unique(Critical.mineral), collapse = ", "),
Relationship = first(Relationship))
df4
## # A tibble: 16 × 4
## Primary.import.source Country_Count Combined_Mineral Relationship
## <chr> <int> <chr> <chr>
## 1 Argentina 1 Lithium Ally
## 2 Brazil 1 Niobium Ally
## 3 Canada 4 Nickel, Tellurium, Vanadium… Ally
## 4 China 10 Antimony, Arsenic, Barite, … Competitor
## 5 Europe 1 Scandium Ally
## 6 Gabon 1 Manganese Neutral
## 7 Israel 1 Magnesium Ally
## 8 Jamaica 1 Aluminum Ally
## 9 Japan 1 Titanium Ally
## 10 Kazakhstan 1 Beryllium Neutral
## 11 Mexico 1 Fluorspar Ally
## 12 Norway 1 Cobalt Ally
## 13 Peru 1 Tin Neutral
## 14 Republic of Korea 1 Indium Ally
## 15 Russia 1 Palladium Competitor
## 16 South Africa 4 Chromium, Platinum, Rare Ea… Neutral
write.csv(df4, file = "df4.csv", row.names = FALSE)