Find \(f_x, f_y, f_{xx}, f_{yy}, f_{xy} and f_{yx}\).
\(f_x= x^2y+3x^2+4y-5 \frac{\partial}{\partial x}= 2xy+6x\)
\(f_y = x^2y+3x^2+4y-5 \frac{\partial}{\partial y}= x^2+4\)
\(f_{xx} =2xy+6x \frac{\partial}{\partial x} = 2y+6\)
\(f_{yy} = x^2+4 \frac{\partial}{\partial y} = 0\)
\(f_{xy} = 2xy+6x \frac{\partial}{\partial x} = 2x\)
\(f_{yx} = x^2+4 \frac{\partial}{\partial y} = 2x\)