Fife Data
Load and run libraries
Load in data
Data Cleaning: Remove empty rows
Data Cleaning: View data
Summarize Missing Data
# A tibble: 272 × 3
variable n_miss pct_miss
<chr> <int> <num>
1 ParentEducation 468 100
2 SemanticsMath 173 37.0
3 SemanticsEngineering 142 30.3
4 Q7_3R 138 29.5
5 Q7_4R 132 28.2
6 SemanticsScience 131 28.0
7 SemanticsTechnology 120 25.6
8 SemanticsJobInSTEM 118 25.2
9 Q7_2R 110 23.5
10 Q8_1R 106 22.6
# ℹ 262 more rows
Visualize missing data
Pairwise comparisons for missing data (ACOPE Vs. CERQ)
Pairwise comparisons for missing data (ACOPE Vs. STEM Semantics)
Pairwise comparisons for missing data (ACOPE Vs. S-STEM)
Data Cleaning: Convert categorical variables from numeric to factors
Glimpse data
Rows: 468
Columns: 277
$ Q26 <chr> "Prefer not to say", "Male", "Male", "Femal…
$ Q27 <chr> "Other", "Black or African American", "Whit…
$ Q28 <chr> "8th", "8th", "8th", "7th", "7th", "7th", "…
$ Q29 <chr> "High School", "Master's, Ph.D., M.D., J.D.…
$ Q1_1 <dbl> 2, 3, 5, 5, 2, 4, 4, 3, 2, 1, 3, 2, 3, 4, 5…
$ Q1_1R <dbl> 4, 3, 1, 1, 4, 2, 2, 3, 4, 5, 3, 4, 3, 2, 1…
$ Q1_2 <dbl> 1, 3, 1, 2, 2, 4, 3, 1, 4, 2, 3, 1, 2, 1, 1…
$ Q1_3 <dbl> 3, 3, 5, 1, 3, 4, 3, 1, 2, 2, 3, 4, 4, 5, 5…
$ Q1_3R <dbl> 3, 3, 1, 5, 3, 2, 3, 5, 4, 4, 3, 2, 2, 1, 1…
$ Q1_4 <dbl> 3, 4, 2, 5, 4, 2, 2, 1, 4, 4, 3, 3, 1, 1, 1…
$ Q1_5 <dbl> 2, 4, 4, 2, 1, 5, 5, 3, 2, 3, 3, 3, 3, 1, 1…
$ Q1_5R <dbl> 4, 2, 2, 4, 5, 1, 1, 3, 4, 3, 3, 3, 3, 5, 5…
$ Q1_6 <dbl> 4, 2, 3, 5, 3, 3, 4, 1, 2, 1, 3, 3, 4, 5, 1…
$ Q1_7 <dbl> 5, 4, 4, 5, 5, 5, 5, 4, 4, 5, 3, 4, 2, 4, 1…
$ Q1_8 <dbl> 4, 3, 1, 5, 3, 3, 3, 3, 4, 4, 3, 4, 1, 3, 1…
$ Q2_1 <dbl> 3, 4, 4, 4, 2, 2, 2, 2, 3, 4, 3, 3, 1, 5, 3…
$ Q2_2 <dbl> 1, 3, 3, 1, 1, 1, 3, 2, 2, 1, 3, 4, 1, 2, 1…
$ Q2_3 <dbl> 1, 5, 3, 2, 2, 1, 2, 2, 2, 1, 3, 5, 1, 3, 1…
$ Q2_4 <dbl> 1, 4, 3, 3, 3, 4, 4, 2, 3, 1, 3, 4, 1, 2, 1…
$ Q2_5 <dbl> 1, 5, 2, 2, 2, 2, 3, 2, 3, 1, 3, 3, 1, 3, 1…
$ Q2_6 <dbl> 1, 4, 3, 3, 3, 2, 4, 2, 2, 1, 3, 3, 1, 4, 3…
$ Q2_7 <dbl> 3, 4, 4, 3, 2, 2, 3, 2, 3, 1, 3, 3, 1, 3, 1…
$ Q2_8 <dbl> 5, 3, 5, 3, 3, 1, 3, 2, 2, 4, 3, 4, 1, 5, 5…
$ Q2_8R <dbl> 1, 3, 1, 3, 3, 5, 3, 4, 4, 2, 3, 2, 5, 1, 1…
$ Q2_9 <dbl> 2, 2, 2, 1, 2, 1, 3, 2, 3, 1, 3, 4, 1, 2, 1…
$ Q3_1 <dbl> 2, 5, 4, 3, 4, 1, 5, 2, 2, 4, 4, 2, 1, 1, 3…
$ Q3_2 <dbl> 4, 4, 4, 2, 5, 1, 4, 2, 2, 2, 4, 3, 1, 3, 1…
$ Q3_3 <dbl> 3, 3, 4, 1, 3, 2, 3, 2, 2, 2, 4, 3, 1, 1, 2…
$ Q3_4 <dbl> 2, 4, 5, 1, 2, 3, 4, 2, 2, 2, 4, 4, 1, 3, 1…
$ Q3_5 <dbl> 1, 4, 3, 1, 1, 2, 3, 2, 4, 1, 4, 2, 1, 3, 3…
$ Q3_6 <dbl> 1, 5, 5, 1, 2, 3, 5, 2, 2, 2, 4, 2, 1, 4, 1…
$ Q3_7 <dbl> 2, 5, 5, 1, 4, 3, 3, 2, 4, 1, 4, 3, 1, 4, 1…
$ Q3_8 <dbl> 5, 4, 3, 1, 4, 3, 5, 2, 2, 1, 4, 1, 1, 3, 1…
$ Q3_9 <dbl> 1, 3, 4, 1, 3, 3, 1, 2, 2, 1, 4, 2, 1, 3, 3…
$ Q4_1 <dbl> 3, 4, 4, 2, 4, 4, 5, 2, 2, 4, 3, 5, 3, 1, 5…
$ Q4_2 <dbl> 5, 5, 5, 4, 5, 3, 4, 2, 2, 4, 3, 4, 3, 5, 5…
$ Q4_3 <dbl> 3, 3, 3, 3, 5, 4, 5, 2, 3, 1, 3, 2, 3, 2, 5…
$ Q4_4 <dbl> 5, 5, 4, 4, 5, 2, 5, 2, 4, 1, 3, 3, 3, 4, 3…
$ Q4_5 <dbl> 5, 4, 5, 5, 4, 3, 4, 2, 4, 1, 3, 4, 3, 4, 5…
$ Q4_6 <dbl> 5, 3, 4, 3, 3, 2, 4, 2, 2, 1, 3, 5, 3, 4, 3…
$ Q4_7 <dbl> 5, 3, 4, 3, 3, 1, 2, 2, 2, 1, 3, 4, 3, 4, 3…
$ Q4_8 <dbl> 5, 4, 2, 4, 4, 1, 5, 2, 4, 1, 3, 2, 3, 2, 5…
$ Q4_9 <dbl> 4, 3, 1, 3, 3, 1, 5, 2, 4, 1, 3, 2, 3, 4, 5…
$ Q4_10 <dbl> 5, 4, 2, 3, 4, 1, 5, 2, 2, 1, 3, 2, 3, 4, 3…
$ Q4_11 <dbl> 4, 2, 5, 3, 5, 1, 3, 2, 4, 1, 3, 3, 3, 3, 3…
$ Q5_1 <dbl> 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 4, 2, 2, 1…
$ Q5_2 <dbl> 1, 1, 4, 1, 4, 1, 3, 2, 1, 1, 2, 1, 2, 4, 1…
$ Q5_3 <dbl> 2, 1, 3, 1, 4, 1, 2, 2, 1, 1, 2, 3, 2, 4, 1…
$ Q5_4 <dbl> 3, 3, 2, 2, 4, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1…
$ Q5_5 <dbl> 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1…
$ Q6_1 <dbl> 7, 3, 2, 7, 4, 1, 5, 7, 6, 5, 7, 1, 7, 2, 7…
$ Q6_1R <dbl> NA, 3, 4, NA, 2, 5, 1, NA, NA, 1, NA, 5, NA…
$ Q6_2 <dbl> 7, 5, 3, 7, 3, 1, 5, 7, 5, 2, 7, 1, 7, 2, 7…
$ Q6_2R <dbl> NA, 1, 3, NA, 3, 5, 1, NA, 1, 4, NA, 5, NA,…
$ Q6_3 <dbl> 4, 2, 1, 7, 2, 1, 5, 7, 7, 5, 7, 1, 7, 2, 7…
$ Q6_3R <dbl> 2, 4, 5, NA, 4, 5, 1, NA, NA, 1, NA, 5, NA,…
$ Q6_4 <dbl> 3, 5, 4, 4, 5, 1, 7, 1, 2, 2, 7, 7, 1, 6, 2…
$ Q6_5 <dbl> 1, 5, 5, 2, 7, 1, 5, 1, 2, 6, 7, 7, 1, 6, 1…
$ Q7_1 <dbl> 7, 1, 1, 7, 3, 1, 6, 1, 4, 3, 3, 7, 1, 1, 1…
$ Q7_2 <dbl> 1, 6, 7, 1, 5, 1, 6, 7, 5, 4, 3, 1, 7, 7, 7…
$ Q7_2R <dbl> 5, NA, NA, 5, 1, 5, NA, NA, 1, 2, 3, 5, NA,…
$ Q7_3 <dbl> 4, 3, 7, 5, 6, 1, 4, 7, 5, 3, 3, 1, 7, 7, 7…
$ Q7_3R <dbl> 2, 3, NA, 1, NA, 5, 2, NA, 1, 3, 3, 5, NA, …
$ Q7_4 <dbl> 3, 5, 7, 1, 6, 1, 6, 7, 5, 1, 3, 1, 7, 7, 7…
$ Q7_4R <dbl> 3, 1, NA, 5, NA, 5, NA, NA, 1, 5, 3, 5, NA,…
$ Q7_5 <dbl> 7, 4, 1, 7, 7, 1, 7, 5, 4, 5, 3, 7, 1, 1, 1…
$ Q8_1 <dbl> 7, 5, 2, 7, 6, 1, 2, 7, 7, 1, 5, 7, 7, 7, 7…
$ Q8_1R <dbl> NA, 1, 4, NA, NA, 5, 4, NA, NA, 5, 1, NA, N…
$ Q8_2 <dbl> 7, 4, 1, 7, 6, 1, 2, 7, 7, 4, 5, 7, 7, 7, 7…
$ Q8_2R <dbl> NA, 2, 5, NA, NA, 5, 4, NA, NA, 2, 1, NA, N…
$ Q8_3 <dbl> 1, 3, 4, 1, 3, 1, 2, 1, 1, 6, 5, 1, 1, 1, 1…
$ Q8_4 <dbl> 7, 4, 3, 6, 6, 1, 2, 7, 7, 3, 5, 7, 7, 7, 7…
$ Q8_4R <dbl> NA, 2, 3, NA, NA, 5, 4, NA, NA, 3, 1, NA, N…
$ Q8_5 <dbl> 1, 3, 5, 2, 5, 1, 7, 1, 1, 4, 5, 7, 1, 1, 1…
$ Q9_1 <dbl> 7, 3, 1, 7, 2, 1, 1, 1, 7, 2, 3, 1, 7, 7, 7…
$ Q9_1R <dbl> NA, 3, 5, NA, 4, 5, 5, 5, NA, 4, 3, 5, NA, …
$ Q9_2 <dbl> 3, 6, 7, 1, 4, 1, 7, 1, 1, 5, 3, 7, 1, 1, 1…
$ Q9_3 <dbl> 1, 7, 7, 3, 5, 1, 7, 1, 1, 1, 3, 7, 1, 1, 1…
$ Q9_4 <dbl> 6, 3, 1, 7, 4, 1, 1, 1, 7, 3, 3, 1, 7, 7, 7…
$ Q9_4R <dbl> NA, 3, 5, NA, 2, 5, 5, 5, NA, 3, 3, 5, NA, …
$ Q9_5 <dbl> 7, 5, 1, 7, 1, 1, 1, 1, 7, 5, 3, 1, 7, 7, 7…
$ Q9_5R <dbl> NA, 1, 5, NA, 5, 5, 5, 5, NA, 1, 3, 5, NA, …
$ Q10_1 <dbl> 1, 5, 5, 3, 4, 1, 7, 1, 1, 5, 3, 1, 1, 1, 1…
$ Q10_2 <dbl> 1, 4, 5, 1, 5, 1, 7, 1, 1, 6, 3, 7, 1, 1, 1…
$ Q10_3 <dbl> 7, 3, 3, 4, 3, 1, 1, 7, 7, 5, 3, 1, 7, 7, 7…
$ Q10_3R <dbl> NA, 3, 3, 2, 3, 5, 5, NA, NA, 1, 3, 5, NA, …
$ Q10_4 <dbl> 7, 5, 3, 5, 5, 1, 1, 7, 7, 3, 3, 1, 7, 7, 7…
$ Q10_4R <dbl> NA, 1, 3, 1, 1, 5, 5, NA, NA, 3, 3, 5, NA, …
$ Q10_5 <dbl> 7, 4, 4, 3, 2, 1, 1, 7, 7, 5, 3, 1, 7, 7, 7…
$ Q10_5R <dbl> NA, 2, 2, 3, 4, 5, 5, NA, NA, 1, 3, 5, NA, …
$ Q11_1 <dbl> 1, 2, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3…
$ Q11_2 <dbl> 1, 3, 3, 3, 2, 4, 3, 1, 1, 1, 1, 1, 1, 1, 3…
$ Q11_3 <dbl> 1, 1, 3, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 3…
$ Q11_4 <dbl> 1, 3, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1…
$ Q11_5 <dbl> 1, 4, 3, 3, 3, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1…
$ Q12_1 <dbl> 2, 2, 2, 2, 2, 2, 5, 1, 1, 1, 1, 1, 1, 1, 1…
$ Q12_2 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
$ Q12_3 <dbl> 2, 5, 1, 1, 3, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1…
$ Q12_4 <dbl> 1, 2, 3, 1, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1…
$ Q12_5 <dbl> 1, 2, 2, 1, 4, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1…
$ Q13_1 <dbl> 1, 5, 3, 2, 3, 1, 4, 2, 1, 1, 1, 4, 1, 1, 1…
$ Q13_2 <dbl> 4, 3, 3, 4, 4, 1, 3, 2, 4, 2, 1, 3, 1, 1, 3…
$ Q13_3 <dbl> 1, 4, 3, 1, 2, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1…
$ Q13_4 <dbl> 4, 2, 4, 3, 2, 1, 3, 2, 5, 2, 1, 2, 1, 1, 1…
$ Q14_1 <dbl> 1, 2, 2, 2, 2, 1, 3, 2, 5, 2, 1, 2, 1, 3, 2…
$ Q14_2 <dbl> 2, 4, 5, 2, 3, 1, 4, 2, 1, 2, 1, 4, 1, 5, 4…
$ Q14_3 <dbl> 4, 4, 4, 5, 4, 1, 3, 2, 1, 1, 1, 4, 1, 3, 2…
$ Q14_4 <dbl> 1, 4, 2, 1, 2, 2, 4, 2, 1, 3, 1, 4, 1, 5, 2…
$ Q14_5 <dbl> 2, 2, 1, 3, 5, 2, 4, 2, 1, 4, 1, 3, 1, 3, 2…
$ Q14_6 <dbl> 2, 2, 1, 4, 5, 3, 4, 2, 1, 2, 1, 3, 1, 5, 2…
$ Q14_7 <dbl> 2, 4, 5, 5, 4, 2, 5, 2, 1, 3, 1, 4, 1, 3, 4…
$ Q14_8 <dbl> 1, 2, 1, 1, 1, 3, 5, 2, 5, 1, 1, 2, 1, 1, 2…
$ Q14_9 <dbl> 2, 3, 1, 2, 2, 2, 1, 2, 4, 4, 1, 5, 1, 1, 2…
$ Q14_10 <dbl> 1, 5, 3, 2, 2, 2, 3, 2, 5, 1, 1, 3, 1, 1, 2…
$ Q14_11 <dbl> 2, 4, 5, 2, 3, 2, 5, 2, 1, 2, 1, 3, 1, 3, 2…
$ Q14_12 <dbl> 1, 5, 2, 3, 1, 3, 3, 2, 1, 4, 1, 4, 1, 1, 4…
$ Q14_13 <dbl> 2, 2, 1, 5, 4, 1, 3, 2, 1, 2, 1, 5, 1, 5, 2…
$ Q14_14 <dbl> 5, 1, 1, 1, 3, 1, 4, 2, 1, 5, 1, 3, 1, 5, 2…
$ Q14_15 <dbl> 2, 3, 1, 1, 5, 1, 4, 2, 1, 1, 1, 2, 1, 5, 2…
$ Q14_16 <dbl> 5, 3, 2, 3, 5, 3, 3, 2, 1, 2, 1, 4, 1, 5, 2…
$ Q14_17 <dbl> 1, 5, 4, 1, 2, 2, 2, 2, 1, 5, 1, 5, 1, 1, 2…
$ Q14_18 <dbl> 2, 2, 2, 2, 1, 2, 3, 2, 4, 2, 1, 5, 1, 1, 2…
$ Q14_19 <dbl> 1, 3, 3, 5, 4, 3, 3, 2, 1, 3, 1, 5, 1, 1, 2…
$ Q14_20 <dbl> 1, 1, 3, 4, 3, 1, 4, 2, 1, 1, 1, 5, 1, 1, 2…
$ Q14_21 <dbl> 1, 2, 5, 1, 4, 1, 5, 2, 1, 2, 1, 5, 1, 1, 2…
$ Q14_22 <dbl> 2, 4, 1, 1, 5, 2, 4, 2, 1, 3, 1, 4, 1, 5, 2…
$ Q14_23 <dbl> 2, 3, 1, 1, 1, 1, 4, 2, 1, 1, 1, 4, 1, 5, 2…
$ Q14_24 <dbl> 1, 5, 1, 1, 3, 1, 4, 2, 1, 4, 1, 4, 1, 3, 2…
$ Q14_25 <dbl> 2, 2, 1, 3, 4, 1, 5, 2, 1, 2, 1, 5, 1, 5, 2…
$ Q14_26 <dbl> 1, 1, 4, 1, 1, 1, 4, 2, 1, 4, 1, 4, 1, 1, 2…
$ Q14_27 <dbl> 1, 2, 1, 3, 2, 1, 4, 2, 1, 2, 1, 1, 1, 3, 2…
$ Q14_28 <dbl> 1, 3, 1, 3, 3, 1, 3, 2, 5, 1, 1, 3, 1, 1, 2…
$ Q14_29 <dbl> 2, 3, 2, 5, 4, 3, 4, 2, 5, 2, 1, 3, 1, 4, 2…
$ Q14_30 <dbl> 1, 4, 3, 3, 2, 2, 4, 2, 1, 4, 1, 4, 1, 1, 2…
$ Q14_31 <dbl> 1, 1, 1, 1, 4, 2, 4, 2, 1, 2, 1, 4, 1, 5, 2…
$ Q14_32 <dbl> 1, 3, 1, 2, 5, 2, 4, 2, 1, 5, 1, 5, 1, 4, 2…
$ Q14_33 <dbl> 1, 5, 1, 1, 1, 1, 4, 2, 1, 3, 1, 3, 1, 5, 2…
$ Q14_34 <dbl> 2, 2, 2, 5, 4, 1, 4, 2, 1, 1, 1, 4, 1, 1, 2…
$ Q14_35 <dbl> 1, 4, 5, 5, 3, 1, 4, 2, 5, 4, 1, 4, 1, 1, 2…
$ Q14_36 <dbl> 1, 3, 1, 3, 2, 4, 4, 2, 4, 2, 1, 2, 1, 5, 2…
$ Q15_1 <dbl> 2, 2, 3, 2, 4, 1, 1, 3, 4, 2, 1, 1, 1, 5, 2…
$ Q15_2 <dbl> 5, 1, 1, 2, 3, 1, 1, 3, 1, 4, 1, 1, 1, 5, 5…
$ Q15_3 <dbl> 2, 4, 2, 3, 2, 1, 1, 3, 1, 2, 1, 1, 1, 5, 2…
$ Q16_1 <dbl> 2, 3, 4, 2, 4, 1, 5, 3, 1, 1, 2, 1, 1, 1, 2…
$ Q16_2 <dbl> 2, 1, 3, 2, 2, 1, 4, 3, 1, 4, 2, 1, 1, 1, 5…
$ Q16_3 <dbl> 3, 1, 2, 2, 4, 4, 5, 3, 1, 1, 2, 1, 1, 1, 5…
$ Q17_1 <dbl> 1, 1, 4, 2, 2, 1, 2, 3, 1, 1, 3, 5, 1, 1, 2…
$ Q17_2 <dbl> 5, 2, 1, 2, 1, 2, 2, 3, 1, 2, 3, 5, 1, 1, 5…
$ Q17_3 <dbl> 1, 4, 3, 2, 1, 3, 2, 3, 1, 4, 3, 5, 1, 1, 5…
$ Q18_1 <dbl> 2, 4, 4, 2, 5, 1, 3, 3, 1, 1, 2, 3, 1, 5, 5…
$ Q18_2 <dbl> 5, 3, 1, 2, 4, 2, 1, 3, 2, 4, 2, 4, 1, 5, 4…
$ Q18_3 <dbl> 1, 3, 3, 2, 3, 4, 1, 3, 2, 1, 2, 4, 1, 5, 5…
$ Q19_1 <dbl> 3, 2, 5, 2, 5, 3, 5, 1, 1, 2, 4, 3, 1, 3, 5…
$ Q19_2 <dbl> 3, 3, 3, 2, 4, 3, 3, 1, 1, 4, 4, 3, 1, 3, 2…
$ Q19_3 <dbl> 4, 5, 4, 2, 2, 3, 5, 1, 1, 1, 4, 5, 1, 3, 5…
$ Q20_1 <dbl> 2, 3, 5, 2, 2, 1, 3, 1, 1, 5, 1, 1, 1, 2, 2…
$ Q20_2 <dbl> 2, 3, 1, 2, 2, 2, 3, 1, 1, 2, 1, 3, 1, 2, 3…
$ Q20_3 <dbl> 2, 3, 3, 2, 2, 2, 3, 1, 1, 4, 1, 5, 1, 2, 5…
$ Q21_1 <dbl> 1, 3, 1, 1, 2, 1, 6, 1, 2, 1, 5, 1, 1, 1, 3…
$ Q21_2 <dbl> 1, 2, 1, 1, 4, 1, 6, 1, 1, 5, 6, 2, 1, 6, 3…
$ Q21_3 <dbl> 1, 5, 1, 1, 4, 1, 6, 1, 1, 5, 5, 3, 1, 1, 3…
$ Q21_4 <dbl> 1, 3, 1, 1, 2, 1, 3, 1, 1, 3, 6, 4, 1, 1, 1…
$ Q21_5 <dbl> 1, 1, 1, 1, 1, 1, 4, 1, 1, 3, 5, 5, 1, 1, 1…
$ Q21_6 <dbl> 1, 5, 1, 1, 2, 2, 5, 1, 1, 1, 6, 6, 1, 1, 1…
$ Q21_7 <dbl> 1, 4, 1, 1, 3, 1, 6, 1, 1, 2, 5, 5, 1, 1, 3…
$ Q21_8 <dbl> 3, 3, 1, 1, 1, 1, 6, 1, 1, 3, 6, 4, 1, 1, 3…
$ Q21_9 <dbl> 3, 3, 1, 2, 3, 2, 6, 1, 1, 4, 5, 3, 1, 4, 1…
$ Q21_10 <dbl> 1, 4, 1, 1, 1, 5, 5, 1, 1, 3, 6, 2, 1, 1, 3…
$ Q21_11 <dbl> 1, 4, 1, 3, 2, 3, 6, 1, 1, 2, 5, 2, 1, 1, 3…
$ Q21_12 <dbl> 1, 4, 1, 1, 2, 4, 6, 1, 1, 5, 6, 3, 1, 1, 3…
$ Q21_13 <dbl> 1, 2, 1, 1, 2, 2, 5, 1, 1, 3, 5, 3, 1, 1, 3…
$ Q21_14 <dbl> 1, 6, 1, 1, 3, 2, 3, 1, 1, 2, 6, 4, 1, 1, 1…
$ Q21_15 <dbl> 1, 2, 1, 1, 2, 3, 1, 1, 1, 5, 5, 4, 1, 1, 3…
$ Q21_16 <dbl> 1, 3, 1, 1, 2, 4, 4, 1, 1, 3, 6, 4, 1, 3, 1…
$ Q21_17 <dbl> 3, 3, 1, 1, 3, 2, 6, 1, 5, 5, 5, 1, 1, 1, 1…
$ Q21_18 <dbl> 1, 2, 1, 2, 1, 3, 6, 1, 1, 1, 6, 2, 1, 1, 1…
$ Q30_1 <dbl> 3, 2, 3, 5, 3, 1, 3, 1, 1, 2, 4, 5, 1, 3, 4…
$ Q30_2 <dbl> 3, 3, 2, 2, 2, 2, 3, 1, 1, 1, 5, 2, 1, 3, 1…
$ Q30_3 <dbl> 3, 4, 5, 3, 5, 2, 4, 1, 1, 3, 4, 3, 1, 1, 3…
$ Q30_4 <dbl> 1, 4, 4, 1, 2, 2, 2, 1, 1, 2, 5, 1, 1, 4, 3…
$ Q30_5 <dbl> 5, 2, 2, 3, 5, 4, 5, 1, 1, 2, 4, 2, 1, 5, 4…
$ Q30_6 <dbl> 1, 4, 3, 2, 3, 3, 1, 1, 1, 2, 5, 5, 1, 1, 1…
$ Q30_7 <dbl> 5, 3, 5, 1, 5, 1, 3, 1, 1, 5, 4, 5, 1, 5, 4…
$ Q30_8 <dbl> 1, 4, 4, 5, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 1…
$ Q30_9 <dbl> 1, 1, 3, 1, 3, 1, 1, 1, 1, 2, 4, 5, 1, 1, 1…
$ Q30_10 <dbl> 2, 4, 3, 1, 4, 1, 4, 1, 1, 2, 5, 3, 1, 3, 3…
$ Q30_11 <dbl> 3, 3, 2, 3, 3, 3, 5, 1, 1, 5, 4, 5, 1, 3, 4…
$ Q30_12 <dbl> 2, 3, 4, 2, 2, 1, 1, 1, 1, 1, 5, 3, 1, 3, 3…
$ Q30_13 <dbl> 4, 4, 3, 5, 5, 1, 5, 1, 1, 5, 4, 4, 1, 3, 3…
$ Q30_14 <dbl> 3, 1, 2, 5, 4, 1, 5, 1, 5, 3, 5, 1, 1, 1, 3…
$ Q30_15 <dbl> 3, 4, 3, 1, 3, 1, 5, 1, 1, 2, 4, 4, 1, 3, 4…
$ Q30_16 <dbl> 1, 3, 3, 3, 1, 5, 2, 5, 1, 4, 5, 5, 1, 1, 1…
$ Q30_17 <dbl> 1, 4, 3, 2, 3, 1, 2, 1, 1, 3, 4, 3, 1, 3, 3…
$ Q30_18 <dbl> 3, 1, 3, 3, 4, 4, 5, 1, 1, 1, 5, 4, 1, 3, 3…
$ Q30_19 <dbl> 2, 2, 3, 4, 5, 1, 5, 1, 5, 1, 4, 4, 1, 1, 1…
$ Q30_20 <dbl> 4, 1, 5, 5, 5, 1, 2, 1, 1, 5, 5, 4, 1, 3, 4…
$ Q30_21 <dbl> 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1…
$ Q30_22 <dbl> 1, 3, 1, 1, 1, 2, 5, 1, 1, 1, 5, 3, 1, 2, 1…
$ Q30_23 <dbl> 1, 2, 5, 1, 3, 2, 2, 3, 1, 4, 4, 4, 1, 1, 4…
$ Q30_24 <dbl> 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 5, 1, 1, 1, 1…
$ Q30_25 <dbl> 2, 3, 2, 3, 3, 3, 5, 1, 1, 1, 4, 4, 1, 5, 3…
$ Q30_26 <dbl> 3, 3, 4, 5, 5, 2, 5, 1, 5, 3, 5, 5, 1, 3, 3…
$ Q30_27 <dbl> 3, 4, 2, 4, 4, 1, 3, 1, 1, 3, 4, 4, 1, 3, 3…
$ Q30_28 <dbl> 1, 3, 2, 2, 2, 2, 1, 1, 1, 5, 5, 1, 1, 1, 3…
$ Q30_29 <dbl> 1, 3, 4, 3, 5, 2, 5, 1, 1, 4, 4, 2, 1, 3, 4…
$ Q30_30 <dbl> 4, 4, 4, 4, 3, 1, 5, 1, 1, 2, 5, 1, 1, 1, 3…
$ Q30_31 <dbl> 2, 3, 1, 3, 4, 3, 1, 1, 1, 4, 4, 4, 1, 3, 3…
$ Q30_32 <dbl> 4, 2, 4, 2, 5, 3, 5, 1, 1, 2, 5, 3, 1, 3, 3…
$ Q30_33 <dbl> 3, 4, 4, 3, 3, 2, 5, 1, 1, 3, 4, 2, 1, 1, 1…
$ Q30_34 <dbl> 1, 3, 1, 2, 2, 3, 4, 1, 1, 5, 5, 3, 1, 1, 1…
$ Q30_35 <dbl> 4, 3, 5, 5, 2, 2, 5, 1, 1, 2, 4, 4, 1, 3, 4…
$ Q30_36 <dbl> 3, 4, 4, 3, 3, 2, 5, 1, 1, 4, 5, 5, 1, 3, 1…
$ Q30_37 <dbl> 1, 3, 2, 2, 4, 2, 2, 1, 1, 2, 4, 5, 1, 3, 1…
$ Q30_38 <dbl> 5, 2, 4, 5, 5, 1, 5, 1, 1, 3, 5, 5, 1, 3, 3…
$ Q30_39 <dbl> 3, 4, 1, 2, 1, 1, 5, 1, 1, 2, 4, 5, 1, 2, 3…
$ Q30_40 <dbl> 1, 2, 1, 5, 4, 1, 5, 1, 1, 4, 5, 1, 1, 3, 3…
$ Q30_41 <dbl> 3, 3, 1, 2, 3, 2, 3, 1, 1, 5, 4, 2, 1, 3, 3…
$ Q30_42 <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1…
$ Q30_43 <dbl> 2, 5, 1, 2, 5, 1, 2, 1, 1, 4, 4, 4, 1, 3, 4…
$ Q30_44 <dbl> 2, 3, 3, 3, 3, 3, 1, 1, 1, 2, 5, 5, 1, 1, 1…
$ Q30_45 <dbl> 1, 3, 1, 2, 2, 4, 3, 1, 1, 3, 4, 4, 1, 3, 3…
$ Q30_46 <dbl> 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 5, 1, 1, 1, 1…
$ Q30_47 <dbl> 1, 3, 4, 3, 5, 1, 5, 1, 1, 2, 4, 4, 1, 3, 3…
$ Q30_48 <dbl> 4, 4, 3, 3, 5, 1, 5, 1, 1, 1, 5, 4, 1, 5, 3…
$ Q30_49 <dbl> 1, 2, 4, 2, 3, 1, 3, 1, 1, 4, 4, 4, 1, 2, 3…
$ Q30_50 <dbl> 1, 1, 2, 2, 3, 3, 1, 1, 1, 2, 5, 3, 1, 1, 1…
$ Q30_51 <dbl> 1, 2, 3, 4, 2, 2, 2, 1, 1, 4, 4, 3, 1, 3, 3…
$ Q30_52 <dbl> 1, 1, 3, 5, 2, 2, 2, 1, 1, 1, 5, 4, 1, 3, 3…
$ Q30_53 <dbl> 1, 5, 5, 5, 4, 2, 4, 1, 1, 2, 4, 5, 1, 5, 3…
$ Q30_54 <dbl> 1, 3, 3, 2, 4, 1, 3, 1, 1, 4, 5, 4, 1, 4, 1…
$ Q31_1 <dbl> 3, 1, 1, 3, 1, 4, 1, 4, 3, 3, 4, 1, 1, 1, 1…
$ Q31_2 <dbl> 1, 1, 2, 3, 1, 4, 1, 2, 1, 4, 5, 1, 1, 1, 1…
$ Q31_3 <dbl> 1, 3, 3, 1, 3, 4, 1, 1, 1, 1, 4, 2, 1, 1, 1…
$ Q31_4 <dbl> 1, 1, 1, 1, 5, 4, 1, 5, 1, 1, 5, 1, 1, 1, 1…
$ Q31_5 <dbl> 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 4, 1, 1, 1, 1…
$ Q31_6 <dbl> 2, 1, 4, 3, 5, 4, 1, 2, 1, 1, 5, 1, 1, 1, 1…
$ Q31_7 <dbl> 1, 1, 1, 3, 5, 5, 1, 1, 1, 4, 4, 1, 1, 1, 1…
$ Q31_8 <dbl> 1, 2, 5, 4, 5, 4, 2, 2, 4, 5, 5, 2, 1, 2, 1…
$ SSTEMMath <dbl> 3.500, 3.000, 1.875, 4.000, 3.625, 2.750, 2…
$ SSTEMScience <dbl> 1.555556, 3.777778, 2.777778, 2.444444, 2.2…
$ SSTEMTechEngineer <dbl> 2.333333, 4.111111, 4.111111, 1.333333, 3.1…
$ SSTEM21stCentury <dbl> 4.454545, 3.636364, 3.545455, 3.363636, 4.0…
$ SSTEMYourFuture <dbl> 1.6, 1.8, 2.4, 1.4, 3.0, 1.4, 2.0, 2.0, 1.0…
$ SemanticsScience <dbl> NA, 3.6, 4.2, NA, 4.2, 3.4, 3.0, NA, NA, 2.…
$ SemanticsMath <dbl> 4.8, NA, NA, 5.0, NA, 3.4, NA, NA, 2.2, 3.6…
$ SemanticsEngineering <dbl> NA, 2.2, 4.2, NA, NA, 3.4, 4.2, NA, NA, 4.0…
$ SemanticsTechnology <dbl> NA, 4.0, 5.8, NA, 4.0, 3.4, 5.8, 3.4, NA, 2…
$ SemanticsJobInSTEM <dbl> NA, 3.0, 3.6, 2.0, 3.4, 3.4, 5.8, NA, NA, 3…
$ DailyLifeExperiences <dbl> 1.333333, 3.277778, 1.000000, 1.222222, 2.2…
$ ACOPE <dbl> 2.166667, 2.796296, 2.870370, 2.796296, 3.1…
$ CERQSelfBlame <dbl> 1.00, 3.25, 2.25, 3.00, 2.75, 1.75, 3.00, 2…
$ CERQAcceptance <dbl> 1.75, 3.00, 3.75, 3.25, 3.25, 1.75, 4.25, 2…
$ CERQRumination <dbl> 1.75, 3.75, 3.50, 3.00, 2.75, 1.75, 3.75, 2…
$ CERQPositiveRefocusing <dbl> 1.50, 2.75, 1.25, 2.00, 3.75, 1.75, 3.75, 2…
$ CERQRefocusOnPlanning <dbl> 2.50, 2.25, 1.00, 1.75, 3.50, 1.50, 4.00, 2…
$ CERQCatastrophizing <dbl> 1.00, 3.00, 3.50, 2.00, 1.75, 1.75, 3.75, 2…
$ CERQOtherBlame <dbl> 1.50, 2.50, 1.25, 2.50, 1.75, 2.25, 3.00, 2…
$ CERQPuttingIntoPerspective <dbl> 2.75, 2.75, 2.50, 4.00, 4.25, 1.75, 4.25, 2…
$ CERQPositiveReappraisal <dbl> 1.50, 3.75, 1.00, 1.75, 3.50, 1.50, 4.00, 2…
$ QFSSSCommunity <dbl> 2.000000, 3.000000, 3.000000, 2.000000, 2.0…
$ QFSSSFamily <dbl> 2.666667, 3.333333, 2.666667, 2.000000, 4.0…
$ QFSSSFriends <dbl> 3.333333, 3.333333, 4.000000, 2.000000, 3.6…
$ QFSSSPartner <dbl> 2.333333, 1.666667, 3.000000, 2.000000, 3.3…
$ FearOfCalamity <dbl> 1.375, 1.375, 2.250, 2.375, 3.375, 4.125, 1…
$ Gender <dbl+lbl> 3, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, …
$ Race <dbl+lbl> 5, 1, 2, 5, 1, 1, 3, 1, 5, 5, 2, 1, 1, …
$ ParentEducation <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
$ Grade <dbl> 8, 8, 8, 7, 7, 7, 7, 8, 7, 7, 7, 6, 8, 8, 6…
$ CERQTotal <dbl> 1.694444, 3.000000, 2.222222, 2.583333, 3.0…
$ QFSSSTotal <dbl> 2.533333, 2.733333, 3.066667, 2.000000, 2.8…
$ SSTEMTotal <dbl> 2.857143, 3.428571, 3.047619, 2.619048, 3.2…
$ SemanticsTotal <dbl> 2.714286, 3.041667, 4.136364, 3.000000, 3.8…
$ race.fac <fct> Other, Black, White, Other, Black, Black, I…
$ gender.fac <fct> Prefer not to say, Male, Male, Female, Fema…
$ grade.fac <fct> 8, 8, 8, 7, 7, 7, 7, 8, 7, 7, 7, 6, 8, 8, 6…
$ dailylife <dbl> 1.333333, 3.277778, 1.000000, 1.222222, 2.2…
$ fear <dbl> 1.375, 1.375, 2.250, 2.375, 3.375, 4.125, 1…
Data Structure: S-STEM Math
num [1:468] 2 3 5 5 2 4 4 3 2 1 3 2 3 4 5 3 2 5 2 3 4 3 1 4 4 2 5 3 2 1 4 4 4 4 2 3 4 2 4 3 2 1 5 2 2 1 2 1 3 2 1 2 1 2 3 5 1| __truncated__ ...
- attr(*, "label")= chr "S-STEM Math"
- attr(*, "format.spss")= chr "F25.0"
- attr(*, "display_width")= int 25
1 2 3 4 5
111 123 105 77 52
Data Structure: S-STEM Science
num [1:468] 3 4 4 4 2 2 2 2 3 4 3 3 1 5 3 3 4 4 4 1 1 2 1 4 2 1 3 3 4 3 4 3 5 4 4 3 5 2 4 3 4 4 5 5 4 3 3 3 5 4 4 1 4 4 5 1 5| __truncated__ ...
- attr(*, "label")= chr "S-STEM Science"
- attr(*, "format.spss")= chr "F25.0"
- attr(*, "display_width")= int 25
1 2 3 4 5
27 37 127 208 69
Data Structure: S-STEM Tech/Engineer
num [1:468] 2 5 4 3 4 1 5 2 2 4 4 2 1 1 3 4 1 2 4 1 4 2 4 4 2 3 4 3 3 4 4 3 5 4 4 2 5 2 4 4 5 5 4 2 5 4 5 5 4 4 5 4 5 4 2 5 5| __truncated__ ...
- attr(*, "label")= chr "S-STEM Tech/Engineer"
- attr(*, "format.spss")= chr "F26.0"
- attr(*, "display_width")= int 26
1 2 3 4 5
30 56 81 214 87
Data Structure: S-STEM 21st Century
num [1:468] 3 4 4 2 4 4 5 2 2 4 3 5 3 1 5 5 4 4 3 1 3 3 5 4 3 3 2 4 1 5 4 3 4 5 3 2 4 4 2 4 5 5 4 5 3 4 5 5 3 5 3 4 3 5 5 1 5| __truncated__ ...
- attr(*, "label")= chr "S-STEM 21st century"
- attr(*, "format.spss")= chr "F26.0"
- attr(*, "display_width")= int 26
1 2 3 4 5
31 34 100 193 110
Data Structure: S-STEM Your Future
num [1:468] 1 2 2 1 2 2 2 2 1 1 2 4 2 2 1 2 1 4 2 2 1 1 2 1 1 4 2 1 1 1 2 4 4 3 2 1 4 3 3 4 2 3 2 3 4 2 3 1 3 2 2 3 1 2 1 1 4| __truncated__ ...
- attr(*, "label")= chr "S-STEM Your Future"
- attr(*, "format.spss")= chr "F21.0"
- attr(*, "display_width")= int 21
1 2 3 4
85 190 139 54
Data Structure: Semantics Science
num [1:468] 7 3 2 7 4 1 5 7 6 5 7 1 7 2 7 7 1 1 4 7 6 6 7 3 5 7 7 5 7 4 4 2 1 4 1 4 1 1 1 1 4 3 1 1 1 3 7 3 3 1 2 1 6 6 1 7 1| __truncated__ ...
- attr(*, "label")= chr "Semantics science"
- attr(*, "format.spss")= chr "F1.0"
- attr(*, "display_width")= int 1
1 2 3 4 5 6 7
161 45 65 78 31 23 64
Data Structure: Semantics Math
num [1:468] 7 1 1 7 3 1 6 1 4 3 3 7 1 1 1 7 7 4 5 1 2 1 1 1 1 7 1 1 7 7 6 6 7 3 7 5 6 5 1 5 4 6 1 7 7 7 7 6 4 6 7 7 5 4 1 1 7| __truncated__ ...
- attr(*, "label")= chr "Semantics math"
- attr(*, "format.spss")= chr "F1.0"
- attr(*, "display_width")= int 1
1 2 3 4 5 6 7
99 20 36 63 51 33 166
Data Structure: Semantics Engineering
num [1:468] 7 5 2 7 6 1 2 7 7 1 5 7 7 7 7 1 1 2 7 7 7 6 1 4 7 6 7 6 1 4 3 6 1 2 7 1 1 2 7 4 2 3 4 1 7 4 6 1 5 4 5 1 1 2 1 7 1| __truncated__ ...
- attr(*, "label")= chr "Semantics engineering"
- attr(*, "format.spss")= chr "F1.0"
- attr(*, "display_width")= int 1
1 2 3 4 5 6 7
161 41 56 83 21 20 86
Data Structure: Semantics Tech
num [1:468] 7 3 1 7 2 1 1 1 7 2 3 1 7 7 7 1 7 1 4 1 7 4 4 5 7 4 1 3 1 4 4 3 1 2 3 1 1 3 1 1 1 1 3 1 4 1 1 1 5 4 1 1 1 1 1 1 1| __truncated__ ...
- attr(*, "label")= chr "Semantics tech"
- attr(*, "format.spss")= chr "F1.0"
- attr(*, "display_width")= int 1
1 2 3 4 5 6 7
224 49 56 58 19 9 53
Data Structure: Semantics Job in STEM
num [1:468] 1 5 5 3 4 1 7 1 1 5 3 1 1 1 1 2 1 5 3 7 1 1 7 4 1 4 1 4 7 1 1 3 7 2 6 7 7 2 7 6 7 7 7 7 5 7 7 4 6 6 6 7 7 6 1 7 7| __truncated__ ...
- attr(*, "label")= chr "Semantics job in STEM"
- attr(*, "format.spss")= chr "F1.0"
- attr(*, "display_width")= int 1
1 2 3 4 5 6 7
55 22 28 84 50 51 178
Data Structure: Career Interest Questionnaire - Part 1
num [1:468] 1 2 3 1 1 1 3 1 1 1 1 1 1 1 3 3 1 4 1 3 1 1 3 2 1 2 2 1 3 1 4 1 3 4 3 2 5 2 5 4 3 4 3 4 1 4 3 3 5 4 4 4 1 1 5 5 5| __truncated__ ...
- attr(*, "label")= chr "Career interest questionnaire"
- attr(*, "format.spss")= chr "F28.0"
- attr(*, "display_width")= int 28
1 2 3 4 5
63 67 166 118 54
Data Structure: Career Interest Part 2
num [1:468] 2 2 2 2 2 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5| __truncated__ ...
- attr(*, "label")= chr "Career interest part 2"
- attr(*, "format.spss")= chr "F19.0"
- attr(*, "display_width")= int 19
1 2 3 4 5
40 55 160 124 89
Data Structure: Career Interest - Part 3
num [1:468] 1 5 3 2 3 1 4 2 1 1 1 4 1 1 1 1 3 5 1 1 1 3 1 2 1 5 3 2 1 1 2 2 5 2 2 4 5 3 5 4 5 4 2 4 5 4 3 5 3 4 3 4 1 4 2 5 5| __truncated__ ...
- attr(*, "label")= chr "Career interest part 3"
- attr(*, "format.spss")= chr "F19.0"
- attr(*, "display_width")= int 19
1 2 3 4 5
52 73 142 128 73
Data Structure: CERQ
num [1:468] 1 2 2 2 2 1 3 2 5 2 1 2 1 3 2 1 2 3 2 1 5 2 2 4 2 3 2 5 1 1 4 4 4 3 2 3 4 5 2 3 1 2 2 2 3 2 4 5 3 1 2 2 2 1 2 1 2| __truncated__ ...
- attr(*, "label")= chr "CERQ"
- attr(*, "format.spss")= chr "F17.0"
- attr(*, "display_width")= int 17
1 2 3 4 5
99 213 76 46 34
Data Structure:
num [1:468] 2 2 3 2 4 1 1 3 4 2 1 1 1 5 2 5 2 2 2 5 5 3 1 4 2 4 5 2 3 5 2 4 1 3 5 4 5 5 5 1 1 5 3 5 1 2 2 5 3 4 2 4 4 5 5 5 5| __truncated__ ...
- attr(*, "format.spss")= chr "F15.0"
- attr(*, "display_width")= int 15
1 2 3 4 5
62 110 95 69 132
Data Structure: QFSSS Partner
num [1:468] 2 3 4 2 4 1 5 3 1 1 2 1 1 1 2 5 4 4 2 3 1 5 4 4 3 5 3 4 3 5 2 5 1 3 5 5 5 4 2 1 2 3 4 2 1 3 2 5 4 5 3 4 5 4 4 5 5| __truncated__ ...
- attr(*, "label")= chr "QFSSS Partner"
- attr(*, "format.spss")= chr "F15.0"
- attr(*, "display_width")= int 15
1 2 3 4 5
49 105 108 102 104
Data Structure: QFSSS Community
num [1:468] 1 1 4 2 2 1 2 3 1 1 3 5 1 1 2 5 1 1 3 5 1 3 5 4 1 1 2 3 3 3 3 5 1 4 3 4 5 4 1 2 1 3 1 2 2 3 3 5 1 4 2 4 3 2 2 5 5| __truncated__ ...
- attr(*, "label")= chr "QFSSS Community"
- attr(*, "format.spss")= chr "F15.0"
- attr(*, "display_width")= int 15
1 2 3 4 5
107 115 105 72 69
Data Structure: QFSSS Family
num [1:468] 2 4 4 2 5 1 3 3 1 1 2 3 1 5 5 5 3 3 3 5 4 2 2 5 3 1 4 2 4 5 5 5 2 3 5 5 5 4 1 1 2 5 4 5 5 4 1 5 5 3 5 5 1 5 5 5 5| __truncated__ ...
- attr(*, "label")= chr "QFSSS Family"
- attr(*, "format.spss")= chr "F18.0"
- attr(*, "display_width")= int 18
1 2 3 4 5
43 63 104 104 154
Data Structure: QFSSS Friends
num [1:468] 3 2 5 2 5 3 5 1 1 2 4 3 1 3 5 5 2 5 3 3 1 5 1 4 3 4 3 4 4 4 4 5 1 2 5 4 5 3 1 1 3 4 5 3 5 2 3 4 1 4 5 2 3 5 4 4 5| __truncated__ ...
- attr(*, "label")= chr "QFSSS Friends"
- attr(*, "format.spss")= chr "F18.0"
- attr(*, "display_width")= int 18
1 2 3 4 5
45 73 113 108 129
Data Structure: QFSSS Community
num [1:468] 2 3 5 2 2 1 3 1 1 5 1 1 1 2 2 5 2 1 3 5 1 3 5 4 1 4 2 2 4 3 1 5 1 5 5 5 5 3 2 2 1 4 2 3 2 3 4 5 2 2 3 5 5 4 1 5 5| __truncated__ ...
- attr(*, "label")= chr "QFSSS Community"
- attr(*, "format.spss")= chr "F18.0"
- attr(*, "display_width")= int 18
1 2 3 4 5
74 103 114 87 90
Data Structure: Daily Life Experiences
Daily life experiences from an adolescents perspective can include family economy, hunger, abuse in the home, among other factors (CDC ABES findings). According to CDC, students experiencing racism are more likely to experience poor mental health and less likely to feel connected to people at school.
num [1:468] 1 3 1 1 2 1 6 1 2 1 5 1 1 1 3 1 3 3 3 2 6 1 2 4 1 3 6 5 4 2 3 3 6 5 6 3 5 5 5 2 1 1 1 1 2 2 6 5 1 1 5 3 2 3 1 1 5| __truncated__ ...
- attr(*, "label")= chr "Daily Life Experiences"
- attr(*, "format.spss")= chr "F15.0"
- attr(*, "display_width")= int 15
1 2 3 4 5 6
138 90 131 59 28 22
Data Structure: ACOPE
num [1:468] 3 2 3 5 3 1 3 1 1 2 4 5 1 3 4 5 5 4 3 5 5 4 5 3 1 1 5 4 3 5 3 4 4 2 5 3 5 3 5 3 4 3 2 4 5 5 5 4 2 4 3 2 1 1 4 5 5| __truncated__ ...
- attr(*, "label")= chr "ACOPE"
- attr(*, "format.spss")= chr "F16.0"
- attr(*, "display_width")= int 16
1 2 3 4 5
32 45 107 116 168
Data Structure:
num [1:468] 3 1 1 3 1 4 1 4 3 3 4 1 1 1 1 3 1 1 1 3 4 2 1 1 1 1 1 1 2 2 3 4 1 5 3 3 1 5 1 1 1 1 1 1 1 4 1 1 3 1 1 2 1 4 2 1 1| __truncated__ ...
- attr(*, "format.spss")= chr "F15.0"
- attr(*, "display_width")= int 15
1 2 3 4 5
316 60 46 22 24
Data Structure: Race
dbl+lbl [1:468] 5, 1, 2, 5, 1, 1, 3, 1, 5, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1...
@ format.spss : chr "F8.2"
@ display_width: int 10
@ labels : Named num [1:5] 1 2 3 4 5
..- attr(*, "names")= chr [1:5] "Black" "White" "Indigenous" "Asian" "Other"
1 2 3 4 5
371 13 8 4 70
Data Structure: Gender
dbl+lbl [1:468] 3, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1...
@ format.spss : chr "F8.2"
@ display_width: int 10
@ labels : Named num [1:3] 1 2 3
..- attr(*, "names")= chr [1:3] "Female" "Male" "Prefer not to say"
1 2 3
220 229 18
Data Structure:
num [1:468] 8 8 8 7 7 7 7 8 7 7 7 6 8 8 6 8 7 8 8 7 6 7 6 7 6 7 8 7 6 8 8 6 6 8 8 8 6 7 6 8 8 6 8 8 8 6 6 7 8 7 7 6 6 8 7 6 6| __truncated__ ...
- attr(*, "format.spss")= chr "F8.2"
- attr(*, "display_width")= int 10
6 7 8
160 141 166
Summary statistics for gender groups
Gender appears to be equally distributed between male and female students (N = 220 and N = 229, male and female students, respectively). There were no differences in mean coping scores for students in the male gender category (M = 3.044, SD = 0.748), compared to students in the female gender category (M = 2.960, SD = 0.667).
Code
# A tibble: 3 × 5
gender.fac variable n mean sd
<fct> <fct> <dbl> <dbl> <dbl>
1 Female ACOPE 220 2.96 0.667
2 Male ACOPE 229 3.04 0.748
3 Prefer not to say ACOPE 18 2.85 0.416
One-way ANOVA for gender groups
ANOVA test was conducted to determine if levels of coping differed based on gender. There was no statistically significant difference in levels of coping for students based on gender (F= 1.198, p = .303).
Df Sum Sq Mean Sq F value Pr(>F)
gender.fac 2 1.18 0.5889 1.198 0.303
Residuals 464 228.02 0.4914
1 observation deleted due to missingness
Df Sum Sq Mean Sq F value Pr(>F)
gender.fac 2 1.2 0.6045 0.855 0.426
Residuals 464 328.1 0.7071
1 observation deleted due to missingness
Df Sum Sq Mean Sq F value Pr(>F)
gender.fac 2 1.02 0.5111 2.372 0.0944 .
Residuals 464 99.99 0.2155
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1 observation deleted due to missingness
Df Sum Sq Mean Sq F value Pr(>F)
gender.fac 2 0.23 0.1147 0.223 0.801
Residuals 464 239.08 0.5153
1 observation deleted due to missingness
Code
Df Sum Sq Mean Sq F value Pr(>F)
gender.fac 2 6.7 3.351 3.368 0.0353 *
Residuals 464 461.6 0.995
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1 observation deleted due to missingness
Visualization for gender groups
Summary statistics for race groups
There were no differences in mean coping scores among black, white, indigenous, asian and others races (M = 3.036, SD = 0.721; M = 3.036, SD = 0.595; M = 3.120, SD = 0.332; M = 2.940, SD = 0.280, M = 2.784, SD = 0.627, respectively).
Positionality: I am interested in studying the experiences of historically underrepresented minority students. The present data set comprises participants from what appears to be a predominantly black middle school. In this case, since the black race is much larger than other groups (N = 371) out of a sample size of 468, statistical analysis was conducted to explore academic resilience for all participants as defined by relationships between predictors associated with academic resilience regardless of race or gender.
Code
# A tibble: 5 × 5
race.fac variable n mean sd
<fct> <fct> <dbl> <dbl> <dbl>
1 Black ACOPE 371 3.04 0.721
2 White ACOPE 13 3.04 0.595
3 Indigenous ACOPE 8 3.12 0.332
4 Asian ACOPE 4 2.94 0.28
5 Other ACOPE 70 2.78 0.627
One-way ANOVA for Race groups
ANOVA test was conducted to determine if levels of coping differed based on race. There was no statistically significant difference in levels of coping based on race (F= 1.995, p = .0942).
Df Sum Sq Mean Sq F value Pr(>F)
race.fac 4 3.89 0.9734 1.995 0.0942 .
Residuals 461 224.89 0.4878
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
2 observations deleted due to missingness
Df Sum Sq Mean Sq F value Pr(>F)
race.fac 4 6.4 1.6095 1.612 0.17
Residuals 461 460.4 0.9987
2 observations deleted due to missingness
Df Sum Sq Mean Sq F value Pr(>F)
race.fac 4 1.96 0.4898 2.28 0.0598 .
Residuals 461 99.01 0.2148
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
2 observations deleted due to missingness
Df Sum Sq Mean Sq F value Pr(>F)
race.fac 4 1.79 0.4471 0.88 0.476
Residuals 461 234.27 0.5082
2 observations deleted due to missingness
Df Sum Sq Mean Sq F value Pr(>F)
race.fac 4 1.6 0.3923 0.552 0.698
Residuals 461 327.7 0.7109
2 observations deleted due to missingness
Visualization for Race groups
Summary statistics for grade groups
There were no differences in mean coping scores based on grade level (M = 3.134, SD = 0.689; M = 3.021, SD = 0.704; M = 2.844, SD = 0.684, for grade 6, grade 7 and grade 8, respectively).
One-way ANOVA for grade groups
ANOVA test was conducted to determine if levels of coping differed based on grade. There was a statistically significant difference in levels of coping based on grade level (F= 7.272, p = .001).
Df Sum Sq Mean Sq F value Pr(>F)
grade.fac 2 6.97 3.483 7.272 0.000777 ***
Residuals 464 222.23 0.479
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1 observation deleted due to missingness
Df Sum Sq Mean Sq F value Pr(>F)
grade.fac 2 1.2 0.6175 0.873 0.418
Residuals 464 328.1 0.7071
1 observation deleted due to missingness
Df Sum Sq Mean Sq F value Pr(>F)
grade.fac 2 21.1 10.529 10.92 2.32e-05 ***
Residuals 464 447.3 0.964
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1 observation deleted due to missingness
Df Sum Sq Mean Sq F value Pr(>F)
grade.fac 2 1.10 0.5497 2.553 0.0789 .
Residuals 464 99.91 0.2153
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1 observation deleted due to missingness
Df Sum Sq Mean Sq F value Pr(>F)
grade.fac 2 0.06 0.0282 0.055 0.947
Residuals 464 239.26 0.5156
1 observation deleted due to missingness
Pairwise Comparisons: Grade
A pairwise t-test comparison showed a statistically significant difference between grade 6 and grade 8 mean scores (p < .05). This suggests that coping may vary based on age.
Visualization for grade groups
Variable Correlation: ACOPE, SSTEM, Semantics, QFSSS, CERQ
ACOPE QFSSSTotal SemanticsTotal SSTEMTotal CERQTotal
ACOPE 1.0000000 0.3734405 0.3293249 0.2853179 0.5139603
QFSSSTotal 0.3734405 1.0000000 0.2514169 0.2177040 0.3904905
SemanticsTotal 0.3293249 0.2514169 1.0000000 0.5343842 0.2988322
SSTEMTotal 0.2853179 0.2177040 0.5343842 1.0000000 0.3720373
CERQTotal 0.5139603 0.3904905 0.2988322 0.3720373 1.0000000
Descriptive Statistics
fifedata.clean2
5 Variables 468 Observations
--------------------------------------------------------------------------------
ACOPE Format:F8.2
n missing distinct Info Mean Gmd .05 .10
468 0 143 1 2.995 0.7647 1.920 2.198
.25 .50 .75 .90 .95
2.593 3.000 3.352 3.889 4.259
lowest : 1 1.11111 1.18519 1.2037 1.22222
highest: 4.61111 4.85185 4.90741 4.98148 5
--------------------------------------------------------------------------------
QFSSSTotal Format:F8.2
n missing distinct Info Mean Gmd .05 .10
468 0 58 0.999 3.216 0.952 1.957 2.133
.25 .50 .75 .90 .95
2.667 3.200 3.733 4.400 4.667
lowest : 1 1.13333 1.33333 1.4 1.46667
highest: 4.73333 4.8 4.86667 4.93333 5
--------------------------------------------------------------------------------
SemanticsTotal Format:F8.2
n missing distinct Info Mean Gmd .05 .10
468 0 265 1 4.192 1.14 2.780 2.988
.25 .50 .75 .90 .95
3.400 4.140 5.010 5.525 5.800
lowest : 1 1.1 1.36364 1.54545 1.57143
highest: 5.8 5.82353 5.83333 5.86957 7
--------------------------------------------------------------------------------
SSTEMTotal Format:F8.2
n missing distinct Info Mean Gmd .05 .10
468 0 92 1 3.283 0.5206 2.413 2.707
.25 .50 .75 .90 .95
3.024 3.310 3.595 3.857 4.071
lowest : 1.83333 1.88095 1.90476 1.97619 2.04762
highest: 4.2381 4.35714 4.45238 4.5 4.61905
--------------------------------------------------------------------------------
CERQTotal Format:F8.2
n missing distinct Info Mean Gmd .05 .10
468 0 108 1 2.938 0.7945 1.760 2.000
.25 .50 .75 .90 .95
2.549 3.000 3.333 3.778 4.046
lowest : 1 1.02778 1.08333 1.11111 1.13889
highest: 4.5 4.61111 4.75 4.88889 5
--------------------------------------------------------------------------------
Density Plot: ACOPE
Density plot: CERQTotal
Density plot: SemanticsTotal
Density plot: SSTEMTotal
Density plot: QFSSSTotal
Density plot: Daily Life Experiences
Data Set: SSTEM
Code
# A tibble: 5 × 4
variable n mean sd
<fct> <dbl> <dbl> <dbl>
1 SSTEMMath 468 3.30 0.814
2 SSTEMScience 468 3.04 0.596
3 SSTEMTechEngineer 468 3.41 0.764
4 SSTEM21stCentury 468 3.75 0.726
5 SSTEMYourFuture 468 2.43 0.656
Data Set: STEM Semantics
Code
# A tibble: 5 × 4
variable n mean sd
<fct> <dbl> <dbl> <dbl>
1 SemanticsScience 337 4.41 1.12
2 SemanticsMath 295 4.31 1.21
3 SemanticsEngineering 326 4.34 1.20
4 SemanticsTechnology 348 4.65 1.18
5 SemanticsJobInSTEM 350 4.20 1.22
Data Set: CERQ
Code
# A tibble: 9 × 4
variable n mean sd
<fct> <dbl> <dbl> <dbl>
1 CERQSelfBlame 468 2.73 0.887
2 CERQAcceptance 468 3.09 0.89
3 CERQRumination 468 2.96 0.877
4 CERQPositiveRefocusing 468 2.94 0.932
5 CERQRefocusOnPlanning 468 3.18 0.951
6 CERQCatastrophizing 468 2.78 0.956
7 CERQOtherBlame 468 2.56 0.931
8 CERQPuttingIntoPerspective 468 3.07 0.931
9 CERQPositiveReappraisal 468 3.13 0.976
Data Set: ACOPE
Code
fifedata.cleancoping<- fifedata.clean %>%
select(.,
Q30_1,
Q30_2,
Q30_3,
Q30_4,
Q30_5,
Q30_6,
Q30_7,
Q30_8,
Q30_9,
Q30_10,
Q30_11,
Q30_12,
Q30_13,
Q30_14,
Q30_15,
Q30_16,
Q30_17,
Q30_18,
Q30_19,
Q30_20,
Q30_21,
Q30_22,
Q30_23,
Q30_24,
Q30_25,
Q30_26,
Q30_27,
Q30_28,
Q30_29,
Q30_30,
Q30_31,
Q30_32,
Q30_33,
Q30_34,
Q30_35,
Q30_36,
Q30_37,
Q30_38,
Q30_39,
Q30_40,
Q30_41,
Q30_42,
Q30_43,
Q30_44,
Q30_45,
Q30_46,
Q30_47,
Q30_48,
Q30_49,
Q30_50,
Q30_51,
Q30_52,
Q30_53,
Q30_54
)
get_summary_stats(fifedata.cleancoping, type = "mean_sd")# A tibble: 54 × 4
variable n mean sd
<fct> <dbl> <dbl> <dbl>
1 Q30_1 468 3.73 1.23
2 Q30_2 468 2.96 1.25
3 Q30_3 468 3.17 1.24
4 Q30_4 468 3.31 1.23
5 Q30_5 468 3.73 1.32
6 Q30_6 468 2.53 1.40
7 Q30_7 468 3.80 1.23
8 Q30_8 468 2.43 1.41
9 Q30_9 468 2.24 1.41
10 Q30_10 468 2.86 1.29
# ℹ 44 more rows
CFA SSTEM
Chi-squre test statistic (X2 = 24.85) is significant (p < .05). The software has fixed SSTEMMath loading to 1, considered as the item marker approach to give latent variable a scale. CFI= TLI= RMSEA (.092) is higher than .06. The RMSEA CI does not include zero and is therefore significant (RMSEA= .092, 95% CI [.058, .13]). SRMR = .043 (<.06). SSTEM Math appear to have low factor loading (.253) compared to other factors and is less than the .3 cut off.
Code
lavaan 0.6.17 ended normally after 32 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 10
Number of observations 468
Model Test User Model:
Test statistic 24.851
Degrees of freedom 5
P-value (Chi-square) 0.000
Model Test Baseline Model:
Test statistic 325.376
Degrees of freedom 10
P-value 0.000
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.937
Tucker-Lewis Index (TLI) 0.874
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2355.770
Loglikelihood unrestricted model (H1) -2343.345
Akaike (AIC) 4731.540
Bayesian (BIC) 4773.024
Sample-size adjusted Bayesian (SABIC) 4741.287
Root Mean Square Error of Approximation:
RMSEA 0.092
90 Percent confidence interval - lower 0.058
90 Percent confidence interval - upper 0.130
P-value H_0: RMSEA <= 0.050 0.023
P-value H_0: RMSEA >= 0.080 0.745
Standardized Root Mean Square Residual:
SRMR 0.043
Parameter Estimates:
Standard errors Standard
Information Expected
Information saturated (h1) model Structured
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
SSTEM =~
SSTEMMath 1.000 0.206 0.253
SSTEMScience 1.403 0.324 4.334 0.000 0.289 0.485
SSTEMTechEngnr 2.880 0.633 4.550 0.000 0.593 0.777
SSTEM21stCntry 2.141 0.474 4.516 0.000 0.441 0.608
SSTEMYourFutur 1.486 0.346 4.294 0.000 0.306 0.466
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.SSTEMMath 0.619 0.042 14.911 0.000 0.619 0.936
.SSTEMScience 0.271 0.020 13.431 0.000 0.271 0.765
.SSTEMTechEngnr 0.230 0.036 6.338 0.000 0.230 0.396
.SSTEM21stCntry 0.331 0.029 11.370 0.000 0.331 0.630
.SSTEMYourFutur 0.336 0.025 13.628 0.000 0.336 0.782
SSTEM 0.042 0.018 2.378 0.017 1.000 1.000
R-Square:
Estimate
SSTEMMath 0.064
SSTEMScience 0.235
SSTEMTechEngnr 0.604
SSTEM21stCntry 0.370
SSTEMYourFutur 0.218
SSTEM CFA Plot
CFA Coping
Code
coping_cfa1 <- 'cope =~ Q30_1 + Q30_2 + Q30_3 + Q30_4 + Q30_5 + Q30_6 + Q30_7 + Q30_8 + Q30_9 + Q30_10 + Q30_11 + Q30_12 + Q30_13 + Q30_14 + Q30_15 + Q30_16 + Q30_17 + Q30_18 + Q30_19 + Q30_20 + Q30_21 + Q30_22 + Q30_23 + Q30_24 + Q30_25 + Q30_26 + Q30_27 + Q30_28 + Q30_29 + Q30_30 + Q30_31 + Q30_32 + Q30_33 + Q30_34 + Q30_35 + Q30_36 + Q30_37 + Q30_38 + Q30_39 + Q30_40 + Q30_41 + Q30_42 + Q30_43 + Q30_44 + Q30_45 + Q30_46 + Q30_47 + Q30_48 + Q30_49 + Q30_50 + Q30_51 + Q30_52 + Q30_53 + Q30_54'
coping_cfa1_model <- cfa(coping_cfa1, data=fifedata.cleancoping)
summary(coping_cfa1_model, fit.measures=TRUE, standardized=TRUE)lavaan 0.6.17 ended normally after 44 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 108
Number of observations 468
Model Test User Model:
Test statistic 5816.726
Degrees of freedom 1377
P-value (Chi-square) 0.000
Model Test Baseline Model:
Test statistic 12757.499
Degrees of freedom 1431
P-value 0.000
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.608
Tucker-Lewis Index (TLI) 0.593
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -39265.414
Loglikelihood unrestricted model (H1) -36357.051
Akaike (AIC) 78746.828
Bayesian (BIC) 79194.863
Sample-size adjusted Bayesian (SABIC) 78852.093
Root Mean Square Error of Approximation:
RMSEA 0.083
90 Percent confidence interval - lower 0.081
90 Percent confidence interval - upper 0.085
P-value H_0: RMSEA <= 0.050 0.000
P-value H_0: RMSEA >= 0.080 0.988
Standardized Root Mean Square Residual:
SRMR 0.095
Parameter Estimates:
Standard errors Standard
Information Expected
Information saturated (h1) model Structured
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
cope =~
Q30_1 1.000 0.478 0.388
Q30_2 1.290 0.180 7.166 0.000 0.617 0.496
Q30_3 1.262 0.178 7.104 0.000 0.603 0.487
Q30_4 1.327 0.182 7.304 0.000 0.634 0.517
Q30_5 1.021 0.166 6.130 0.000 0.488 0.371
Q30_6 1.539 0.209 7.372 0.000 0.735 0.528
Q30_7 1.152 0.169 6.829 0.000 0.551 0.449
Q30_8 1.181 0.184 6.426 0.000 0.564 0.402
Q30_9 1.266 0.190 6.674 0.000 0.605 0.430
Q30_10 1.674 0.213 7.852 0.000 0.800 0.619
Q30_11 1.482 0.199 7.455 0.000 0.708 0.542
Q30_12 1.587 0.205 7.734 0.000 0.758 0.594
Q30_13 1.537 0.202 7.597 0.000 0.735 0.567
Q30_14 0.861 0.156 5.511 0.000 0.411 0.315
Q30_15 1.478 0.194 7.612 0.000 0.706 0.570
Q30_16 1.585 0.217 7.320 0.000 0.758 0.519
Q30_17 1.649 0.213 7.723 0.000 0.788 0.592
Q30_18 1.908 0.234 8.169 0.000 0.912 0.697
Q30_19 1.238 0.183 6.774 0.000 0.592 0.442
Q30_20 1.390 0.192 7.238 0.000 0.664 0.507
Q30_21 1.564 0.206 7.605 0.000 0.747 0.569
Q30_22 1.461 0.197 7.400 0.000 0.698 0.533
Q30_23 1.534 0.205 7.467 0.000 0.733 0.544
Q30_24 1.114 0.171 6.521 0.000 0.532 0.412
Q30_25 1.628 0.207 7.868 0.000 0.778 0.622
Q30_26 0.991 0.169 5.855 0.000 0.474 0.345
Q30_27 1.533 0.199 7.688 0.000 0.733 0.585
Q30_28 1.327 0.187 7.095 0.000 0.634 0.485
Q30_29 1.566 0.203 7.714 0.000 0.749 0.590
Q30_30 1.638 0.207 7.892 0.000 0.783 0.628
Q30_31 1.679 0.220 7.645 0.000 0.803 0.576
Q30_32 1.281 0.179 7.176 0.000 0.612 0.497
Q30_33 1.551 0.205 7.567 0.000 0.741 0.562
Q30_34 1.637 0.217 7.558 0.000 0.782 0.560
Q30_35 1.680 0.212 7.943 0.000 0.803 0.639
Q30_36 1.354 0.188 7.215 0.000 0.647 0.503
Q30_37 1.746 0.219 7.977 0.000 0.834 0.647
Q30_38 1.624 0.214 7.582 0.000 0.776 0.564
Q30_39 1.624 0.216 7.516 0.000 0.776 0.552
Q30_40 1.852 0.235 7.883 0.000 0.885 0.626
Q30_41 1.674 0.212 7.882 0.000 0.800 0.625
Q30_42 1.070 0.168 6.376 0.000 0.511 0.396
Q30_43 1.312 0.180 7.277 0.000 0.627 0.513
Q30_44 1.404 0.193 7.284 0.000 0.671 0.514
Q30_45 1.566 0.203 7.723 0.000 0.748 0.592
Q30_46 1.035 0.167 6.188 0.000 0.495 0.377
Q30_47 1.300 0.181 7.174 0.000 0.621 0.497
Q30_48 1.010 0.160 6.298 0.000 0.483 0.388
Q30_49 1.179 0.179 6.581 0.000 0.564 0.419
Q30_50 1.452 0.202 7.173 0.000 0.694 0.497
Q30_51 1.639 0.216 7.578 0.000 0.784 0.564
Q30_52 1.685 0.221 7.634 0.000 0.805 0.574
Q30_53 1.255 0.189 6.631 0.000 0.600 0.425
Q30_54 1.757 0.225 7.822 0.000 0.840 0.612
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.Q30_1 1.288 0.085 15.173 0.000 1.288 0.849
.Q30_2 1.167 0.077 15.069 0.000 1.167 0.754
.Q30_3 1.172 0.078 15.080 0.000 1.172 0.763
.Q30_4 1.104 0.073 15.042 0.000 1.104 0.733
.Q30_5 1.490 0.098 15.185 0.000 1.490 0.862
.Q30_6 1.401 0.093 15.027 0.000 1.401 0.721
.Q30_7 1.197 0.079 15.120 0.000 1.197 0.798
.Q30_8 1.653 0.109 15.162 0.000 1.653 0.838
.Q30_9 1.612 0.106 15.138 0.000 1.612 0.815
.Q30_10 1.031 0.069 14.863 0.000 1.031 0.617
.Q30_11 1.208 0.080 15.006 0.000 1.208 0.706
.Q30_12 1.056 0.071 14.916 0.000 1.056 0.647
.Q30_13 1.137 0.076 14.965 0.000 1.137 0.678
.Q30_14 1.538 0.101 15.220 0.000 1.538 0.901
.Q30_15 1.036 0.069 14.960 0.000 1.036 0.675
.Q30_16 1.553 0.103 15.039 0.000 1.553 0.730
.Q30_17 1.153 0.077 14.921 0.000 1.153 0.650
.Q30_18 0.881 0.060 14.637 0.000 0.881 0.515
.Q30_19 1.438 0.095 15.127 0.000 1.438 0.804
.Q30_20 1.278 0.085 15.056 0.000 1.278 0.743
.Q30_21 1.168 0.078 14.963 0.000 1.168 0.676
.Q30_22 1.231 0.082 15.020 0.000 1.231 0.716
.Q30_23 1.279 0.085 15.003 0.000 1.279 0.704
.Q30_24 1.381 0.091 15.154 0.000 1.381 0.830
.Q30_25 0.958 0.064 14.855 0.000 0.958 0.613
.Q30_26 1.663 0.109 15.203 0.000 1.663 0.881
.Q30_27 1.034 0.069 14.934 0.000 1.034 0.658
.Q30_28 1.306 0.087 15.082 0.000 1.306 0.764
.Q30_29 1.050 0.070 14.924 0.000 1.050 0.652
.Q30_30 0.943 0.064 14.843 0.000 0.943 0.606
.Q30_31 1.295 0.087 14.949 0.000 1.295 0.668
.Q30_32 1.142 0.076 15.067 0.000 1.142 0.753
.Q30_33 1.192 0.080 14.975 0.000 1.192 0.684
.Q30_34 1.339 0.089 14.977 0.000 1.339 0.686
.Q30_35 0.933 0.063 14.814 0.000 0.933 0.591
.Q30_36 1.235 0.082 15.060 0.000 1.235 0.747
.Q30_37 0.965 0.065 14.793 0.000 0.965 0.581
.Q30_38 1.289 0.086 14.970 0.000 1.289 0.681
.Q30_39 1.371 0.091 14.990 0.000 1.371 0.695
.Q30_40 1.218 0.082 14.847 0.000 1.218 0.609
.Q30_41 0.997 0.067 14.848 0.000 0.997 0.609
.Q30_42 1.402 0.092 15.167 0.000 1.402 0.843
.Q30_43 1.103 0.073 15.048 0.000 1.103 0.737
.Q30_44 1.255 0.083 15.046 0.000 1.255 0.736
.Q30_45 1.040 0.070 14.920 0.000 1.040 0.650
.Q30_46 1.478 0.097 15.181 0.000 1.478 0.858
.Q30_47 1.178 0.078 15.068 0.000 1.178 0.753
.Q30_48 1.314 0.087 15.173 0.000 1.314 0.849
.Q30_49 1.488 0.098 15.148 0.000 1.488 0.824
.Q30_50 1.470 0.098 15.068 0.000 1.470 0.753
.Q30_51 1.318 0.088 14.971 0.000 1.318 0.682
.Q30_52 1.318 0.088 14.953 0.000 1.318 0.670
.Q30_53 1.631 0.108 15.143 0.000 1.631 0.819
.Q30_54 1.175 0.079 14.878 0.000 1.175 0.625
cope 0.228 0.053 4.276 0.000 1.000 1.000
CFA Semantics
Is the SSTEM questionnaire best represented by the subscales
Code
lavaan 0.6.17 ended normally after 19 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 10
Used Total
Number of observations 155 468
Model Test User Model:
Test statistic 8.805
Degrees of freedom 5
P-value (Chi-square) 0.117
Model Test Baseline Model:
Test statistic 339.551
Degrees of freedom 10
P-value 0.000
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.988
Tucker-Lewis Index (TLI) 0.977
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -1066.575
Loglikelihood unrestricted model (H1) -1062.173
Akaike (AIC) 2153.150
Bayesian (BIC) 2183.584
Sample-size adjusted Bayesian (SABIC) 2151.932
Root Mean Square Error of Approximation:
RMSEA 0.070
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.145
P-value H_0: RMSEA <= 0.050 0.274
P-value H_0: RMSEA >= 0.080 0.480
Standardized Root Mean Square Residual:
SRMR 0.029
Parameter Estimates:
Standard errors Standard
Information Expected
Information saturated (h1) model Structured
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
semantics =~
SemanticsScinc 1.000 0.845 0.771
SemanticsMath 0.916 0.122 7.487 0.000 0.773 0.618
SemntcsEngnrng 1.079 0.118 9.145 0.000 0.911 0.743
SemntcsTchnlgy 1.033 0.112 9.231 0.000 0.873 0.749
SmntcsJbInSTEM 1.182 0.115 10.255 0.000 0.998 0.834
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.SemanticsScinc 0.488 0.071 6.854 0.000 0.488 0.406
.SemanticsMath 0.971 0.121 8.001 0.000 0.971 0.619
.SemntcsEngnrng 0.675 0.094 7.171 0.000 0.675 0.448
.SemntcsTchnlgy 0.594 0.084 7.103 0.000 0.594 0.438
.SmntcsJbInSTEM 0.436 0.076 5.758 0.000 0.436 0.304
semantics 0.714 0.133 5.385 0.000 1.000 1.000
CFA CERQ
Code
cerq_cfa1 <- 'cerq =~ CERQSelfBlame + CERQAcceptance + CERQRumination + CERQPositiveRefocusing + CERQRefocusOnPlanning + CERQCatastrophizing + CERQOtherBlame + CERQPuttingIntoPerspective + CERQPositiveReappraisal'
cerq_cfa1_model <- cfa(cerq_cfa1, data=fifedata.cleancerq)
summary(cerq_cfa1_model, fit.measures=TRUE, standardized=TRUE)lavaan 0.6.17 ended normally after 23 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 18
Number of observations 468
Model Test User Model:
Test statistic 479.754
Degrees of freedom 27
P-value (Chi-square) 0.000
Model Test Baseline Model:
Test statistic 2755.812
Degrees of freedom 36
P-value 0.000
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.834
Tucker-Lewis Index (TLI) 0.778
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -4505.799
Loglikelihood unrestricted model (H1) -4265.922
Akaike (AIC) 9047.598
Bayesian (BIC) 9122.270
Sample-size adjusted Bayesian (SABIC) 9065.142
Root Mean Square Error of Approximation:
RMSEA 0.189
90 Percent confidence interval - lower 0.175
90 Percent confidence interval - upper 0.204
P-value H_0: RMSEA <= 0.050 0.000
P-value H_0: RMSEA >= 0.080 1.000
Standardized Root Mean Square Residual:
SRMR 0.078
Parameter Estimates:
Standard errors Standard
Information Expected
Information saturated (h1) model Structured
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
cerq =~
CERQSelfBlame 1.000 0.628 0.709
CERQAcceptance 1.086 0.069 15.829 0.000 0.682 0.767
CERQRumination 1.135 0.068 16.770 0.000 0.713 0.814
CERQPstvRfcsng 1.128 0.072 15.708 0.000 0.708 0.761
CERQRfcsOnPlnn 1.194 0.073 16.271 0.000 0.750 0.789
CERQCtstrphzng 1.020 0.073 13.873 0.000 0.640 0.671
CERQOtherBlame 0.912 0.072 12.750 0.000 0.573 0.616
CERQPttngIntPr 1.147 0.072 15.990 0.000 0.720 0.775
CERQPstvRpprsl 1.201 0.075 15.969 0.000 0.755 0.774
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.CERQSelfBlame 0.390 0.028 13.984 0.000 0.390 0.497
.CERQAcceptance 0.325 0.024 13.437 0.000 0.325 0.412
.CERQRumination 0.259 0.020 12.739 0.000 0.259 0.338
.CERQPstvRfcsng 0.365 0.027 13.506 0.000 0.365 0.421
.CERQRfcsOnPlnn 0.341 0.026 13.149 0.000 0.341 0.378
.CERQCtstrphzng 0.501 0.035 14.235 0.000 0.501 0.550
.CERQOtherBlame 0.537 0.037 14.505 0.000 0.537 0.621
.CERQPttngIntPr 0.345 0.026 13.339 0.000 0.345 0.399
.CERQPstvRpprsl 0.381 0.029 13.352 0.000 0.381 0.401
cerq 0.394 0.046 8.590 0.000 1.000 1.000
Structural Equation Modelling and Path Analysis
Survey Instruments:
S-STEM Total: A 5-point likert scale validated survey for middle/high school students measuring students’ attitudes toward science, math, engineering and Technology and 21st century learning. The survey asks about students’ interest in STEM in addition to their attitude.
STEM Semantics Total: A 7-point likert scale measuring perceptions of scientific discipline including, science, math, engineering, technology and jobs in STEM. Each construct is assessed using dichotomous adjective pairs including terms like “boring” versus “interesting” .
QFSSS Total: Questionnaire on the Frequency of and Satisfaction with Social Support (QFSSS) is a 20-item, 4-point likert scale questionnaire assessing social support (Martín et al., 2016). The QFSSS was designed to assess the frequency of and the degree of satisfaction with perceived social support received from different sources in relation to three types of support: emotional, informational, and instrumental.CERQ Total (7-point likert-scale).
ACOPE: A 5-point scale, 54-item self-report questionnaire used to identify coping strategies employed by adolescents.
CERQ: The Cognitive Emotion Regulation (CERQ) questionaire is a 36-item, 5-point scale survey measuring constructs including, self-blame, other-blame, rumination, catastrophizing, putting into perspective, positive refocusing, positive reappraisal, and acceptance.
Research Questions:
What is the relationship between coping (ACOPE) and cognitive emotion regulation (CERQ), perceptions of scientific disciplines (STEM semantics), degree of satisfaction with percieved social support (QFSSS), and students’ attitudes and interests towards STEM disciplines (S-STEM) predictors in middle school students (Grades 6,7 and 8)?
How does the students’ perception of the degree of social support impact coping strategies employed by adolescents with mediation through composite cognitive emotion regulation in middle school students (Grades 6,7 and 8)?
How can academic resilience (latent variable) be predicted through coping strategies employed by adolescents in middle school (Grades 6,7 and 8)?
How can academic resilience be predicted through composite predictors cognitive emotion regulation (CERQ), perceptions of scientific disciplines (STEM semantics), degree of satisfaction with percieved social support (QFSSS), and students’ attitudes and interests towards STEM disciplines (S-STEM) in middle school students (Grades 6,7 and 8)?
Hypotheses:
There is a significant relationship between coping strategies employed by adolescents and cognitive emotion regulation (CERQ), perceptions of scientific disciplines (STEM semantics), degree of satisfaction with percieved social support (QFSSS), and students’ attitudes and interests towards STEM disciplines (S-STEM) in middle school students (Grades 6, 7 and 8).
There is a significant mediating relationship between degree of satisfaction with percieved social support (QFSSS) and coping strategies employed by adolescents through cognitive emotion regulation (CERQ) in middle school students in Grades 6,7 and 8.
There is a significant relationship between composite predictors cognitive emotion regulation (CERQ), perceptions of scientific disciplines (STEM semantics), degree of satisfaction with percieved social support (QFSSS), and students’ attitudes and interests towards STEM disciplines (S-STEM) and a created latent variable, academic resilience.
Creating dummy variables for categories: race, gender, grade
Code
fifedata.clean2 <- fifedata.clean %>%
mutate(.,
black = case_when(
race.fac== "Black" ~ 1,
TRUE ~ 0),
white = case_when(
race.fac== "White" ~ 2,
TRUE ~ 0),
indigenous = case_when(
race.fac== "Indigenous" ~ 3,
TRUE ~ 0),
asian = case_when(
race.fac== "Asian" ~ 4,
TRUE ~ 0),
other = case_when(
race.fac== "Other" ~ 5,
TRUE ~ 0),
grade6 = case_when(
grade.fac== "6" ~ 1,
TRUE ~ 0),
grade7 = case_when(
grade.fac== "7" ~ 1,
TRUE ~ 0),
grade8 = case_when(
grade.fac== "8" ~ 1,
TRUE ~ 0),
male = case_when(
gender.fac== "Male" ~ 1,
TRUE ~ 0),
female = case_when(
grade.fac== "Female" ~ 1,
TRUE ~ 0),
pnts = case_when(
grade.fac== "Prefer not to say" ~ 1,
TRUE ~ 0)
)SEM: ACOPE (unstandardized)
Code
lavaan 0.6.17 ended normally after 33 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 20
Number of observations 468
Number of missing patterns 1
Model Test User Model:
Standard Scaled
Test Statistic 0.000 0.000
Degrees of freedom 0 0
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Regressions:
Estimate Std.Err z-value P(>|z|)
ACOPE ~
SSTEMTotal 0.024 0.071 0.338 0.736
SemanticsTotal 0.111 0.034 3.299 0.001
QFSSSTotal 0.148 0.036 4.051 0.000
CERQTotal 0.383 0.050 7.709 0.000
Covariances:
Estimate Std.Err z-value P(>|z|)
SSTEMTotal ~~
SemanticsTotal 0.250 0.025 10.006 0.000
QFSSSTotal 0.086 0.022 3.951 0.000
CERQTotal 0.125 0.018 6.992 0.000
SemanticsTotal ~~
QFSSSTotal 0.212 0.046 4.648 0.000
CERQTotal 0.215 0.041 5.275 0.000
QFSSSTotal ~~
CERQTotal 0.235 0.034 6.841 0.000
Intercepts:
Estimate Std.Err z-value P(>|z|)
.ACOPE 0.848 0.187 4.542 0.000
SSTEMTotal 3.283 0.022 151.921 0.000
SemanticsTotal 4.192 0.046 90.515 0.000
QFSSSTotal 3.216 0.039 82.740 0.000
CERQTotal 2.938 0.033 88.718 0.000
Variances:
Estimate Std.Err z-value P(>|z|)
.ACOPE 0.332 0.033 10.156 0.000
SSTEMTotal 0.218 0.016 13.851 0.000
SemanticsTotal 1.004 0.061 16.449 0.000
QFSSSTotal 0.707 0.043 16.557 0.000
CERQTotal 0.513 0.038 13.588 0.000
SEM: ACOPE Standardized Model
A path analysis was conducted to assess the association between an individualʼs reported level of coping (ACOPE) and four predictors including composite STEM semantics score, composite social support score, composite SSTEM scores, and composite cognitive emotion regulation score .
Three predictors were found to be significantly associated with coping. An increase of one standard deviation in STEM Semantics predicted an increase of .16 standard deviations in coping level, after controlling for all other covariates (p = .001).
Similarly, social support had a positive relationship predicting that for an increase of one standard deviation in social support there is an expected increase of .18 standard deviations in coping, after controlling for all other covariates (p < .001).
Finally, an increase of one standard deviation in cognitive emotion regulation predicted an increase of .39 standard deviations in coping level, after controlling for all other covariates (p = .001).
SSTEM (p = .736) was not found to significantly predict coping after controlling for STEM semantics, social support, and cognitive emotion regulation. The model as a whole explained about 33% of the total variance in coping (R = .33).
Code
lavaan 0.6.17 ended normally after 33 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 20
Number of observations 468
Number of missing patterns 1
Model Test User Model:
Standard Scaled
Test Statistic 0.000 0.000
Degrees of freedom 0 0
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
ACOPE ~
SSTEMTotal 0.024 0.071 0.338 0.736 0.024 0.016
SemanticsTotal 0.111 0.034 3.299 0.001 0.111 0.159
QFSSSTotal 0.148 0.036 4.051 0.000 0.148 0.177
CERQTotal 0.383 0.050 7.709 0.000 0.383 0.391
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
SSTEMTotal ~~
SemanticsTotal 0.250 0.025 10.006 0.000 0.250 0.534
QFSSSTotal 0.086 0.022 3.951 0.000 0.086 0.218
CERQTotal 0.125 0.018 6.992 0.000 0.125 0.372
SemanticsTotal ~~
QFSSSTotal 0.212 0.046 4.648 0.000 0.212 0.251
CERQTotal 0.215 0.041 5.275 0.000 0.215 0.299
QFSSSTotal ~~
CERQTotal 0.235 0.034 6.841 0.000 0.235 0.390
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.ACOPE 0.848 0.187 4.542 0.000 0.848 1.209
SSTEMTotal 3.283 0.022 151.921 0.000 3.283 7.023
SemanticsTotal 4.192 0.046 90.515 0.000 4.192 4.184
QFSSSTotal 3.216 0.039 82.740 0.000 3.216 3.825
CERQTotal 2.938 0.033 88.718 0.000 2.938 4.101
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.ACOPE 0.332 0.033 10.156 0.000 0.332 0.676
SSTEMTotal 0.218 0.016 13.851 0.000 0.218 1.000
SemanticsTotal 1.004 0.061 16.449 0.000 1.004 1.000
QFSSSTotal 0.707 0.043 16.557 0.000 0.707 1.000
CERQTotal 0.513 0.038 13.588 0.000 0.513 1.000
R-Square:
Estimate
ACOPE 0.324
Visualize Path Analysis Model
Create and combine latent variable, academic resilience, with the multiple regression model
Code
lavaan 0.6.17 ended normally after 18 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 8
Number of observations 468
Model Test User Model:
Standard Scaled
Test Statistic 38.973 42.032
Degrees of freedom 2 2
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.927
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 323.410 237.810
Degrees of freedom 6 6
P-value 0.000 0.000
Scaling correction factor 1.360
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.884 0.827
Tucker-Lewis Index (TLI) 0.651 0.482
Robust Comparative Fit Index (CFI) 0.882
Robust Tucker-Lewis Index (TLI) 0.647
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -1921.789 -1921.789
Scaling correction factor 1.314
for the MLR correction
Loglikelihood unrestricted model (H1) -1902.302 -1902.302
Scaling correction factor 1.237
for the MLR correction
Akaike (AIC) 3859.577 3859.577
Bayesian (BIC) 3892.765 3892.765
Sample-size adjusted Bayesian (SABIC) 3867.375 3867.375
Root Mean Square Error of Approximation:
RMSEA 0.199 0.207
90 Percent confidence interval - lower 0.147 0.153
90 Percent confidence interval - upper 0.255 0.266
P-value H_0: RMSEA <= 0.050 0.000 0.000
P-value H_0: RMSEA >= 0.080 1.000 1.000
Robust RMSEA 0.199
90 Percent confidence interval - lower 0.149
90 Percent confidence interval - upper 0.254
P-value H_0: Robust RMSEA <= 0.050 0.000
P-value H_0: Robust RMSEA >= 0.080 1.000
Standardized Root Mean Square Residual:
SRMR 0.067 0.067
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
Resilience =~
SemanticsTotal 1.000 0.688 0.686
QFSSSTotal 0.478 0.087 5.473 0.000 0.328 0.390
CERQTotal 0.539 0.075 7.226 0.000 0.371 0.517
SSTEMTotal 0.500 0.054 9.347 0.000 0.344 0.736
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.SemanticsTotal 0.531 0.064 8.365 0.000 0.531 0.529
.QFSSSTotal 0.599 0.044 13.713 0.000 0.599 0.848
.CERQTotal 0.376 0.039 9.632 0.000 0.376 0.732
.SSTEMTotal 0.100 0.019 5.234 0.000 0.100 0.459
Resilience 0.473 0.069 6.882 0.000 1.000 1.000
CFA/SEM with latent variable Academic Resilience
A latent variable, academic resilience, was created and is defined in relation to STEM semantics, social support, cognitive emotion regulation and SSTEM. The academic resilience measure was then used to predict one other outcome, coping (ACOPE).
Academic resilience is a significant predictor of coping (p < .05). A one standard deviation increase in academic coping is associated with a .66 standard deviation in resilience (p < .05).
The R2 for academic resilience is about .43, indicating that coping explains about 43% of the variability in academic resilience.
Code
lavaan 0.6.17 ended normally after 23 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 10
Number of observations 468
Model Test User Model:
Standard Scaled
Test Statistic 81.924 102.160
Degrees of freedom 5 5
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.802
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 506.841 374.742
Degrees of freedom 10 10
P-value 0.000 0.000
Scaling correction factor 1.353
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.845 0.734
Tucker-Lewis Index (TLI) 0.690 0.467
Robust Comparative Fit Index (CFI) 0.842
Robust Tucker-Lewis Index (TLI) 0.684
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2349.575 -2349.575
Scaling correction factor 1.523
for the MLR correction
Loglikelihood unrestricted model (H1) -2308.613 -2308.613
Scaling correction factor 1.283
for the MLR correction
Akaike (AIC) 4719.149 4719.149
Bayesian (BIC) 4760.634 4760.634
Sample-size adjusted Bayesian (SABIC) 4728.896 4728.896
Root Mean Square Error of Approximation:
RMSEA 0.181 0.204
90 Percent confidence interval - lower 0.148 0.167
90 Percent confidence interval - upper 0.217 0.243
P-value H_0: RMSEA <= 0.050 0.000 0.000
P-value H_0: RMSEA >= 0.080 1.000 1.000
Robust RMSEA 0.182
90 Percent confidence interval - lower 0.153
90 Percent confidence interval - upper 0.214
P-value H_0: Robust RMSEA <= 0.050 0.000
P-value H_0: Robust RMSEA >= 0.080 1.000
Standardized Root Mean Square Residual:
SRMR 0.072 0.072
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
Resilience =~
SemanticsTotal 1.000 0.556 0.555
QFSSSTotal 0.777 0.154 5.039 0.000 0.432 0.513
CERQTotal 0.898 0.175 5.142 0.000 0.499 0.697
SSTEMTotal 0.474 0.046 10.284 0.000 0.263 0.564
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
ACOPE ~
Resilience 0.831 0.162 5.120 0.000 0.462 0.658
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.SemanticsTotal 0.695 0.089 7.855 0.000 0.695 0.692
.QFSSSTotal 0.521 0.040 12.929 0.000 0.521 0.737
.CERQTotal 0.264 0.038 7.043 0.000 0.264 0.515
.SSTEMTotal 0.149 0.021 6.953 0.000 0.149 0.682
.ACOPE 0.279 0.040 7.011 0.000 0.279 0.567
Resilience 0.309 0.086 3.610 0.000 1.000 1.000
R-Square:
Estimate
SemanticsTotal 0.308
QFSSSTotal 0.263
CERQTotal 0.485
SSTEMTotal 0.318
ACOPE 0.433
Model 3 Visualization
Latent variable academic resilience is impacted by four indicators tested (P < .05). Regression of resilience predicting coping (.66)
SEM Mediation Model QFSSS
A mediation model was created to test whether social support impacts coping after mediation by cognitive emotion regulation.
In the model created, the paths are defined as follows: the indirect effect of social support on coping is the product of the a-path and the b-path (a*b), while the direct effect of social support on coping is the c’-path, and the c-path represents the total effect of social support on coping.
An initial examination to test for mediation was conducted using the Baron-Kenny test of joint significance. However, it is important to note that the Baron-Kenny test of joint significance only asseses a- and b- paths separately, and does not assess the significance of the product of the a- and b-paths (indirect effect). The indirect effect must be significant inorder to infer that mediation has occured.
Following the Baron-Kenny test of joint significance, both the a-path (b = .33, p < .001) and the b-path (b = .43, p < .001) appear to be statistically significant, indicating mediation has occurred. The direct path between social support and coping also appears to be significant (c= -.08, p = .17). These results suggest that social support is positively associated with cognitive emotion regulation, which is in turn positively associated with coping.
The Sobel test was used to evaluate whether mediation has occured. In this case, the total effect of social support on coping was found to be statistically significant (c = .31, SE = .04, p < .001)
Code
model4 <- ' # direct effect
ACOPE ~ c * QFSSSTotal
# mediator
CERQTotal ~ a * QFSSSTotal
ACOPE ~ b * CERQTotal
# indirect effect (a*b)
ab := a * b
# total effect
total := c + (a*b)
'
fit4 <- sem(model4, data = fifedata.clean, estimator = "MLR", missing = "ML", fixed.x = FALSE)
summary(fit4, standardized=TRUE, fit.measures = TRUE)lavaan 0.6.17 ended normally after 2 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 9
Number of observations 468
Number of missing patterns 1
Model Test User Model:
Standard Scaled
Test Statistic 0.000 0.000
Degrees of freedom 0 0
Model Test Baseline Model:
Test statistic 243.927 161.387
Degrees of freedom 3 3
P-value 0.000 0.000
Scaling correction factor 1.511
User Model versus Baseline Model:
Comparative Fit Index (CFI) 1.000 1.000
Tucker-Lewis Index (TLI) 1.000 1.000
Robust Comparative Fit Index (CFI) 1.000
Robust Tucker-Lewis Index (TLI) 1.000
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -1466.918 -1466.918
Loglikelihood unrestricted model (H1) -1466.918 -1466.918
Akaike (AIC) 2951.835 2951.835
Bayesian (BIC) 2989.171 2989.171
Sample-size adjusted Bayesian (SABIC) 2960.607 2960.607
Root Mean Square Error of Approximation:
RMSEA 0.000 NA
90 Percent confidence interval - lower 0.000 NA
90 Percent confidence interval - upper 0.000 NA
P-value H_0: RMSEA <= 0.050 NA NA
P-value H_0: RMSEA >= 0.080 NA NA
Robust RMSEA 0.000
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.000
P-value H_0: Robust RMSEA <= 0.050 NA
P-value H_0: Robust RMSEA >= 0.080 NA
Standardized Root Mean Square Residual:
SRMR 0.000 0.000
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
ACOPE ~
QFSSSTotal (c) 0.170 0.037 4.644 0.000 0.170 0.204
CERQTotal ~
QFSSSTotal (a) 0.333 0.041 8.026 0.000 0.333 0.390
ACOPE ~
CERQTotal (b) 0.425 0.045 9.457 0.000 0.425 0.434
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.ACOPE 1.199 0.163 7.339 0.000 1.199 1.709
.CERQTotal 1.868 0.134 13.968 0.000 1.868 2.608
QFSSSTotal 3.216 0.039 82.740 0.000 3.216 3.825
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.ACOPE 0.345 0.034 10.078 0.000 0.345 0.701
.CERQTotal 0.435 0.031 13.942 0.000 0.435 0.848
QFSSSTotal 0.707 0.043 16.557 0.000 0.707 1.000
Defined Parameters:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
ab 0.141 0.024 5.844 0.000 0.141 0.170
total 0.312 0.043 7.260 0.000 0.312 0.373
ACOPE CERQTotal
0.299 0.152
Bootstrap model
To confirm results from the Sobel test, a bootstrap mediation test was conducted. Unlike the Sobel Test, which assumes a normal distribution of indirect effects, the bootstrap mediation test uses resampling to generate a distribution of possible indirect effects based on the observed sample values. This test does not require the strict assumptions of normality that the Sobel Test requires, and can be seen as more rigorous evidence of mediation.
The indirect effect of social support on coping through cognitive emotion regulation continues to be positive and significant, (ab= .14, 95% CI [.11, .25]).
The total effect of social support on coping continues to be positive and significant (c= .31, 95% CI [.27, .41]).
Code
lavaan 0.6.17 ended normally after 1 iteration
Estimator ML
Optimization method NLMINB
Number of model parameters 5
Number of observations 468
Model Test User Model:
Test statistic 0.000
Degrees of freedom 0
Parameter Estimates:
Standard errors Bootstrap
Number of requested bootstrap draws 10
Number of successful bootstrap draws 10
Regressions:
Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
ACOPE ~
QFSSSTotal (c) 0.170 0.045 3.750 0.000 0.104 0.254
CERQTotal ~
QFSSSTotal (a) 0.333 0.045 7.364 0.000 0.286 0.432
ACOPE ~
CERQTotal (b) 0.425 0.047 9.042 0.000 0.344 0.515
Std.lv Std.all
0.170 0.204
0.333 0.390
0.425 0.434
Variances:
Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
.ACOPE 0.345 0.038 8.986 0.000 0.263 0.391
.CERQTotal 0.435 0.031 14.107 0.000 0.366 0.474
Std.lv Std.all
0.345 0.701
0.435 0.848
Defined Parameters:
Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
ab 0.141 0.029 4.948 0.000 0.109 0.217
total 0.312 0.058 5.337 0.000 0.240 0.402
Std.lv Std.all
0.141 0.170
0.312 0.373
ACOPE CERQTotal
0.299 0.152