library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(fpp3)
## ── Attaching packages ────────────────────────────────────────────── fpp3 0.5 ──
## ✔ tsibble 1.1.4 ✔ fable 0.3.4
## ✔ tsibbledata 0.4.1 ✔ fabletools 0.4.2
## ✔ feasts 0.3.2
## ── Conflicts ───────────────────────────────────────────────── fpp3_conflicts ──
## ✖ lubridate::date() masks base::date()
## ✖ dplyr::filter() masks stats::filter()
## ✖ tsibble::intersect() masks base::intersect()
## ✖ tsibble::interval() masks lubridate::interval()
## ✖ dplyr::lag() masks stats::lag()
## ✖ tsibble::setdiff() masks base::setdiff()
## ✖ tsibble::union() masks base::union()
library(randomForest)
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
##
## The following object is masked from 'package:dplyr':
##
## combine
##
## The following object is masked from 'package:ggplot2':
##
## margin
library(ggplot2)
library(caret)
## Loading required package: lattice
##
## Attaching package: 'caret'
##
## The following objects are masked from 'package:fabletools':
##
## MAE, RMSE
##
## The following object is masked from 'package:purrr':
##
## lift
library(AppliedPredictiveModeling)
library(e1071)
##
## Attaching package: 'e1071'
##
## The following object is masked from 'package:fabletools':
##
## interpolate
library(caTools)
library(gbm)
## Loaded gbm 2.1.9
## This version of gbm is no longer under development. Consider transitioning to gbm3, https://github.com/gbm-developers/gbm3
library(mlbench)
library(ipred)
library(class)
library(kernlab)
##
## Attaching package: 'kernlab'
##
## The following object is masked from 'package:purrr':
##
## cross
##
## The following object is masked from 'package:ggplot2':
##
## alpha
library(partykit)
## Loading required package: grid
## Loading required package: libcoin
## Loading required package: mvtnorm
## Registered S3 method overwritten by 'inum':
## method from
## format.interval tsibble
library(rpart)
library(rpart.plot)
library(readxl)
train <- read.csv('https://raw.githubusercontent.com/Jlok17/2022MSDS/main/Source/Data%20624/StudentData%20(1).xlsx%20-%20Subset.csv')
test <- read.csv('https://raw.githubusercontent.com/Jlok17/2022MSDS/main/Source/Data%20624/StudentEvaluation.xlsx%20-%20Subset%20(2).csv')
Format Names to be more readable:
colnames(train) <- sub("\\.", "_", colnames(train))
colnames(test) <- sub("\\.", "_", colnames(train))
colnames(train)<- sub(" ", "_", colnames(train))
colnames(test)<- sub(" ", "_", colnames(test))
EDA:
Missing values in the training data:
paste("There are:", sum(is.na(train)), "total missing values")
## [1] "There are: 724 total missing values"
print(colSums(is.na(train)))
## Brand_Code Carb_Volume Fill_Ounces PC_Volume
## 0 10 38 39
## Carb_Pressure Carb_Temp PSC PSC_Fill
## 27 26 33 23
## PSC_CO2 Mnf_Flow Carb_Pressure1 Fill_Pressure
## 39 2 32 22
## Hyd_Pressure1 Hyd_Pressure2 Hyd_Pressure3 Hyd_Pressure4
## 11 15 15 30
## Filler_Level Filler_Speed Temperature Usage_cont
## 20 57 14 5
## Carb_Flow Density MFR Balling
## 2 1 212 1
## Pressure_Vacuum PH Oxygen_Filler Bowl_Setpoint
## 0 4 12 2
## Pressure_Setpoint Air_Pressurer Alch_Rel Carb_Rel
## 12 0 9 10
## Balling_Lvl
## 1
Missing values in test data:
paste("There are:", sum(is.na(test)), "total missing values")
## [1] "There are: 366 total missing values"
print(colSums(is.na(test)))
## Brand_Code Carb_Volume Fill_Ounces PC_Volume
## 0 1 6 4
## Carb_Pressure Carb_Temp PSC PSC_Fill
## 0 1 5 3
## PSC_CO2 Mnf_Flow Carb_Pressure1 Fill_Pressure
## 5 0 4 2
## Hyd_Pressure1 Hyd_Pressure2 Hyd_Pressure3 Hyd_Pressure4
## 0 1 1 4
## Filler_Level Filler_Speed Temperature Usage_cont
## 2 10 2 2
## Carb_Flow Density MFR Balling
## 0 1 31 1
## Pressure_Vacuum PH Oxygen_Filler Bowl_Setpoint
## 1 267 3 1
## Pressure_Setpoint Air_Pressurer Alch_Rel Carb_Rel
## 2 1 3 2
## Balling_Lvl
## 0
Pivot data longer and then gather summary statistics:
longer_train <- train %>%
pivot_longer(!`Brand_Code`,names_to = "col_names", values_to = "value")
as.data.frame(longer_train) %>%
group_by(col_names) %>%
summarise(min = min(value, na.rm = TRUE),
max = max(value, na.rm = TRUE),
mean = mean(value, na.rm = TRUE),
median = median(value, na.rm = TRUE),
std = sd(value, na.rm = TRUE),
var = var(value, na.rm = TRUE))
## # A tibble: 32 × 7
## col_names min max mean median std var
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Air_Pressurer 141. 148. 143. 143. 1.21 1.47
## 2 Alch_Rel 5.28 8.62 6.90 6.56 0.505 0.255
## 3 Balling -0.17 4.01 2.20 1.65 0.931 0.867
## 4 Balling_Lvl 0 3.66 2.05 1.48 0.870 0.757
## 5 Bowl_Setpoint 70 140 109. 120 15.3 234.
## 6 Carb_Flow 26 5104 2468. 3028 1074. 1152824.
## 7 Carb_Pressure 57 79.4 68.2 68.2 3.54 12.5
## 8 Carb_Pressure1 106. 140. 123. 123. 4.74 22.5
## 9 Carb_Rel 4.96 6.06 5.44 5.4 0.129 0.0166
## 10 Carb_Temp 129. 154 141. 141. 4.04 16.3
## # ℹ 22 more rows
Identify if there are near zero variance predictors:
nearZeroVar(train)
## [1] 13
Preprocess Data:
First, we can make dummy variables from the brand codes so that the model can interpret it easier:
train$code_a <- ifelse(train$Brand_Code == "A", 1,0)
train$code_b <- ifelse(train$Brand_Code == "B", 1,0)
train$code_c <- ifelse(train$Brand_Code == "C", 1,0)
train$code_d <- ifelse(train$Brand_Code == "D", 1,0)
train$code_a <-replace(train$code_a, is.na(train$code_a), 0)
train$code_b <-replace(train$code_b, is.na(train$code_b), 0)
train$code_c <-replace(train$code_c, is.na(train$code_c), 0)
train$code_d <-replace(train$code_d, is.na(train$code_d), 0)
train <- subset(train, select =-`Brand_Code`)
train <- train[complete.cases(train$PH),]
Now values can be imputed:
X_train <- subset(train,select = -`PH`)
y_train <- train$PH
X_train_df <- as.data.frame(X_train)
## Bag Imputation
preProc <- preProcess(X_train_df, method = c("bagImpute"))
## KNN Imputation
preProc1 <- preProcess(X_train_df, method = c("knnImpute"))
X_train_imputed <- predict(preProc, X_train_df)
X_train_imputed_2 <- predict(preProc1, X_train_df)
We can also apply PCA:
pcaObject <- prcomp(X_train_imputed, center =TRUE, scale. = TRUE)
train_pca <- as.data.frame(pcaObject$x)
train_pca$y <- y_train
plot(pcaObject, type= "lines")
Split Data into Train and dev test set:
set.seed(4614)
## split imputed data into train/test
X_train_imputed$y <- y_train
X_train_imputed_2$y <- y_train
sample <- sample.split(X_train_imputed, SplitRatio = 0.8)
train_final <- subset(X_train_imputed, sample == TRUE)
dev_test <- subset(X_train_imputed, sample == FALSE)
sample_2 <- sample.split(X_train_imputed_2, SplitRatio = 0.8)
train_final_2 <- subset(X_train_imputed_2, sample == TRUE)
dev_test_2 <- subset(X_train_imputed_2, sample == FALSE)
## Split pca data into train/test
sample <- sample.split(train_pca, SplitRatio =0.8)
train_pca_final <- subset(train_pca, sample == TRUE)
dev_test_pca <- subset(train_pca, sample == FALSE)
We can start with just our default random forest model
#### KNN Imputation
### NN
# nnetgrid <- expand.grid(.decay = c(0,0.01, .1),
# .size =c(1:10),
# .bag = FALSE)
set.seed(200)
# nnettune <- train(subset(train_final_2, select =-y), train_final_2$y,
# method ="avNNet",
# tuneGrid = nnetgrid,
# trControl = trainControl(method = "cv"),
# linout =TRUE,
# trace = FALSE,
# MaxNWts = 10 * (ncol(subset(train_final_2,select = -y)) + 1) + 10 + 1, maxit = 500)
#
# nnPred <- predict(nnettune, newdata = subset(dev_test_2,select = -y))
# nn_acc <- postResample(pred = nnPred, obs = dev_test_2$y)
#KNN
knnModel <- train(x = subset(train_final_2, select = -y),
y = train_final_2$y ,
method = "knn",
tuneLength = 10)
knnModel
## k-Nearest Neighbors
##
## 1995 samples
## 35 predictor
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 1995, 1995, 1995, 1995, 1995, 1995, ...
## Resampling results across tuning parameters:
##
## k RMSE Rsquared MAE
## 5 0.1365406 0.3966159 0.10031994
## 7 0.1343486 0.4065833 0.09981788
## 9 0.1330580 0.4124451 0.09942077
## 11 0.1319647 0.4192450 0.09905220
## 13 0.1317771 0.4194974 0.09935688
## 15 0.1316028 0.4206059 0.09968979
## 17 0.1317075 0.4191918 0.10008653
## 19 0.1321407 0.4150569 0.10069760
## 21 0.1321943 0.4144326 0.10092571
## 23 0.1322961 0.4134216 0.10124625
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 15.
knnPred <- predict(knnModel, newdata= subset(dev_test_2, select = -y))
knn_acc <- postResample(pred = knnPred, obs = dev_test_2$y)
knn_acc
## RMSE Rsquared MAE
## 0.11762673 0.56819775 0.09190545
# GBM
# gbmGrid <- expand.grid(interaction.depth = seq(1, 7, by = 2),
# n.trees = seq(100, 1000, by = 50),
# shrinkage = c(0.01, 0.1),
# n.minobsinnode = 10)
set.seed(12430)
gbmTune <- train(y ~ ., data = train_final_2,
method = "gbm",
#tuneGrid = gbmGrid,
verbose = FALSE)
gbm_predict <- predict(gbmTune, subset(dev_test_2, select = -y))
gbm <- postResample(gbm_predict, dev_test_2$y)
gbm
## RMSE Rsquared MAE
## 0.11259784 0.60217545 0.08800075
#### Bag Imputation
### NN
# nnetgrid <- expand.grid(.decay = c(0,0.01, .1),
# .size =c(1:10),
# .bag = FALSE)
set.seed(200)
# nnettune <- train(subset(train_final, select =-y), train_final$y,
# method ="avNNet",
# tuneGrid = nnetgrid,
# trControl = trainControl(method = "cv"),
# linout =TRUE,
# trace = FALSE,
# MaxNWts = 10 * (ncol(subset(train_final,select = -y)) + 1) + 10 + 1, maxit = 500)
#
# nnPred <- predict(nnettune, newdata = subset(dev_test,select = -y))
# nn_acc <- postResample(pred = nnPred, obs = dev_test$y)
#KNN
knnModel <- train(x = subset(train_final, select = -y),
y = train_final$y ,
method = "knn",
tuneLength = 10)
knnModel
## k-Nearest Neighbors
##
## 1995 samples
## 35 predictor
##
## No pre-processing
## Resampling: Bootstrapped (25 reps)
## Summary of sample sizes: 1995, 1995, 1995, 1995, 1995, 1995, ...
## Resampling results across tuning parameters:
##
## k RMSE Rsquared MAE
## 5 0.1498432 0.2970734 0.1087963
## 7 0.1476316 0.2980707 0.1089775
## 9 0.1464182 0.2987255 0.1093750
## 11 0.1458205 0.2975219 0.1097741
## 13 0.1455411 0.2955418 0.1102459
## 15 0.1455817 0.2918575 0.1107452
## 17 0.1455760 0.2891839 0.1111005
## 19 0.1458295 0.2850870 0.1115651
## 21 0.1462066 0.2800119 0.1121197
## 23 0.1465712 0.2751870 0.1125993
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 13.
knnPred <- predict(knnModel, newdata= subset(dev_test, select = -y))
knn_acc <- postResample(pred = knnPred, obs = dev_test$y)
knn_acc
## RMSE Rsquared MAE
## 0.1350654 0.4120771 0.1035100
# GBM
# gbmGrid <- expand.grid(interaction.depth = seq(1, 7, by = 2),
# n.trees = seq(100, 1000, by = 50),
# shrinkage = c(0.01, 0.1),
# n.minobsinnode = 10)
set.seed(12430)
gbmTune <- train(y ~ ., data = train_final,
method = "gbm",
#tuneGrid = gbmGrid,
verbose = FALSE)
gbm_predict <- predict(gbmTune, subset(dev_test, select = -y))
gbm <- postResample(gbm_predict, dev_test$y)
gbm
## RMSE Rsquared MAE
## 0.11184359 0.60920744 0.08739577
set.seed(5565)
rforest <- randomForest(subset(train_final, select = -`y`), train_final$y)
rfpredict <- predict(rforest, subset(dev_test, select = -`y`))
random_forest <- postResample(rfpredict, dev_test$y)
random_forest
## RMSE Rsquared MAE
## 0.09240467 0.75099971 0.06846889
arrange(varImp(rforest), desc(Overall))
## Overall
## Mnf_Flow 7.2649297
## Usage_cont 4.2356241
## Bowl_Setpoint 2.8272775
## code_c 2.7045210
## Oxygen_Filler 2.6944408
## Temperature 2.5062742
## Filler_Level 2.3151828
## Alch_Rel 2.1850449
## Carb_Rel 2.0988382
## Balling_Lvl 1.9982831
## Pressure_Vacuum 1.9899371
## Carb_Pressure1 1.8289609
## Air_Pressurer 1.8286912
## Balling 1.7177718
## Carb_Flow 1.5422360
## Density 1.4552794
## Filler_Speed 1.4145307
## PC_Volume 1.1938442
## Fill_Pressure 1.1358186
## Hyd_Pressure3 1.1240078
## MFR 1.1131624
## Carb_Volume 1.1089383
## Hyd_Pressure2 1.0396768
## Fill_Ounces 0.9098901
## Pressure_Setpoint 0.8808850
## Hyd_Pressure1 0.8714651
## Hyd_Pressure4 0.7976518
## PSC 0.7859949
## code_b 0.6994723
## PSC_Fill 0.6785892
## Carb_Pressure 0.6756500
## Carb_Temp 0.6479275
## code_d 0.4839427
## PSC_CO2 0.4323916
## code_a 0.2631491
Now we can try our model with PCA applied to the predictors:
set.seed(1765)
rforest_pca <- randomForest(subset(train_pca_final, select = -`y`), train_pca_final$y)
rfpredict_pca <- predict(rforest_pca, subset(dev_test_pca, select = -`y`))
random_forest_pca <- postResample(rfpredict_pca, dev_test_pca$y)
random_forest_pca
## RMSE Rsquared MAE
## 0.11950318 0.59358869 0.09119136
arrange(varImp(rforest_pca), desc(Overall))
## Overall
## PC2 8.1652351
## PC3 3.6918247
## PC6 3.5822630
## PC28 3.0094447
## PC9 2.4457087
## PC1 2.3051203
## PC27 1.9066752
## PC21 1.7819336
## PC18 1.7518028
## PC24 1.7045991
## PC15 1.5661565
## PC16 1.4986313
## PC26 1.4759312
## PC29 1.4007683
## PC20 1.3540264
## PC13 1.3092502
## PC35 1.2993340
## PC11 1.2882532
## PC7 1.2793169
## PC17 1.2697881
## PC19 1.1257476
## PC32 1.0884402
## PC4 1.0400479
## PC23 1.0273088
## PC30 0.9528384
## PC22 0.9207099
## PC25 0.8898213
## PC31 0.8599913
## PC8 0.8445055
## PC12 0.8186374
## PC10 0.7504850
## PC34 0.6917563
## PC14 0.6831820
## PC5 0.6458037
## PC33 0.6255721
PCA has not helped our model in its prediction. We can now try to adjust hyperparameters for slightly more accurate results:
set.seed(417)
rforest <- randomForest(subset(train_final, select = -`y`), train_final$y, ntree = 500, nodesize =1, mtry = 28)
rfpredict <- predict(rforest, subset(dev_test, select = -`y`))
random_forest <- postResample(rfpredict, dev_test$y)
random_forest
## RMSE Rsquared MAE
## 0.09127805 0.74539531 0.06655182
arrange(varImp(rforest), desc(Overall))
## Overall
## Mnf_Flow 11.8657158
## code_c 3.8222318
## Oxygen_Filler 3.3144657
## Usage_cont 3.1261054
## Alch_Rel 2.8129867
## Air_Pressurer 2.6382578
## Pressure_Vacuum 2.5666953
## Temperature 2.3504962
## Carb_Rel 1.9526125
## Balling_Lvl 1.9055865
## Carb_Pressure1 1.8792116
## Carb_Flow 1.4764657
## Bowl_Setpoint 1.4621744
## Balling 1.4112376
## Filler_Speed 1.3239860
## PC_Volume 1.2067851
## Hyd_Pressure3 1.1467531
## Density 1.1444601
## Filler_Level 1.1240515
## MFR 0.9920335
## Hyd_Pressure2 0.9700503
## Fill_Pressure 0.8905590
## Carb_Volume 0.8891274
## Fill_Ounces 0.7988898
## Hyd_Pressure4 0.7868812
## Hyd_Pressure1 0.7510284
## PSC 0.6762551
## PSC_Fill 0.5747920
## Carb_Pressure 0.5238502
## Carb_Temp 0.5008872
## PSC_CO2 0.3713461
## code_b 0.3528507
## Pressure_Setpoint 0.2974480
## code_d 0.2633032
## code_a 0.2563785
We can visualize an example decision tree from the forest for this model:
set.seed(2304)
tree <- train(subset(train_final, select= -`y`),train_final$y,method = "rpart",
tuneLength= 10,
trControl = trainControl(method = "cv"))
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo,
## : There were missing values in resampled performance measures.
windows.options(width = 20, height = 20)
rpart.plot(tree$finalModel)
This will not be an entirely accurate representation of the model decisions as random forest is an ensemble model, having multiple model results combined.
our second most accurate model from testing was the SVM model:
svmTuned <- train(x = subset(train_final, select = -`y`),
y = train_final$y ,
method = "svmRadial",
tuneLength = 14,
trControl = trainControl(method = "cv"))
svmTuned$finalModel
## Support Vector Machine object of class "ksvm"
##
## SV type: eps-svr (regression)
## parameter : epsilon = 0.1 cost C = 4
##
## Gaussian Radial Basis kernel function.
## Hyperparameter : sigma = 0.020535589590798
##
## Number of Support Vectors : 1698
##
## Objective Function Value : -2153.173
## Training error : 0.209031
svmPred <-predict(svmTuned, newdata = subset(dev_test, select = -`y`))
svm_acc <- postResample(pred = svmPred, obs = dev_test$y)
svm_acc
## RMSE Rsquared MAE
## 0.10739652 0.63081810 0.07945795
Now we can create our final model:
The test data needs to be transformed like our training data:
test$code_a <- ifelse(test$Brand_Code == "A", 1,0)
test$code_b <- ifelse(test$Brand_Code == "B", 1,0)
test$code_c <- ifelse(test$Brand_Code == "C", 1,0)
test$code_d <- ifelse(test$Brand_Code == "D", 1,0)
test$code_a <-replace(test$code_a, is.na(test$code_a), 0)
test$code_b <-replace(test$code_b, is.na(test$code_b), 0)
test$code_c <-replace(test$code_c, is.na(test$code_c), 0)
test$code_d <-replace(test$code_d, is.na(test$code_d), 0)
test <- subset(test, select = -`Brand_Code`)
Apply imputation model to test data:
X_test_df <- as.data.frame(subset(test, select = -`PH`))
X_test_imputed <- predict(preProc, X_test_df)
X_test_imputed$PH <- test$PH
Now Feed our model the test data:
set.seed(417)
rforest_final <- randomForest(subset(X_train_imputed, select = -`y`), X_train_imputed$y, ntree = 500, nodesize =1, mtry = 28)
rfpredict_final <- predict(rforest_final, subset(X_test_imputed, select = -`PH`))
X_test_imputed$PH <- rfpredict_final
X_test_imputed
## Carb_Volume Fill_Ounces PC_Volume Carb_Pressure Carb_Temp PSC
## 1 5.480000 24.03333 0.27000000 65.4 134.6000 0.2360000
## 2 5.393333 23.95333 0.22666667 63.2 135.0000 0.0420000
## 3 5.293333 23.92000 0.30333333 66.4 140.4000 0.0680000
## 4 5.266667 23.94000 0.18600000 64.8 139.0000 0.0040000
## 5 5.406667 24.20000 0.16000000 69.4 142.2000 0.0400000
## 6 5.286667 24.10667 0.21200000 73.4 147.2000 0.0780000
## 7 5.480000 23.93333 0.24333333 65.2 134.6000 0.0880000
## 8 5.420000 24.06667 0.12266667 67.4 139.0000 0.0760000
## 9 5.406667 23.92000 0.33266667 66.8 138.0000 0.2460000
## 10 5.473333 24.02667 0.25600000 72.6 144.0000 0.1460000
## 11 5.180000 23.96374 0.34333333 64.0 140.8000 0.1137127
## 12 5.260000 24.08000 0.22000000 63.2 139.6000 0.1840000
## 13 5.300000 24.06000 0.28200000 65.0 138.8000 0.1520000
## 14 5.306667 23.94000 0.28866667 63.8 137.2000 0.1000000
## 15 5.273333 23.97333 0.32066667 64.6 140.0000 0.0800000
## 16 5.253333 23.88667 0.31933333 65.0 140.0000 0.0480000
## 17 5.340000 23.98667 0.25333333 70.4 144.8000 0.1140000
## 18 5.266667 23.94000 0.27466667 65.4 140.2000 0.1220000
## 19 5.506667 23.89333 0.24933333 68.4 138.6000 0.0580000
## 20 5.320000 23.96000 0.19066667 66.4 140.2000 0.0380000
## 21 5.273333 23.96667 0.19933333 68.4 141.8000 0.0080000
## 22 5.533333 23.98667 0.24666667 70.4 142.2000 0.0620000
## 23 5.426667 23.98667 0.25533333 69.0 140.4000 0.1220000
## 24 5.406667 23.94000 0.32933333 66.2 137.8000 0.2080000
## 25 5.453333 24.09333 0.23533333 66.4 136.2000 0.0720000
## 26 5.266667 23.94667 0.27666667 64.8 139.2000 0.0480000
## 27 5.253333 23.99333 0.29333333 70.4 146.4000 0.0400000
## 28 5.500000 24.04667 0.24666667 71.0 141.8000 0.0400000
## 29 5.480000 23.89333 0.22466667 70.4 140.8000 0.0761447
## 30 5.486667 23.98000 0.30666667 69.6 140.0000 0.2340000
## 31 5.466667 24.04000 0.23000000 70.2 141.2000 0.0040000
## 32 5.460000 24.04667 0.27800000 70.8 141.8000 0.1740000
## 33 5.320000 23.97372 0.26866667 64.4 137.0000 0.0680000
## 34 5.313333 23.96769 0.31866667 64.2 136.8000 0.2180000
## 35 5.266667 23.97195 0.28000000 73.2 149.8000 0.0400000
## 36 5.486667 24.10667 0.19866667 75.0 146.4000 0.0860000
## 37 5.460000 23.98000 0.20466667 65.8 136.6000 0.0100000
## 38 5.440000 23.92000 0.23600000 69.4 142.0000 0.0500000
## 39 5.480000 23.90667 0.17866667 70.4 141.0000 0.0900000
## 40 5.473333 23.92000 0.34733333 74.2 145.2000 0.1426557
## 41 5.526667 23.98667 0.22200000 70.8 140.6000 0.1020000
## 42 5.380000 24.06667 0.28800000 66.8 139.0000 0.0580000
## 43 5.313333 24.10667 0.31466667 66.4 139.8000 0.0800000
## 44 5.346667 23.95333 0.32133333 65.6 139.2000 0.0480000
## 45 5.366667 23.94667 0.34333333 67.8 141.2000 0.0760000
## 46 5.546667 23.95333 0.27600000 68.2 136.8000 0.0700000
## 47 5.526667 23.96667 0.27066667 71.6 141.4000 0.0780000
## 48 5.320000 23.89333 0.27733333 67.6 140.4000 0.1120000
## 49 5.420000 23.92000 0.28866667 74.2 147.6000 0.0580000
## 50 5.380000 23.93333 0.30400000 69.4 143.0000 0.0200000
## 51 5.546667 23.94000 0.43800000 65.6 133.6000 0.1216814
## 52 5.313333 23.96667 0.31200000 63.4 136.8000 0.1640000
## 53 5.386667 24.09333 0.28866667 63.0 134.0000 0.0460000
## 54 5.266667 23.90667 0.33800000 63.4 136.4000 0.1600000
## 55 5.286667 23.98000 0.24866667 69.0 143.8000 0.0040000
## 56 5.513333 24.07333 0.22600000 68.8 138.4000 0.0240000
## 57 5.226667 23.95333 0.35333333 66.4 142.8000 0.1500000
## 58 5.380000 24.01333 0.27400000 68.6 141.6000 0.1400000
## 59 5.340000 23.96667 0.31333333 69.6 143.0000 0.1340000
## 60 5.346667 23.99333 0.25733333 68.0 141.2000 0.0500000
## 61 5.333333 24.00667 0.30800000 67.4 140.6000 0.0700000
## 62 5.280000 23.96000 0.26066667 64.6 138.6000 0.0940000
## 63 5.490000 23.82000 0.26466667 68.6 138.6000 0.0180000
## 64 5.240000 24.18667 0.15266667 69.2 144.2000 0.0320000
## 65 5.306667 23.94000 0.27666667 62.8 135.4000 0.0860000
## 66 5.326667 23.99333 0.28466667 70.0 144.8000 0.0920000
## 67 5.300000 23.95333 0.32133333 68.6 143.4000 0.0500000
## 68 5.326667 23.90667 0.29866667 66.0 139.2000 0.0640000
## 69 5.293333 23.86000 0.32200000 73.4 150.0000 0.0340000
## 70 5.160000 23.89333 0.31400000 61.6 138.0000 0.0720000
## 71 5.260000 24.06000 0.28866667 65.2 138.8000 0.0680000
## 72 5.213333 24.00000 0.34000000 64.6 142.2000 0.0400000
## 73 5.413333 23.98667 0.31066667 74.2 147.6000 0.0100000
## 74 5.500000 24.10000 0.33866667 71.2 141.4000 0.0320000
## 75 5.413333 23.99333 0.33533333 61.8 132.6000 0.0980000
## 76 5.340000 24.00667 0.33533333 67.2 140.0000 0.0600000
## 77 5.533333 23.96000 0.29200000 73.0 143.4000 0.0180000
## 78 5.260000 23.98667 0.34000000 68.4 144.0000 0.0720000
## 79 5.466667 24.04667 0.26800000 71.4 143.2000 0.0280000
## 80 5.486667 23.99333 0.25933333 75.4 147.6000 0.0380000
## 81 5.240000 23.93333 0.32466667 67.2 142.8000 0.0720000
## 82 5.260000 23.96667 0.32600000 65.0 139.6000 0.0240000
## 83 5.213333 23.78667 0.39866667 69.8 146.6000 0.0720000
## 84 5.200000 23.90667 0.36133333 68.2 145.2000 0.0140000
## 85 5.226667 24.04667 0.26266667 71.2 148.6000 0.0700000
## 86 5.273333 24.10667 0.40466667 65.2 140.0000 0.1240000
## 87 5.506667 23.98667 0.25933333 70.6 140.2000 0.0520000
## 88 5.266667 23.88667 0.34800000 67.2 141.2000 0.0300000
## 89 5.326667 23.92000 0.26600000 73.6 149.4000 0.1100000
## 90 5.253333 24.09333 0.32933333 66.0 141.4000 0.0360000
## 91 5.340000 23.98849 0.23133333 68.0 140.6000 0.0440000
## 92 5.660000 23.79333 0.33200000 76.0 143.8000 0.1940000
## 93 5.366667 23.87333 0.31666667 77.4 152.2000 0.0420000
## 94 5.460000 24.01333 0.36800000 66.0 136.6000 0.0660000
## 95 5.540000 23.91333 0.29933333 70.8 140.4000 0.0400000
## 96 5.346667 23.96667 0.31000000 67.6 140.8000 0.1320000
## 97 5.486667 23.84667 0.34800000 73.6 146.0000 0.1120000
## 98 5.286667 23.96667 0.36800000 67.4 143.0000 0.0900000
## 99 5.426667 24.13333 0.44733333 60.4 134.6000 0.1660000
## 100 5.406667 24.09333 0.31733333 64.4 135.8000 0.1300000
## 101 5.426667 23.97333 0.18800000 69.2 141.8000 0.0380000
## 102 5.446667 23.94667 0.33000000 70.8 143.2000 0.0820000
## 103 5.293333 23.86667 0.28000000 70.6 145.8000 0.0400000
## 104 5.366667 23.96000 0.37066667 64.0 136.6000 0.1760000
## 105 5.360000 24.01333 0.28466667 67.6 141.0000 0.0160000
## 106 5.340000 23.96667 0.33866667 62.6 133.0000 0.0740000
## 107 5.220000 24.12667 0.29066667 71.0 149.2000 0.0740000
## 108 5.186667 23.82000 0.33333333 65.4 140.8000 0.0500000
## 109 5.286667 23.94667 0.37866667 63.4 136.8000 0.0940000
## 110 5.213333 23.82000 0.30533333 63.0 137.0000 0.1800000
## 111 5.286667 23.87333 0.36666667 64.8 138.6000 0.0960000
## 112 5.280000 23.86667 0.34600000 64.6 138.4000 0.0540000
## 113 5.513333 23.90000 0.36866667 68.4 137.2000 0.1540000
## 114 5.493333 23.88000 0.31266667 68.6 138.8000 0.0220000
## 115 5.260000 23.84000 0.34866667 65.6 140.8000 0.0560000
## 116 5.266667 23.90667 0.33266667 64.0 138.6000 0.0660000
## 117 5.280000 23.86667 0.35600000 62.2 134.2000 0.0900000
## 118 5.486667 23.89333 0.24866667 75.0 146.8000 0.0660000
## 119 5.340000 23.96000 0.27733333 63.8 135.2000 0.0520000
## 120 5.293333 23.98667 0.26266667 66.0 140.2000 0.0620000
## 121 5.260000 23.87333 0.33638294 67.0 143.2000 0.2180000
## 122 5.253333 23.87333 0.26666667 73.4 150.2000 0.1240000
## 123 5.273333 23.95333 0.25266667 70.0 145.6000 0.0720000
## 124 5.240000 23.88000 0.32266667 73.0 150.2000 0.0880000
## 125 5.380000 24.05333 0.28933333 67.6 140.0000 0.0980000
## 126 5.453333 23.84667 0.38266667 67.4 139.2000 0.0900000
## 127 5.153333 23.96667 0.37200000 60.4 135.2000 0.0260000
## 128 5.313333 23.94667 0.34933333 71.6 147.0000 0.1020000
## 129 5.546667 23.85333 0.34000000 73.8 144.8000 0.0420000
## 130 5.440000 23.88667 0.43733333 66.6 136.6000 0.1580000
## 131 5.333333 23.88000 0.37633778 65.0 137.8000 0.1360000
## 132 5.333333 24.00667 0.34945229 68.6 142.4000 0.1440000
## 133 5.533333 23.83333 0.34800000 71.0 142.2000 0.0680000
## 134 5.283788 23.94667 0.39466667 61.8 136.2000 0.2340000
## 135 5.466667 23.74667 0.46400000 67.2 137.2000 0.1920000
## 136 5.453333 23.96667 0.38866667 68.8 140.6000 0.0220000
## 137 5.473333 23.92667 0.30733333 72.4 144.2000 0.1880000
## 138 5.493333 23.84667 0.34800000 75.2 147.8000 0.1540000
## 139 5.440000 23.92667 0.37200000 72.2 144.6000 0.0940000
## 140 5.466667 23.90000 0.41066667 72.8 144.2000 0.0720000
## 141 5.280000 23.96667 0.38600000 62.6 136.4000 0.1900000
## 142 5.313333 23.98000 0.32266667 66.2 139.8000 0.1520000
## 143 5.326667 24.06000 0.21733333 66.8 139.8000 0.0180000
## 144 5.286667 23.95333 0.21733333 63.4 136.6000 0.0660000
## 145 5.426667 23.95333 0.33400000 72.8 146.0000 0.0780000
## 146 5.400000 23.94000 0.33866667 69.2 142.0000 0.0100000
## 147 5.413333 23.88000 0.30600000 69.2 141.4000 0.0700000
## 148 5.306667 24.01333 0.26600000 63.0 135.4000 0.0740000
## 149 5.333333 23.94667 0.28666667 68.0 142.4000 0.0480000
## 150 5.313333 23.91333 0.34333333 67.2 140.8000 0.1700000
## 151 5.313333 23.90667 0.29000000 63.6 136.0000 0.0520000
## 152 5.286667 23.97333 0.30733333 65.2 139.2000 0.0940000
## 153 5.346667 23.92000 0.32666667 66.4 139.4000 0.1040000
## 154 5.233333 23.98000 0.34266667 68.4 143.4000 0.0620000
## 155 5.173333 23.98000 0.36200000 66.8 144.4000 0.0540000
## 156 5.306667 23.98000 0.31466667 64.2 137.4000 0.0860000
## 157 5.293333 23.91333 0.31066667 74.6 151.4000 0.0780000
## 158 5.346667 24.04000 0.28533333 76.4 151.8000 0.1620000
## 159 5.333333 23.97333 0.32533333 67.6 141.8000 0.1980000
## 160 5.306667 24.10000 0.21800000 67.8 142.4000 0.0580000
## 161 5.266667 23.94667 0.24133333 67.8 143.2000 0.0280000
## 162 5.546667 23.94000 0.21666667 77.4 147.4000 0.0880000
## 163 5.300000 24.00667 0.23866667 65.0 139.0000 0.0240000
## 164 5.333333 24.00667 0.22133333 71.4 147.8000 0.0100000
## 165 5.320000 24.00000 0.25600000 67.4 140.8000 0.0880000
## 166 5.306667 24.00000 0.25933333 64.0 137.6000 0.0940000
## 167 5.286667 23.88667 0.21933333 63.4 137.2000 0.0140000
## 168 5.573333 23.96000 0.22733333 71.6 141.0000 0.0200000
## 169 5.526667 23.94000 0.20533333 72.8 143.8000 0.0320000
## 170 5.466667 23.89333 0.25733333 66.4 136.6000 0.1020000
## 171 5.353333 24.05333 0.21333333 70.4 144.6000 0.0280000
## 172 5.300000 23.96667 0.31866667 66.8 140.8000 0.1120000
## 173 5.360000 24.00000 0.26333333 68.4 141.8000 0.0200000
## 174 5.280000 23.88667 0.32533333 66.2 140.6000 0.0420000
## 175 5.353333 23.83333 0.25866667 68.6 142.2000 0.0420000
## 176 5.326667 23.92000 0.26733333 66.8 141.0000 0.0360000
## 177 5.300000 23.84667 0.28200000 72.4 148.2000 0.0140000
## 178 5.293333 23.98000 0.28600000 67.4 142.6000 0.0980000
## 179 5.473333 23.90000 0.21200000 68.4 139.0000 0.1720000
## 180 5.293333 23.83333 0.34866667 66.4 140.2000 0.0600000
## 181 5.320000 24.02667 0.26133333 69.8 145.2000 0.0800000
## 182 5.480000 23.94000 0.20400000 76.0 148.4000 0.1420000
## 183 5.313333 23.92667 0.33866667 62.6 136.4000 0.1960000
## 184 5.240000 23.92667 0.30533333 66.6 142.0000 0.0080000
## 185 5.260000 24.04667 0.27200000 77.6 149.8815 0.1080000
## 186 5.320000 24.02667 0.24200000 62.6 135.4000 0.0660000
## 187 5.286667 23.97333 0.27533333 61.8 134.2000 0.0920000
## 188 5.526667 23.83333 0.14666667 69.0 138.8000 0.0140000
## 189 5.266667 24.09333 0.32200000 67.6 142.8000 0.1360000
## 190 5.433333 23.95333 0.21533333 72.0 144.2000 0.1040000
## 191 5.440000 23.92000 0.25266667 68.6 141.0000 0.0380000
## 192 5.393333 23.99333 0.25666667 67.4 140.2000 0.1400000
## 193 5.393333 24.17333 0.12733333 73.2 146.2000 0.0180000
## 194 5.500000 23.81333 0.11000000 77.2 149.4000 0.0340000
## 195 5.540000 24.03333 0.26466667 72.2 142.8000 0.0940000
## 196 5.460000 24.04667 0.32133333 67.0 137.2000 0.0180000
## 197 5.466667 24.01333 0.27533333 70.0 141.2000 0.0800000
## 198 5.453333 23.94667 0.20266667 63.4 132.8000 0.0720000
## 199 5.146667 23.90000 0.10466667 63.4 139.8000 0.0420000
## 200 5.340000 23.93333 0.34466667 62.4 134.4000 0.2140000
## 201 5.473333 23.96667 0.31666667 72.4 144.6000 0.0780000
## 202 5.553333 24.06667 0.23466667 66.6 136.4000 0.0360000
## 203 5.286667 24.00235 0.20600000 65.4 139.4000 0.0760000
## 204 5.346667 24.07333 0.26600000 68.2 142.4000 0.0940000
## 205 5.366667 24.06667 0.26800000 69.0 142.0000 0.1260000
## 206 5.553333 23.90667 0.22000000 68.6 137.2000 0.0920000
## 207 5.566667 23.90000 0.23466667 68.2 138.0000 0.1240000
## 208 5.213333 23.92667 0.25600000 73.2 151.6000 0.1480000
## 209 5.460000 24.01333 0.22800000 68.8 140.0000 0.0500000
## 210 5.340000 23.98667 0.28266667 64.6 137.6000 0.0940000
## 211 5.406667 24.01333 0.28866667 69.0 141.6000 0.0960000
## 212 5.433333 24.04000 0.22066667 65.6 136.8000 0.0880000
## 213 5.360000 23.94667 0.25200000 68.0 141.8000 0.1620000
## 214 5.286667 23.96000 0.26333333 65.0 140.0000 0.0100000
## 215 5.546667 24.08667 0.09866667 70.2 140.0000 0.0420000
## 216 5.360000 23.87333 0.21666667 75.0 150.8000 0.0840000
## 217 5.193333 23.98000 0.15200000 68.8 145.8000 0.0200000
## 218 5.240000 24.01333 0.24733333 67.0 142.6000 0.0760000
## 219 5.520000 23.97333 0.30000000 69.4 139.4000 0.1360000
## 220 5.553333 24.01333 0.23266667 71.6 141.4000 0.1420000
## 221 5.253333 24.00667 0.32133333 65.6 141.0000 0.1340000
## 222 5.306667 23.96667 0.23600000 63.4 135.6000 0.0960000
## 223 5.320000 24.04000 0.26866667 65.2 137.4000 0.1360000
## 224 5.470000 24.11333 0.28533333 75.0 147.6000 0.1080000
## 225 5.500000 24.12667 0.24266667 68.6 138.6000 0.1120000
## 226 5.433333 24.00667 0.25533333 74.6 147.6000 0.0920000
## 227 5.333333 23.92000 0.13466667 70.6 145.2000 0.0680000
## 228 5.360000 24.06000 0.21933333 71.4 145.4000 0.1180000
## 229 5.280000 24.06000 0.21800000 64.8 140.0000 0.0580000
## 230 5.313333 23.94667 0.28866667 65.4 139.2000 0.0460000
## 231 5.240000 24.05333 0.24466667 60.2 134.2000 0.0420000
## 232 5.200000 23.90667 0.31866667 70.6 146.6000 0.0928271
## 233 5.273333 24.02667 0.22200000 69.2 145.2000 0.1320000
## 234 5.633333 24.00667 0.19466667 76.0 144.0000 0.0320000
## 235 5.593333 24.04667 0.23133333 75.8 146.2000 0.0940000
## 236 5.260000 23.95333 0.23066667 65.2 140.0000 0.0560000
## 237 5.346667 23.92000 0.18133333 69.2 143.8000 0.1080000
## 238 5.246667 23.96667 0.20266667 75.0 153.8000 0.0900000
## 239 5.420000 24.04000 0.21600000 74.0 147.4000 0.0620000
## 240 5.360000 23.98000 0.21666667 66.8 140.2000 0.1180000
## 241 5.393333 24.02667 0.24466667 68.6 141.0000 0.0920000
## 242 5.586667 24.03333 0.21466667 73.4 142.6000 0.1060000
## 243 5.580000 24.05333 0.18000000 73.4 142.6000 0.1020000
## 244 5.480000 24.07333 0.21800000 68.2 138.6000 0.0960000
## 245 5.240000 23.99333 0.23866667 62.4 137.6000 0.1000000
## 246 5.340000 24.00000 0.19000000 64.8 137.8000 0.0520000
## 247 5.373333 23.92000 0.19600000 65.8 138.0000 0.0760000
## 248 5.600000 24.04000 0.21666667 68.4 136.8000 0.0740000
## 249 5.666667 23.99333 0.21533333 71.2 135.0000 0.0940000
## 250 5.246667 23.96667 0.37600000 67.2 142.4000 0.0660000
## 251 5.393333 24.06667 0.23866667 63.4 134.6000 0.2040000
## 252 5.213333 23.94667 0.19800000 76.4 154.0000 0.1220000
## 253 5.260000 23.94667 0.25200000 69.6 145.8000 0.0780000
## 254 5.526667 23.95333 0.24200000 76.2 146.6000 0.1280000
## 255 5.580000 23.85333 0.20200000 77.0 147.0000 0.0280000
## 256 5.200000 24.00667 0.26459792 62.6 137.8000 0.0360000
## 257 5.273333 24.02667 0.30133333 68.8 145.0000 0.1300000
## 258 5.500000 23.95333 0.33866667 69.8 140.6000 0.0200000
## 259 5.160000 23.96667 0.29466667 64.8 142.2000 0.0760000
## 260 5.286667 23.96000 0.27400000 66.0 140.2000 0.2180000
## 261 5.580000 23.92000 0.25800000 68.8 137.0000 0.1820000
## 262 5.506667 24.08000 0.19333333 77.0 148.6000 0.0960000
## 263 5.386667 24.04000 0.22266667 66.4 138.2000 0.0960000
## 264 5.573333 24.08667 0.23400000 62.8 130.0000 0.0540000
## 265 5.420000 24.02667 0.27266667 62.6 132.6000 0.1280000
## 266 5.253333 24.09333 0.36066667 68.2 144.6000 0.0600000
## 267 5.220000 23.96000 0.22466667 64.4 140.0000 0.1260000
## PSC_Fill PSC_CO2 Mnf_Flow Carb_Pressure1 Fill_Pressure Hyd_Pressure1
## 1 0.4000000 0.04000000 -100.0 116.6000 46.00000 0.0
## 2 0.2200000 0.08000000 -100.0 118.8000 46.20000 0.0
## 3 0.1000000 0.02000000 -100.0 120.2000 45.80000 0.0
## 4 0.2000000 0.02000000 -100.0 124.8000 40.00000 0.0
## 5 0.3000000 0.06000000 -100.0 115.0000 51.40000 0.0
## 6 0.2200000 0.04475495 -100.0 118.6000 46.40000 0.0
## 7 0.1400000 0.00000000 -100.0 117.6000 46.20000 0.0
## 8 0.1000000 0.04000000 -100.0 121.4000 40.00000 0.0
## 9 0.4800000 0.04000000 -100.0 136.0000 43.80000 0.0
## 10 0.1000000 0.02000000 -100.0 126.6000 40.80000 0.0
## 11 0.3400000 0.04000000 -100.0 121.2000 46.60000 0.0
## 12 0.2600000 0.20000000 -100.0 117.2000 46.20000 0.0
## 13 0.1200000 0.00000000 -100.0 117.0000 45.80000 0.0
## 14 0.1800000 0.02000000 -100.0 122.0000 46.40000 0.0
## 15 0.2800000 0.10000000 -100.0 116.4000 46.20000 0.0
## 16 0.2600000 0.02000000 -100.0 125.6000 43.40000 0.0
## 17 0.1200000 0.00000000 -100.0 118.0000 45.60000 0.0
## 18 0.4200000 0.06000000 -100.0 116.4000 46.20000 0.0
## 19 0.1200000 0.02000000 -100.0 118.0000 46.20000 0.0
## 20 0.0400000 0.00000000 -100.0 117.8000 45.40000 0.0
## 21 0.3000000 0.20000000 -100.0 117.2000 46.00000 0.0
## 22 0.0800000 0.04596126 -100.0 121.0000 47.60000 0.0
## 23 0.4800000 0.04000000 -100.0 121.2000 38.80000 0.0
## 24 0.4600000 0.02000000 -100.0 130.6000 44.60000 0.0
## 25 0.0600000 0.06000000 -100.0 125.2000 46.40000 0.0
## 26 0.1800000 0.02000000 -100.0 116.6000 46.20000 0.0
## 27 0.1400000 0.02000000 -100.0 122.2000 46.00000 0.0
## 28 0.0200000 0.00000000 -100.0 120.4000 46.40000 0.0
## 29 0.3400000 0.06000000 -100.0 120.2000 50.40000 0.0
## 30 0.1600000 0.02000000 -100.0 122.6000 47.00000 0.0
## 31 0.1000000 0.04000000 -100.0 120.2000 46.60000 0.0
## 32 0.6200000 0.10000000 -100.0 125.6000 40.00000 0.0
## 33 0.1000000 0.04000000 -100.0 120.4000 46.80000 0.0
## 34 0.4400000 0.04000000 -100.0 118.2000 45.80000 0.0
## 35 0.2400000 0.04000000 -100.0 124.6000 44.80000 0.0
## 36 0.2800000 0.04000000 -100.0 114.8000 46.20000 0.0
## 37 0.0400000 0.06000000 -100.0 116.8000 45.60000 0.0
## 38 0.1600000 0.08000000 -100.0 116.4000 46.00000 0.0
## 39 0.2200000 0.04000000 -100.0 118.0000 46.00000 0.0
## 40 0.5000000 0.08000000 -100.0 125.8000 46.80000 0.0
## 41 0.2400000 0.08000000 -100.0 132.8000 45.60000 0.0
## 42 0.1800000 0.04000000 -100.0 124.8000 46.00000 0.0
## 43 0.1000000 0.10000000 -100.0 133.4000 45.80000 0.0
## 44 0.2200000 0.08000000 -100.0 130.4000 46.00000 0.0
## 45 0.1000000 0.04000000 -100.0 114.6000 46.20000 0.0
## 46 0.1400000 0.04000000 -100.2 114.0000 46.20000 0.0
## 47 0.0400000 0.04000000 -100.2 115.6000 46.20000 0.0
## 48 0.1800000 0.08000000 -100.0 114.2000 45.80000 0.0
## 49 0.1600000 0.00000000 -100.2 126.8000 46.00000 0.0
## 50 0.2200000 0.04000000 -100.2 126.8000 45.60000 0.0
## 51 0.1200000 0.02000000 -100.0 117.4000 45.80000 0.0
## 52 0.2800000 0.06000000 -100.0 119.2000 49.80000 0.0
## 53 0.3000000 0.02000000 -100.2 122.6000 54.60000 0.0
## 54 0.2621917 0.06000000 -100.2 115.4000 45.80000 0.0
## 55 0.1600000 0.12000000 -100.2 122.0000 45.80000 0.0
## 56 0.1200000 0.02000000 -100.2 113.6000 46.20000 0.0
## 57 0.1400000 0.06000000 -100.0 120.6000 46.20000 0.0
## 58 0.2400000 0.04000000 -100.2 125.6000 46.00000 0.0
## 59 0.3200000 0.06000000 -100.2 119.0000 46.00000 0.0
## 60 0.0200000 0.02000000 -100.2 119.2000 46.20000 0.0
## 61 0.0200000 0.02000000 -100.2 127.0000 46.00000 0.0
## 62 0.1800000 0.04000000 -100.2 119.4000 46.40000 0.0
## 63 0.1600000 0.02000000 -100.2 126.6000 46.00000 0.0
## 64 0.1200000 0.12000000 -100.2 130.6000 45.80000 0.0
## 65 0.4000000 0.04000000 -100.2 130.0000 46.20000 0.0
## 66 0.1800000 0.02000000 -100.2 124.8000 49.80000 0.0
## 67 0.0600000 0.00000000 -100.2 122.2000 46.20000 0.0
## 68 0.3000000 0.08000000 -100.0 124.8000 46.00000 0.0
## 69 0.3000000 0.02000000 -100.2 121.0000 46.20000 0.0
## 70 0.1200000 0.14000000 -100.2 118.8000 46.00000 0.0
## 71 0.0600000 0.12000000 -100.0 121.8000 49.60000 0.0
## 72 0.2000000 0.12000000 -100.2 124.2000 48.20000 0.0
## 73 0.0600000 0.02000000 -100.2 124.2000 48.00000 0.0
## 74 0.4400000 0.04000000 -100.0 116.0000 48.00000 0.0
## 75 0.1800000 0.06000000 -100.2 120.8000 47.80000 30.2
## 76 0.1000000 0.10000000 -100.2 117.2000 48.00000 37.0
## 77 0.1000000 0.02000000 -100.2 113.2000 60.20000 34.4
## 78 0.0800000 0.00000000 -100.0 116.0000 54.00000 1.4
## 79 0.1800000 0.06000000 -100.2 125.8000 48.00000 22.4
## 80 0.0800000 0.02000000 -100.0 122.2000 48.00000 20.0
## 81 0.0800000 0.00000000 -100.0 133.4000 46.00000 19.6
## 82 0.0400000 0.00000000 -100.2 117.0000 48.20000 34.2
## 83 0.2600000 0.06000000 -100.2 122.6000 47.80000 39.6
## 84 0.0400000 0.00000000 -100.2 118.2000 52.60000 39.6
## 85 0.2090845 0.10000000 -100.2 125.4000 42.40000 0.0
## 86 0.1000000 0.02000000 -100.2 129.0000 42.40000 0.0
## 87 0.1000000 0.08000000 -100.2 121.4000 46.00000 38.2
## 88 0.3200000 0.24000000 -100.0 122.8000 48.00000 30.8
## 89 0.2200000 0.06000000 -100.2 122.4000 52.00000 0.4
## 90 0.1400000 0.04000000 -100.2 123.2000 48.00000 34.0
## 91 0.0800000 0.12000000 -100.2 120.8000 52.40000 34.4
## 92 0.3458257 0.10000000 -100.0 125.1473 46.65351 -50.0
## 93 0.1600000 0.02000000 -100.2 119.2000 46.00000 39.0
## 94 0.3200000 0.04000000 -100.0 122.8000 51.00000 0.0
## 95 0.0600000 0.04000000 -100.2 120.4000 40.60000 0.0
## 96 0.2200000 0.04000000 -100.2 116.4000 46.00000 29.8
## 97 0.3800000 0.06000000 -100.0 122.4000 56.00000 0.0
## 98 0.0400000 0.08000000 -100.2 115.8000 46.00000 22.6
## 99 0.6000000 0.07846553 -100.2 119.0000 51.80000 43.2
## 100 0.3200000 0.06000000 -100.2 116.4000 51.80000 38.0
## 101 0.3000000 0.12000000 -100.2 122.8000 46.80000 0.0
## 102 0.2200000 0.06000000 -100.2 118.2000 46.00000 29.2
## 103 0.1600000 0.02000000 -100.2 116.8000 46.00000 25.8
## 104 0.2000000 0.06000000 -100.2 119.2000 46.00000 16.8
## 105 0.0800000 0.04000000 -100.2 125.4000 46.00000 24.6
## 106 0.1800000 0.16000000 -100.2 125.0000 46.00000 32.6
## 107 0.0200000 0.08000000 -100.2 126.0000 46.00000 32.6
## 108 0.2000000 0.12000000 -100.0 121.6000 45.80000 21.8
## 109 0.1200000 0.02000000 -100.0 123.4000 46.20000 11.8
## 110 0.2200000 0.08000000 -100.0 127.6000 54.80000 0.0
## 111 0.2800000 0.04000000 -100.0 117.2000 46.20000 28.6
## 112 0.1800000 0.04000000 -100.2 116.8000 46.00000 29.2
## 113 0.3600000 0.08000000 -100.2 123.2000 46.00000 36.4
## 114 0.1400000 0.02000000 -100.2 120.2000 46.00000 34.4
## 115 0.1000000 0.04000000 -100.2 127.4000 40.00000 0.0
## 116 0.1600000 0.12000000 -100.0 120.0000 45.80000 29.8
## 117 0.1400000 0.10000000 -100.2 121.4000 46.00000 28.8
## 118 0.1000000 0.04000000 -100.2 125.6000 50.40000 0.0
## 119 0.1400000 0.06000000 -100.2 117.0000 46.00000 39.8
## 120 0.1800000 0.02000000 -100.2 116.8000 46.00000 45.2
## 121 0.2200000 0.06000000 -100.2 118.6000 46.00000 40.6
## 122 0.1800000 0.02000000 -100.0 117.4000 46.00000 12.6
## 123 0.1000000 0.02000000 -100.2 120.4000 46.20000 10.8
## 124 0.0800000 0.00000000 149.0 119.0000 46.00000 14.8
## 125 0.1200000 0.04000000 186.6 116.2000 45.80000 41.2
## 126 0.2600000 0.08000000 113.8 117.0000 45.60000 15.6
## 127 0.1200000 0.04000000 220.4 121.0000 46.00000 47.4
## 128 0.2400000 0.08000000 166.4 119.8000 39.80000 33.2
## 129 0.0200000 0.06000000 199.0 116.2000 46.20000 45.4
## 130 0.2600000 0.08000000 197.2 114.4000 46.00000 39.0
## 131 0.0600000 0.02000000 187.6 118.0000 46.00000 40.8
## 132 0.1800000 0.02000000 192.6 117.0000 46.20000 33.8
## 133 0.1200000 0.10000000 0.2 119.8000 44.40000 0.0
## 134 0.1200000 0.04864621 99.6 117.4000 50.20000 3.2
## 135 0.1400000 0.04000000 90.6 113.0000 50.00000 2.6
## 136 0.1200000 0.06000000 141.2 132.0000 50.40000 36.0
## 137 0.1800000 0.02000000 0.2 127.4000 49.60000 0.0
## 138 0.1800000 0.06000000 145.6 118.1182 46.00000 50.0
## 139 0.1400000 0.00000000 113.6 119.7621 45.40000 28.2
## 140 0.1200000 0.08000000 105.2 118.1182 45.60000 23.0
## 141 0.1400000 0.04000000 90.2 128.0000 50.20000 2.2
## 142 0.3400000 0.02000000 86.8 126.2000 50.40000 1.6
## 143 0.2600000 0.06000000 102.0 122.6000 50.00000 8.0
## 144 0.1600000 0.04000000 73.4 120.4000 53.60000 2.2
## 145 0.2000000 0.04000000 106.8 122.4000 50.20000 9.6
## 146 0.3000000 0.04000000 111.2 126.8000 50.00000 11.2
## 147 0.0400000 0.02000000 112.4 124.6000 49.80000 9.4
## 148 0.0400000 0.02000000 110.4 124.6000 49.60000 11.8
## 149 0.2200000 0.06000000 0.2 133.4000 57.20000 0.0
## 150 0.2400000 0.06000000 109.6 124.8000 50.40000 12.8
## 151 0.3000000 0.04000000 112.4 124.4000 49.20000 11.0
## 152 0.0200000 0.02000000 104.0 124.4000 49.20000 14.4
## 153 0.1200000 0.02000000 109.8 121.8000 49.60000 20.0
## 154 0.1800000 0.10000000 108.2 123.8000 50.40000 20.4
## 155 0.2200000 0.02000000 112.2 123.0000 50.00000 16.2
## 156 0.1200000 0.02000000 111.6 124.8000 50.00000 15.6
## 157 0.1200000 0.02000000 115.8 123.4000 53.60000 16.2
## 158 0.1400000 0.04000000 98.8 120.8000 50.00000 8.2
## 159 0.1800000 0.14000000 101.6 123.0000 49.60000 8.2
## 160 0.0400000 0.02000000 119.6 123.6000 50.20000 12.4
## 161 0.1800000 0.02000000 77.0 123.0000 54.00000 20.8
## 162 0.1000000 0.06000000 66.6 126.6000 44.40000 11.0
## 163 0.1800000 0.04000000 145.2 125.4000 53.00000 11.2
## 164 0.3400000 0.12000000 77.2 123.6000 51.20000 14.8
## 165 0.1200000 0.04000000 140.2 125.0000 50.20000 13.6
## 166 0.1400000 0.04000000 0.2 129.6000 45.40000 0.0
## 167 0.2200000 0.02000000 143.2 123.4000 49.40000 10.6
## 168 0.1200000 0.04000000 141.4 125.2000 45.80000 0.4
## 169 0.1800000 0.04000000 140.6 126.0000 46.20000 0.2
## 170 0.2800000 0.02000000 143.8 124.8000 46.20000 13.2
## 171 0.1400000 0.02000000 0.2 128.0000 40.00000 0.2
## 172 0.3000000 0.12000000 0.2 127.4000 45.60000 0.2
## 173 0.1200000 0.04000000 145.0 125.0000 49.60000 18.2
## 174 0.1400000 0.04000000 146.0 123.8000 49.60000 14.4
## 175 0.2000000 0.04000000 143.8 124.2000 50.00000 12.6
## 176 0.3400000 0.06000000 120.6 122.4000 50.20000 5.8
## 177 0.1800000 0.08000000 126.8 124.4000 50.00000 7.2
## 178 0.1600000 0.06000000 135.6 126.0000 50.40000 15.2
## 179 0.0400000 0.02000000 0.2 128.4000 54.80000 0.0
## 180 0.1800000 0.04000000 165.6 125.2000 50.00000 28.6
## 181 0.1800000 0.10000000 136.0 124.0000 49.80000 9.6
## 182 0.1200000 0.00000000 137.8 128.0000 50.40000 7.6
## 183 0.2000000 0.08000000 134.0 123.8000 48.60000 12.0
## 184 0.1400000 0.04000000 124.2 127.4000 50.00000 11.0
## 185 0.0200000 0.04000000 132.0 128.4000 50.20000 15.2
## 186 0.3000000 0.04000000 133.4 125.4000 50.20000 11.4
## 187 0.2400000 0.02000000 119.2 125.8000 49.80000 8.8
## 188 0.1200000 0.02000000 69.4 128.6000 48.40000 8.0
## 189 0.2200000 0.02000000 126.4 125.2000 51.20000 15.4
## 190 0.1000000 0.02000000 128.0 123.2000 54.60000 3.4
## 191 0.3600000 0.06000000 115.4 124.4000 51.00000 4.8
## 192 0.2400000 0.06000000 119.2 124.0000 50.00000 6.8
## 193 0.1600000 0.06000000 128.4 124.0000 50.40000 12.8
## 194 0.1200000 0.00000000 2.8 132.8000 46.40000 0.4
## 195 0.2800000 0.06000000 137.2 123.4000 49.80000 19.6
## 196 0.2000000 0.04000000 140.2 122.8000 49.80000 14.0
## 197 0.2000000 0.02000000 143.4 121.0000 54.80000 11.0
## 198 0.1000000 0.02000000 145.6 123.4000 50.00000 10.4
## 199 0.2600000 0.04000000 134.4 123.8000 50.60000 13.6
## 200 0.0600000 0.08000000 125.2 124.2000 54.80000 10.2
## 201 0.2200000 0.08000000 129.4 126.2000 46.20000 7.0
## 202 0.2800000 0.12000000 114.8 124.6000 49.40000 2.2
## 203 0.1600000 0.04000000 90.0 132.6000 56.40000 0.8
## 204 0.2000000 0.06000000 153.6 125.4000 50.20000 20.4
## 205 0.1000000 0.02000000 151.8 123.6000 50.00000 21.2
## 206 0.1600000 0.02000000 147.6 124.8000 47.20000 14.6
## 207 0.2000000 0.12000000 143.2 125.4000 46.00000 13.2
## 208 0.3200000 0.04000000 0.2 130.4000 55.00000 -0.4
## 209 0.3200000 0.04000000 154.2 123.4000 58.00000 29.2
## 210 0.0800000 0.04000000 144.0 133.2000 50.80000 11.2
## 211 0.0600000 0.02000000 132.0 124.2000 50.00000 16.4
## 212 0.2800000 0.02000000 137.8 127.0000 50.00000 14.6
## 213 0.0800000 0.04000000 136.2 125.4000 50.00000 9.4
## 214 0.0400000 0.10000000 147.8 124.2000 50.20000 18.6
## 215 0.2200000 0.04000000 149.0 126.0000 50.20000 18.0
## 216 0.0400000 0.06000000 193.0 123.8000 49.80000 44.4
## 217 0.2600000 0.06000000 163.4 123.0000 50.20000 13.4
## 218 0.2000000 0.08000000 164.2 123.2000 49.80000 14.2
## 219 0.1000000 0.00000000 146.8 125.0000 44.00000 21.0
## 220 0.1800000 0.02000000 139.2 123.4000 46.00000 7.0
## 221 0.3600000 0.04000000 147.6 126.4000 50.20000 11.8
## 222 0.2400000 0.06000000 133.2 127.6000 50.40000 6.8
## 223 0.3000000 0.06000000 127.8 126.4000 50.20000 8.0
## 224 0.1000000 0.02000000 162.0 119.4000 54.60000 24.8
## 225 0.4200000 0.00000000 146.0 126.0000 46.00000 9.0
## 226 0.0600000 0.02000000 148.8 128.6000 50.80000 12.2
## 227 0.3400000 0.08000000 0.2 128.4000 52.60000 -0.6
## 228 0.0800000 0.00000000 149.8 126.8000 50.40000 21.6
## 229 0.3400000 0.08000000 154.4 129.6000 50.20000 18.6
## 230 0.2000000 0.02000000 146.2 123.8000 51.80000 16.2
## 231 0.1800000 0.04000000 153.6 131.0000 50.20000 15.2
## 232 0.1800000 0.10000000 148.4 123.8000 50.20000 21.2
## 233 0.3800000 0.04000000 147.4 123.2000 52.80000 21.0
## 234 0.0800000 0.08000000 153.8 121.8000 53.00000 22.0
## 235 0.2000000 0.06000000 146.0 124.2000 53.60000 13.2
## 236 0.0200000 0.04000000 155.4 127.8000 44.40000 22.0
## 237 0.3600000 0.04000000 167.8 131.2000 44.20000 24.2
## 238 0.3200000 0.10000000 152.0 130.2000 44.00000 13.4
## 239 0.3000000 0.04000000 145.6 124.2000 51.20000 11.0
## 240 0.4200000 0.04000000 124.0 124.8000 50.00000 6.4
## 241 0.4200000 0.10000000 147.8 123.8000 50.20000 20.2
## 242 0.2000000 0.14000000 147.4 125.4000 51.60000 19.4
## 243 0.0800000 0.08000000 0.2 130.0000 44.20000 -0.6
## 244 0.2200000 0.00000000 145.4 121.4000 50.20000 23.0
## 245 0.1400000 0.12000000 151.0 123.6000 50.20000 25.4
## 246 0.1800000 0.04000000 149.2 123.2000 50.40000 25.2
## 247 0.0800000 0.02000000 146.0 120.2000 49.60000 27.4
## 248 0.1200000 0.04000000 151.6 124.8000 46.00000 24.8
## 249 0.3800000 0.07613640 0.2 127.6000 37.80000 -0.8
## 250 0.0800000 0.04000000 131.0 125.2000 43.60000 7.0
## 251 0.1400000 0.02000000 0.2 130.8000 44.00000 -0.8
## 252 0.5600000 0.14000000 154.4 126.0000 53.40000 16.8
## 253 0.1400000 0.00000000 81.8 125.2000 51.00000 19.2
## 254 0.2400000 0.06000000 160.0 122.4000 50.00000 26.2
## 255 0.3600000 0.04000000 162.8 126.4000 44.00000 27.2
## 256 0.1800000 0.04000000 0.2 125.0000 49.96538 -1.0
## 257 0.0600000 0.06000000 165.4 125.4000 48.20000 15.2
## 258 0.3600000 0.14000000 173.2 129.6000 50.80000 31.8
## 259 0.1400000 0.04000000 194.4 122.0000 50.00000 26.4
## 260 0.1000000 0.02000000 185.2 123.0000 49.80000 25.0
## 261 0.2000000 0.16000000 178.0 123.2000 46.00000 15.4
## 262 0.0400000 0.04000000 156.8 117.6000 54.00000 10.4
## 263 0.2000000 0.04000000 133.4 122.8000 54.80000 10.2
## 264 0.0600000 0.02000000 177.2 123.6000 47.80000 20.4
## 265 0.1400000 0.04000000 174.8 124.2000 54.60000 20.0
## 266 0.1400000 0.08000000 143.8 121.8000 49.60000 14.0
## 267 0.4000000 0.04000000 170.8 125.0000 50.20000 25.0
## Hyd_Pressure2 Hyd_Pressure3 Hyd_Pressure4 Filler_Level Filler_Speed
## 1 0.2847577 0.3265855 96.0000 129.4000 3986.000
## 2 0.0000000 0.0000000 112.0000 120.0000 4012.000
## 3 0.0000000 0.0000000 98.0000 119.4000 4010.000
## 4 0.0000000 0.0000000 132.0000 120.2000 1997.142
## 5 0.0000000 0.0000000 94.0000 116.0000 4018.000
## 6 0.0000000 0.0000000 94.0000 120.4000 4010.000
## 7 0.0000000 0.0000000 108.0000 119.6000 4010.000
## 8 0.0000000 0.0000000 108.0000 131.4000 3847.011
## 9 0.0000000 0.0000000 110.0000 121.0000 4010.000
## 10 0.0000000 0.0000000 106.0000 120.8000 1006.000
## 11 0.0000000 0.0000000 98.0000 120.2000 4010.000
## 12 0.0000000 0.0000000 96.0000 118.4000 4010.000
## 13 0.0000000 0.0000000 100.0000 119.6000 4010.000
## 14 0.0000000 0.0000000 100.0000 119.8000 4016.000
## 15 0.0000000 0.0000000 92.0000 120.2000 4012.000
## 16 0.0000000 0.0000000 110.0000 130.4000 3925.676
## 17 0.0000000 0.0000000 90.0000 119.2000 3998.000
## 18 0.0000000 0.0000000 90.0000 120.6000 3992.000
## 19 0.0000000 0.0000000 76.0000 120.2000 3996.000
## 20 0.0000000 0.0000000 92.0000 120.0000 3996.000
## 21 0.0000000 0.0000000 94.0000 120.2000 3998.000
## 22 0.0000000 0.0000000 118.0000 120.0000 2834.000
## 23 0.0000000 0.0000000 109.8752 131.4000 1386.000
## 24 0.0000000 0.0000000 96.0000 119.0000 4002.000
## 25 0.0000000 0.0000000 94.0000 120.2000 4010.000
## 26 0.0000000 0.0000000 90.0000 120.6000 4014.000
## 27 0.0000000 0.0000000 102.0000 119.8000 4012.000
## 28 0.0000000 0.0000000 78.0000 119.4000 4010.000
## 29 0.0000000 0.0000000 80.0000 120.0000 4010.000
## 30 0.0000000 0.0000000 78.0000 120.2000 4010.000
## 31 0.0000000 0.0000000 78.0000 120.4000 4010.000
## 32 0.0000000 0.0000000 104.0000 121.8000 1008.000
## 33 0.0000000 0.0000000 104.0000 119.2000 4018.000
## 34 0.0000000 0.0000000 100.0000 120.4000 4014.000
## 35 0.0000000 0.0000000 102.0000 121.0000 3990.000
## 36 0.0000000 0.0000000 100.0000 120.2000 4016.000
## 37 0.0000000 0.0000000 100.0000 119.2000 4010.000
## 38 0.0000000 0.0000000 98.0000 120.8000 4012.000
## 39 0.0000000 0.0000000 74.0000 120.8000 4012.000
## 40 0.0000000 0.0000000 78.0000 123.2000 4010.000
## 41 0.0000000 0.0000000 76.0000 119.0000 4020.000
## 42 0.0000000 0.0000000 94.0000 119.0000 4018.000
## 43 0.0000000 0.0000000 92.0000 120.0000 3982.000
## 44 0.0000000 0.0000000 90.0000 119.0000 3980.000
## 45 0.0000000 0.0000000 100.0000 119.8000 4010.000
## 46 0.0000000 0.0000000 78.0000 119.8000 4012.000
## 47 0.0000000 0.0000000 76.0000 122.8000 4008.000
## 48 0.0000000 0.0000000 96.0000 119.4000 4010.000
## 49 0.0000000 0.0000000 104.0000 120.0000 4012.000
## 50 0.0000000 0.0000000 112.0000 120.8000 4010.000
## 51 0.0000000 0.0000000 72.0000 116.6000 3984.000
## 52 0.0000000 0.0000000 100.0000 119.6000 4010.000
## 53 0.0000000 0.0000000 128.0000 115.4000 1232.000
## 54 0.0000000 0.0000000 96.0000 119.2000 4010.000
## 55 0.0000000 0.0000000 98.0000 120.0000 4010.000
## 56 0.0000000 0.0000000 76.0000 120.6000 4012.000
## 57 0.0000000 0.0000000 98.0000 119.6000 3988.000
## 58 0.0000000 0.0000000 110.0000 120.4000 3942.000
## 59 0.0000000 0.0000000 102.0000 119.2000 3982.000
## 60 0.0000000 0.0000000 96.0000 119.4000 3980.000
## 61 0.0000000 0.0000000 98.0000 121.2000 3984.000
## 62 0.0000000 0.0000000 104.0000 121.0000 3984.000
## 63 0.0000000 0.0000000 84.0000 119.2000 3990.000
## 64 0.0000000 0.0000000 96.0000 119.8000 3986.000
## 65 0.0000000 0.0000000 100.0000 120.6000 3980.000
## 66 0.0000000 0.0000000 102.0000 125.4000 1008.000
## 67 0.0000000 0.0000000 96.0000 120.0000 3984.000
## 68 0.0000000 0.0000000 98.0000 119.8000 3982.000
## 69 0.0000000 0.0000000 98.0000 120.4000 3984.000
## 70 0.0000000 0.0000000 100.0000 120.2000 3986.000
## 71 0.0000000 0.0000000 120.0000 113.2000 1172.000
## 72 0.0000000 0.0000000 100.0000 119.2000 3984.000
## 73 0.0000000 0.0000000 80.0000 119.4000 3988.000
## 74 0.0000000 0.0000000 76.0000 116.8000 3984.000
## 75 33.0000000 35.0000000 98.0000 110.2000 3786.000
## 76 34.8000000 38.6000000 92.0000 110.4000 3984.000
## 77 35.6000000 26.4000000 82.0000 113.4000 3600.000
## 78 3.8000000 8.0000000 116.0000 126.0000 2354.000
## 79 39.6000000 31.4000000 80.0000 120.0000 3790.000
## 80 38.4000000 30.8000000 80.0000 121.6000 3792.000
## 81 39.8000000 28.4000000 108.0000 120.2000 3792.000
## 82 30.6000000 21.8000000 100.0000 119.8000 3716.000
## 83 31.6000000 23.6000000 106.0000 120.2000 3716.000
## 84 30.0000000 19.8000000 124.0000 117.6000 3196.000
## 85 0.0000000 0.0000000 130.0000 121.6000 2570.122
## 86 0.0000000 0.0000000 122.0000 120.4000 1008.000
## 87 30.8000000 23.2000000 80.0000 118.6000 3898.000
## 88 33.0000000 25.2000000 98.0000 119.6000 3804.000
## 89 15.2000000 13.8000000 120.0000 121.4000 1522.000
## 90 30.4000000 21.4000000 98.0000 120.0000 3806.000
## 91 32.2000000 23.6000000 94.0000 125.4000 3810.000
## 92 -50.0000000 -50.0000000 103.6395 109.2136 3989.706
## 93 34.6000000 30.0000000 122.0000 120.8000 3690.000
## 94 0.2000000 0.0000000 68.0000 122.2000 1006.000
## 95 0.2000000 0.0000000 124.0000 125.0000 1010.000
## 96 34.0000000 23.4000000 96.0000 120.0000 3880.000
## 97 0.2000000 0.0000000 98.0000 146.6000 3822.908
## 98 35.8000000 32.6000000 96.0000 119.6000 4012.000
## 99 34.2000000 34.8000000 118.0000 120.4000 3896.000
## 100 35.0000000 35.0000000 82.0000 118.6000 3898.000
## 101 0.2000000 0.0000000 114.0000 121.0000 1008.000
## 102 36.2000000 33.0000000 72.0000 119.4000 4020.000
## 103 56.4000000 21.2000000 98.0000 119.6000 3904.000
## 104 27.6000000 21.4000000 96.0000 120.0000 3898.000
## 105 26.8000000 20.4000000 106.0000 119.4000 3902.000
## 106 26.6000000 23.2000000 104.0000 120.0000 3896.000
## 107 61.4000000 34.8000000 102.0000 119.8000 3894.000
## 108 24.0000000 29.6000000 94.0000 120.6000 4002.000
## 109 19.4000000 24.2000000 96.0000 119.8000 3908.000
## 110 0.0000000 0.0000000 118.0000 122.6000 1006.000
## 111 40.4000000 32.4000000 92.0000 119.4000 3896.000
## 112 39.2000000 30.8000000 90.0000 119.4000 3894.000
## 113 32.2000000 28.0000000 74.0000 121.4000 3904.000
## 114 36.4000000 22.8000000 78.0000 119.4000 3800.000
## 115 0.2000000 0.0000000 120.0000 153.2000 3822.908
## 116 40.2000000 26.2000000 94.0000 121.2000 3914.000
## 117 40.6000000 26.6000000 102.0000 119.6000 3908.000
## 118 0.2000000 0.0000000 114.0000 118.4000 1396.168
## 119 33.8000000 30.0000000 96.0000 119.4000 3892.000
## 120 35.2000000 32.8000000 98.0000 119.2000 3896.000
## 121 35.0000000 30.6000000 96.0000 119.8000 3998.000
## 122 47.8000000 31.0000000 100.0000 119.6000 3908.000
## 123 47.2000000 29.4000000 94.0000 119.8000 3908.000
## 124 44.0000000 26.6000000 92.0000 120.0000 3910.000
## 125 34.4000000 36.2000000 94.0000 121.6000 3916.000
## 126 23.8000000 17.4000000 104.0000 116.4000 3040.000
## 127 21.6000000 38.6000000 80.0000 119.8000 3906.000
## 128 31.2000000 16.4000000 100.0000 120.0000 3796.000
## 129 34.4000000 21.4000000 76.0000 118.8000 4010.000
## 130 35.0000000 21.4000000 74.0000 121.2000 4010.000
## 131 26.0000000 19.2000000 94.0000 120.4000 3894.000
## 132 30.0000000 21.2000000 92.0000 120.0000 3804.000
## 133 0.2000000 0.0000000 110.0000 143.6000 1010.000
## 134 24.2000000 31.4000000 100.0000 130.4000 3598.000
## 135 21.8000000 29.4000000 112.0000 130.2000 3598.000
## 136 32.4000000 31.2000000 118.0000 100.6000 3598.000
## 137 0.2000000 0.0000000 112.0000 127.4000 3989.706
## 138 30.8000000 33.0000000 82.0000 120.8000 3608.000
## 139 23.2000000 28.4000000 84.0000 120.0000 3598.000
## 140 22.0000000 27.6000000 82.0000 120.2000 3598.000
## 141 26.2000000 28.8000000 100.0000 80.0000 3614.000
## 142 25.4000000 27.0000000 98.0000 85.8000 3614.000
## 143 25.6000000 35.2000000 100.0000 79.8000 3696.000
## 144 17.6000000 25.8000000 114.0000 77.8000 2722.000
## 145 25.8000000 37.6000000 78.0000 79.4000 3898.000
## 146 26.8000000 38.4000000 82.0000 79.4000 3986.000
## 147 26.6000000 40.8000000 82.0000 85.2000 3910.000
## 148 24.2000000 40.4000000 98.0000 80.6000 3794.000
## 149 0.2000000 0.0000000 128.0000 104.4000 1006.000
## 150 26.0000000 37.8000000 102.0000 80.8000 3808.000
## 151 27.2000000 40.4000000 94.0000 80.2000 3854.000
## 152 19.6000000 37.4000000 100.0000 80.0000 3850.000
## 153 20.6000000 39.2000000 90.0000 81.0000 3812.000
## 154 21.0000000 36.6000000 100.0000 109.8000 3864.000
## 155 24.6000000 34.6000000 114.0000 80.0000 3910.000
## 156 29.6000000 32.0000000 102.0000 100.2000 3910.000
## 157 31.2000000 33.0000000 120.0000 100.6000 3916.000
## 158 22.4000000 33.8000000 102.0000 79.4000 3906.000
## 159 23.0000000 36.4000000 96.0000 81.0000 3908.000
## 160 35.4000000 35.4000000 98.0000 90.0000 4000.000
## 161 10.2000000 13.4000000 109.8752 96.0000 1008.000
## 162 7.6000000 13.6000000 104.0000 121.8000 1010.000
## 163 37.2000000 34.6000000 96.0000 90.2000 4010.000
## 164 10.0000000 11.0000000 80.0000 93.2000 1494.000
## 165 36.2000000 32.4000000 94.0000 90.6000 3994.000
## 166 0.2000000 -1.2000000 130.0000 90.0000 1008.000
## 167 37.6000000 34.4000000 118.0000 89.6000 3996.000
## 168 39.0000000 49.0000000 84.0000 90.8000 3998.000
## 169 38.8000000 49.2000000 76.0000 114.4000 3894.000
## 170 36.6000000 34.0000000 84.0000 89.6000 3952.000
## 171 0.2000000 -1.2000000 126.0000 120.8000 1012.000
## 172 0.2000000 -1.2000000 124.0000 143.8000 1012.000
## 173 37.4000000 30.2000000 100.0000 90.0000 3980.000
## 174 36.0000000 35.0000000 98.0000 90.0000 3984.000
## 175 35.2000000 35.8000000 102.0000 89.8000 3982.000
## 176 30.6000000 30.4000000 98.0000 120.2000 3988.000
## 177 31.8000000 30.0000000 96.0000 70.4000 3978.000
## 178 32.4000000 32.0000000 98.0000 69.4000 3980.000
## 179 0.2000000 -1.2000000 140.0000 95.8000 1008.000
## 180 34.8000000 34.6000000 96.0000 69.6000 3892.000
## 181 36.2000000 32.2000000 96.0000 70.4000 3996.000
## 182 37.6000000 35.2000000 82.0000 69.2000 3894.000
## 183 31.0000000 33.0000000 96.0000 70.2000 3904.000
## 184 27.6000000 29.8000000 98.0000 70.8000 3922.000
## 185 29.4000000 32.0000000 100.0000 70.4000 3892.000
## 186 33.2000000 31.8000000 94.0000 100.4000 3898.000
## 187 28.0000000 28.0000000 100.0000 110.0000 3892.000
## 188 7.4000000 21.0000000 128.0000 115.6000 1012.000
## 189 26.6000000 28.4000000 100.0000 88.6000 3918.000
## 190 35.0000000 35.2000000 102.0000 90.4000 3906.000
## 191 27.4000000 30.6000000 102.0000 93.2000 3904.000
## 192 27.2000000 31.2000000 100.0000 116.4000 3904.000
## 193 28.2000000 32.2000000 84.0000 89.0000 3906.000
## 194 0.2000000 -1.2000000 116.0000 92.8000 1016.000
## 195 30.4000000 30.8000000 86.0000 101.8000 3908.000
## 196 33.0000000 33.2000000 92.0000 91.2000 4002.000
## 197 38.4000000 34.6000000 102.0000 89.8000 3994.000
## 198 38.6000000 39.0000000 82.0000 90.0000 3898.000
## 199 32.6000000 31.2000000 100.0000 90.0000 3892.000
## 200 29.8000000 29.0000000 98.0000 101.0000 3954.000
## 201 35.0000000 31.4000000 78.0000 90.4000 3892.000
## 202 30.0000000 29.8000000 80.0000 96.2000 3902.000
## 203 8.4000000 20.0000000 100.0000 80.8000 1378.000
## 204 38.0000000 31.8000000 92.0000 137.0000 3996.000
## 205 35.6000000 33.2000000 92.0000 89.8000 3998.000
## 206 36.2000000 35.2000000 84.0000 107.4000 3892.000
## 207 35.4000000 33.4000000 80.0000 90.2000 3892.000
## 208 0.2000000 -1.2000000 130.0000 90.0000 1010.000
## 209 31.2000000 33.0000000 128.0000 117.0000 3504.000
## 210 36.0000000 36.6000000 82.0000 103.0000 3912.000
## 211 27.0000000 29.8000000 116.0000 99.2000 3910.000
## 212 32.6000000 30.2000000 116.0000 100.0000 3904.000
## 213 34.6000000 31.4000000 90.0000 100.2000 3910.000
## 214 35.4000000 31.8000000 98.0000 99.6000 3906.000
## 215 35.4000000 32.6000000 106.0000 89.8000 3998.000
## 216 45.8000000 40.0000000 96.0000 89.8000 3600.000
## 217 45.0000000 40.6000000 96.0000 90.8000 3910.000
## 218 45.0000000 41.2000000 100.0000 90.8000 3908.000
## 219 34.8000000 31.8000000 74.0000 99.4000 4008.000
## 220 36.2000000 33.0000000 82.0000 121.4000 3978.000
## 221 38.0000000 32.0000000 96.0000 120.0000 3980.000
## 222 34.4000000 30.0000000 104.0000 109.6000 3990.000
## 223 31.0000000 28.6000000 102.0000 111.0000 3998.000
## 224 37.4000000 36.6000000 98.0000 110.8000 3996.000
## 225 39.8000000 35.8000000 86.0000 109.2000 3992.000
## 226 38.6000000 37.6000000 106.0000 110.6000 3996.000
## 227 0.2000000 -1.2000000 134.0000 110.2000 2449.465
## 228 34.0000000 32.4000000 92.0000 110.2000 3992.000
## 229 38.0000000 35.8000000 98.0000 110.4000 3994.000
## 230 36.2000000 32.8000000 96.0000 110.4000 3992.000
## 231 39.0000000 36.8000000 90.0000 109.0000 3992.000
## 232 33.2000000 32.8000000 96.0000 110.4000 3988.000
## 233 32.0000000 32.8000000 104.0000 111.0000 3988.000
## 234 36.0000000 33.4000000 80.0000 77.4000 3996.000
## 235 37.4000000 35.6000000 80.0000 93.4000 4006.000
## 236 37.4000000 35.4000000 84.0000 109.4000 3990.000
## 237 40.2000000 37.8000000 102.0000 110.2000 3990.000
## 238 40.6000000 36.0000000 104.0000 110.2000 3994.000
## 239 37.4000000 34.6000000 92.0000 110.2000 3992.000
## 240 32.0000000 27.2000000 92.0000 109.4000 3994.000
## 241 34.0000000 33.0000000 100.0000 109.0000 3996.000
## 242 36.6000000 30.8000000 84.0000 110.4000 3992.000
## 243 0.2000000 -1.2000000 110.0000 110.8000 1406.000
## 244 32.6000000 31.4000000 112.0000 109.2000 3992.000
## 245 34.4000000 31.4000000 96.0000 110.2000 3992.000
## 246 34.2000000 30.8000000 88.0000 110.8000 3992.000
## 247 32.6000000 30.8000000 104.0000 107.4000 3786.000
## 248 34.6000000 32.8000000 76.0000 106.0000 3992.000
## 249 0.2000000 -1.2000000 114.0000 110.0000 1404.000
## 250 34.0000000 32.0000000 96.0000 111.0000 3992.000
## 251 0.2000000 -1.2000000 126.0000 109.4000 1406.000
## 252 33.6000000 36.8000000 102.0000 109.4000 3998.000
## 253 4.2000000 13.6000000 109.8752 115.2000 1402.000
## 254 32.0000000 35.0000000 82.0000 109.6000 3990.000
## 255 33.0000000 36.0000000 76.0000 110.6000 3990.000
## 256 0.2000000 -1.2000000 128.0000 109.2136 1410.000
## 257 36.2000000 38.4000000 116.0000 110.2000 4002.000
## 258 33.8000000 37.4000000 76.0000 98.4000 3994.000
## 259 35.8000000 42.0000000 100.0000 110.4000 3996.000
## 260 35.2000000 36.6000000 98.0000 109.6000 3994.000
## 261 34.4000000 41.6000000 80.0000 110.2000 3992.000
## 262 29.8000000 36.4000000 82.0000 100.6000 3996.000
## 263 21.4000000 27.8000000 104.0000 105.8000 2766.000
## 264 34.8000000 38.0000000 78.0000 110.6000 4008.000
## 265 33.0000000 40.6000000 124.0000 111.2000 3992.000
## 266 25.6000000 34.0000000 106.0000 109.4000 3992.000
## 267 28.6000000 38.0000000 116.0000 110.2000 3994.000
## Temperature Usage_cont Carb_Flow Density MFR Balling
## 1 66.00000 21.66000 2950 0.8800000 727.6000 1.398000
## 2 65.60000 17.60000 2916 1.5000000 735.8000 2.942000
## 3 65.60000 24.18000 3056 0.9000000 734.8000 1.448000
## 4 74.40000 18.12000 28 0.7400000 407.7807 1.056000
## 5 66.40000 21.32000 3214 0.8800000 752.0000 1.398000
## 6 66.60000 18.00000 3064 0.8400000 732.0000 1.298000
## 7 66.80000 17.68000 3042 1.4800000 729.8000 2.894000
## 8 66.31562 12.90000 1972 1.6000000 681.4114 3.320000
## 9 65.80000 17.70000 2502 1.5200000 741.2000 2.992000
## 10 66.00000 22.80000 28 1.4800000 214.8635 2.892000
## 11 65.40000 20.04000 3172 0.8600000 732.8000 1.348000
## 12 65.80000 17.16000 3100 0.8600000 735.8000 1.348000
## 13 65.40000 20.52000 2926 0.9200000 735.6000 1.498000
## 14 65.60000 21.44000 2954 0.9400000 736.4000 1.548000
## 15 67.60000 21.08000 3074 0.9800000 738.0000 1.648000
## 16 69.00000 18.16000 32 0.8000000 710.2604 1.198000
## 17 66.00000 18.60000 3004 0.8800000 730.4000 1.398000
## 18 65.80000 18.18000 3090 0.9400000 728.6000 1.548000
## 19 64.20000 21.68000 2936 1.6400000 729.8000 3.290000
## 20 65.40000 22.28000 2972 0.9200000 726.8000 1.498000
## 21 65.60000 24.02000 3094 0.9200000 732.0000 1.498000
## 22 67.40000 13.56000 3154 0.7000000 523.4000 0.946000
## 23 66.40000 19.32000 868 1.5600000 214.8635 3.092000
## 24 67.00000 17.52000 2592 0.8800000 731.4000 1.398000
## 25 66.40000 20.38000 2996 0.9000000 736.8000 1.448000
## 26 66.00000 24.12000 3060 0.9000000 738.6000 1.448000
## 27 66.80000 17.54000 3136 0.9400000 741.2000 1.548000
## 28 65.60000 18.12000 3194 1.6400000 735.2000 3.290000
## 29 64.80000 16.94000 3162 1.6600000 740.8000 3.340000
## 30 64.60000 17.04000 2982 1.6600000 733.8000 3.340000
## 31 65.40000 23.44000 3182 1.6800000 732.4000 3.390000
## 32 70.60000 19.22000 32 1.4200000 214.8635 2.750000
## 33 66.00000 18.04000 3190 0.9200000 733.6000 1.496000
## 34 65.20000 22.02000 2862 0.9000000 729.8000 1.448000
## 35 65.00000 16.72000 3122 0.9200000 724.2000 1.498000
## 36 65.40000 17.76000 3048 1.5000000 732.8000 2.942000
## 37 66.20000 17.76000 3080 1.5000000 730.0000 2.942000
## 38 66.40000 21.46000 3102 1.5200000 731.8000 2.992000
## 39 65.00000 19.68000 2900 1.7000000 732.2000 3.440000
## 40 65.20000 16.74000 2880 1.7200000 745.4000 3.490000
## 41 65.60000 16.92000 3350 1.7200000 740.0000 3.490000
## 42 66.00000 19.53903 3020 0.9400000 720.4000 1.548000
## 43 66.40000 20.28000 2726 0.9000000 726.6000 1.448000
## 44 68.20000 20.88000 3276 0.9400000 731.6000 1.548000
## 45 65.60000 19.72000 3042 0.9400000 724.4000 1.548000
## 46 64.60000 19.82000 3040 1.7400000 721.8000 3.538000
## 47 64.00000 18.78000 2950 1.7600000 759.0000 3.588000
## 48 65.40000 17.34000 3032 0.9400000 745.6000 1.548000
## 49 66.80000 21.20000 3010 1.6200000 731.0000 3.242000
## 50 65.80000 18.50000 2962 1.5600000 742.0000 3.092000
## 51 65.40000 19.47500 3016 1.7800000 736.2000 3.638000
## 52 65.60000 16.34000 3182 0.9000000 726.2000 1.448000
## 53 65.80000 18.98000 3740 0.8000000 259.4330 1.198000
## 54 65.20000 19.24000 3038 0.9000000 735.4000 1.448000
## 55 65.20000 18.42000 2966 0.8800000 734.6000 1.398000
## 56 65.40000 14.04000 3002 1.7200000 759.0000 3.490000
## 57 67.40000 21.10000 2968 0.9400000 741.2000 1.548000
## 58 66.80000 22.90000 3054 0.9200000 715.0000 1.496000
## 59 67.80000 16.78000 2980 0.8600000 722.0000 1.348000
## 60 65.20000 20.28000 2994 0.8600000 734.4000 1.348000
## 61 65.40000 14.28000 2994 0.8200000 731.2000 1.248000
## 62 65.00000 19.88000 2988 0.9200000 728.8000 1.498000
## 63 65.40000 21.40000 2988 1.6200000 727.0000 3.240000
## 64 64.80000 21.82000 2996 0.8800000 726.2000 1.398000
## 65 65.60000 20.56000 2988 0.9200000 734.0000 1.498000
## 66 65.40000 24.06000 3032 0.9800000 641.2000 1.648000
## 67 67.40000 24.06000 2990 1.0000000 723.4000 1.698000
## 68 67.20000 24.06000 2980 1.0000000 726.6000 1.698000
## 69 66.60000 19.56000 2988 0.9800000 733.2000 1.646000
## 70 67.20000 16.46000 3010 0.9800000 727.6000 1.648000
## 71 68.20000 23.26000 3684 0.7400000 232.4000 1.048000
## 72 65.60000 21.14000 3064 0.9400000 731.6000 1.548000
## 73 66.80000 23.58000 3030 1.8200000 732.0000 3.738000
## 74 66.00000 20.10000 3104 1.8200000 720.4000 3.738000
## 75 65.80000 19.88000 3156 1.7000000 687.8000 3.440000
## 76 66.20000 24.24000 3380 1.7000000 724.2000 3.440000
## 77 64.20000 16.20000 3486 1.8000000 643.8000 3.686000
## 78 66.20000 16.26000 3568 0.8400000 573.6000 1.298000
## 79 65.40000 20.32000 3272 1.7200000 688.8000 3.490000
## 80 65.00000 22.94000 3472 1.7800000 671.6000 3.638000
## 81 65.40000 19.58000 3308 0.9400000 680.6000 1.548000
## 82 67.00000 16.44000 3088 0.8000000 676.4000 1.196000
## 83 67.00000 18.00000 3074 0.7800000 666.4000 1.146000
## 84 66.80000 21.16000 3530 0.8000000 569.0000 1.196000
## 85 68.80000 19.56000 252 0.7800000 510.6101 1.148000
## 86 65.80000 21.80000 278 0.8400000 214.8635 1.298000
## 87 63.80000 19.84000 2956 1.6800000 730.0000 3.390000
## 88 66.60000 17.32000 3006 0.9800000 692.0000 1.646000
## 89 71.60000 17.74000 3824 1.5000000 313.0000 2.950000
## 90 65.40000 16.84000 3106 0.9200000 693.2000 1.498000
## 91 68.40000 21.54000 3858 1.4600000 696.6000 2.846000
## 92 66.00502 20.16000 0 0.0600000 730.5004 3.480000
## 93 69.00000 17.94000 2946 1.6400000 667.8000 3.294000
## 94 67.60000 22.16000 44 1.6000000 259.4330 3.192000
## 95 75.40000 19.44000 44 1.6000000 259.4330 3.212000
## 96 65.20000 19.38000 3078 0.9800000 700.6000 1.648000
## 97 64.40000 22.62000 46 1.6800000 677.8797 3.390000
## 98 65.80000 21.78000 3038 0.9800000 731.0000 1.648000
## 99 66.20000 18.24000 3256 1.5400000 703.4000 3.042000
## 100 66.00000 17.52000 3206 1.5800000 723.4000 3.142000
## 101 69.20000 13.40000 42 1.6600000 214.8635 3.344000
## 102 66.20000 18.06000 3004 1.6400000 731.4000 3.290000
## 103 65.20000 17.00000 3132 0.9200000 712.0000 1.498000
## 104 64.80000 18.90000 3108 0.9000000 710.6000 1.448000
## 105 65.40000 22.48000 3178 0.9000000 707.0000 1.448000
## 106 64.80000 20.16000 3174 0.9000000 711.2000 1.448000
## 107 67.00000 20.98000 3286 0.9000000 706.0000 1.448000
## 108 69.20000 18.44000 3234 0.9800000 727.8000 1.648000
## 109 66.80000 20.20000 3310 0.9400000 709.0000 1.548000
## 110 65.80000 16.24000 44 0.9400000 259.4330 1.548000
## 111 66.20000 20.68000 3112 0.9400000 728.4000 1.548000
## 112 65.80000 20.56000 3136 0.9400000 712.8000 1.548000
## 113 67.80000 24.34000 3196 1.6200000 708.8000 3.242000
## 114 65.60000 16.82000 3182 1.6200000 688.4000 3.240000
## 115 67.80000 20.60000 1962 0.8000000 677.8797 1.196000
## 116 65.80000 17.66000 3062 0.9200000 708.4000 1.496000
## 117 66.00000 22.88000 3078 0.9200000 713.6000 1.496000
## 118 65.40000 24.60000 44 1.6000000 15.6000 3.192000
## 119 65.40000 16.02000 3106 0.8800000 710.0000 1.398000
## 120 66.20000 18.98000 3118 0.9400000 716.8000 1.548000
## 121 65.60000 21.84000 3024 0.9800000 731.6000 1.648000
## 122 65.80000 24.20000 3060 0.9200000 711.2000 1.496000
## 123 66.00000 16.30000 3070 0.9200000 716.6000 1.496000
## 124 65.40000 19.12000 3104 0.9200000 714.2000 1.498000
## 125 66.00000 16.34000 3070 0.8600000 718.2000 1.348000
## 126 66.60000 15.80000 3232 1.5200000 490.6000 2.992000
## 127 68.80000 16.52000 3058 1.0000000 712.2000 1.698000
## 128 66.80000 18.84000 2868 1.0400000 686.6000 1.796000
## 129 65.80000 17.18000 3000 1.6400000 729.8000 3.290000
## 130 66.20000 17.42000 2982 1.6800000 733.4000 3.390000
## 131 65.80000 16.08000 3040 0.8600000 711.2000 1.348000
## 132 65.40000 16.10000 3078 0.8400000 695.2000 1.298000
## 133 68.40000 22.94000 40 1.4800000 259.4330 2.894000
## 134 65.80000 18.64000 3220 0.9400000 654.8000 1.548000
## 135 68.40000 19.02000 3216 1.6400000 657.0000 3.294000
## 136 66.40000 17.20000 3426 1.5600000 658.6000 3.092000
## 137 69.80000 19.68000 34 1.5600000 730.5004 3.096000
## 138 67.60000 23.14000 3042 1.6200000 662.8000 3.242000
## 139 67.40000 22.70000 3050 1.6200000 657.0000 3.242000
## 140 67.20000 16.88000 3056 1.6600000 656.6000 3.342000
## 141 67.20000 21.30000 3310 0.9800000 655.4000 1.648000
## 142 65.40000 16.24000 3188 0.9800000 735.4000 1.648000
## 143 65.60000 23.18000 3308 0.9600000 675.4000 1.596000
## 144 65.00000 18.32000 3630 0.9400000 501.0000 1.548000
## 145 66.00000 23.38000 3202 1.7200000 706.2000 3.490000
## 146 66.40000 16.46000 3218 1.7600000 721.8000 3.588000
## 147 66.40000 21.68000 3200 1.7600000 692.0000 3.588000
## 148 65.60000 20.28000 3116 1.0400000 690.6000 1.796000
## 149 65.60000 23.72000 86 0.9200000 259.4330 1.498000
## 150 65.40000 22.80000 3230 0.9800000 684.6000 1.648000
## 151 65.40000 16.96000 3244 0.9800000 700.8000 1.648000
## 152 65.40000 16.32000 3288 1.0200000 696.4000 1.746000
## 153 68.40000 14.32000 3338 1.5400000 680.8000 3.044000
## 154 66.00000 17.72000 3290 0.9400000 703.2000 1.548000
## 155 66.40000 21.66000 3274 0.9800000 710.0000 1.646000
## 156 66.40000 20.36000 3290 0.9800000 708.6000 1.646000
## 157 68.00000 21.40000 3514 0.9800000 709.8000 1.648000
## 158 66.60000 23.70000 3286 0.9000000 703.0000 1.448000
## 159 66.40000 16.48000 3274 0.8800000 711.6000 1.398000
## 160 66.00000 17.76000 3262 0.9000000 729.2000 1.448000
## 161 65.20000 13.48000 3224 0.8000000 290.6000 1.198000
## 162 65.00000 19.16000 3286 1.6000000 259.4330 3.190000
## 163 65.20000 18.64000 3370 0.8600000 730.8000 1.348000
## 164 65.80000 19.84000 3766 0.7400000 349.8000 1.048000
## 165 65.40000 21.86000 3276 0.8600000 730.6000 1.348000
## 166 65.80000 23.16000 40 0.7200000 259.4330 0.996000
## 167 68.00000 21.30000 3284 0.9200000 726.6000 1.498000
## 168 66.00000 17.60000 3094 1.7600000 727.2000 3.588000
## 169 66.40000 17.68000 2978 1.7800000 784.8000 3.638000
## 170 65.80000 20.32000 3104 1.6600000 719.2000 3.340000
## 171 72.00000 17.80000 44 0.7000000 259.4330 0.950000
## 172 67.20000 19.42000 44 0.7600000 259.4330 1.096000
## 173 64.60000 23.84000 3256 0.9600000 727.0000 1.598000
## 174 65.80000 16.60000 3248 0.9800000 727.2000 1.648000
## 175 65.40000 17.16000 3262 0.9200000 724.8000 1.498000
## 176 65.40000 17.42000 3146 0.9200000 730.6000 1.498000
## 177 65.20000 17.82000 3264 0.9800000 726.6000 1.648000
## 178 65.40000 18.08000 3280 0.9800000 728.4000 1.648000
## 179 65.60000 23.26000 44 1.6000000 214.8635 3.192000
## 180 65.20000 23.64000 3418 0.8600000 706.6000 1.348000
## 181 65.80000 24.16000 3348 0.9000000 730.6000 1.448000
## 182 65.00000 23.86000 3348 1.7000000 712.4000 3.440000
## 183 65.40000 23.58000 3268 0.9600000 716.6000 1.596000
## 184 65.40000 23.50000 3350 0.9000000 716.0000 1.448000
## 185 65.40000 23.72000 3364 0.8800000 708.0000 1.398000
## 186 65.40000 23.60000 3272 1.0000000 714.4000 1.698000
## 187 66.00000 23.98000 3276 1.1000000 704.4000 1.946000
## 188 65.80000 24.10000 3200 1.6400000 95.0000 3.290000
## 189 65.00000 23.62000 3318 0.9200000 734.6000 1.498000
## 190 65.40000 23.78000 3426 1.6800000 712.8000 3.390000
## 191 64.80000 23.56000 3296 1.6000000 712.4000 3.190000
## 192 65.80000 23.80000 3248 0.9400000 726.4000 1.548000
## 193 65.40000 23.90000 3272 1.6800000 719.8000 3.390000
## 194 66.20000 23.98000 42 1.7000000 259.4330 3.440000
## 195 65.80000 23.84000 3272 1.7800000 701.2000 3.638000
## 196 69.00000 23.42000 3190 1.0600000 727.8000 1.848000
## 197 65.40000 24.22000 3496 1.5800000 733.8000 3.142000
## 198 65.80000 24.16000 3266 1.5400000 712.8000 3.042000
## 199 66.20000 23.94000 3308 0.9800000 711.6000 1.646000
## 200 65.40000 23.48000 3398 0.9400000 717.2000 1.548000
## 201 64.20000 23.88000 3098 1.8000000 707.0000 3.686000
## 202 65.20000 23.80000 3134 1.7600000 740.4000 3.588000
## 203 66.80000 23.86000 3778 0.9200000 142.2000 1.496000
## 204 66.00000 23.68000 2990 1.0400000 783.2000 1.796000
## 205 66.80000 24.08000 3260 1.0600000 730.4000 1.846000
## 206 66.40000 23.60000 3068 1.8200000 690.0000 3.738000
## 207 66.60000 23.74000 3018 1.8400000 708.6000 3.788000
## 208 66.00000 23.84000 44 1.5800000 259.4330 3.142000
## 209 68.20000 23.98000 1048 1.0000000 612.8000 1.698000
## 210 67.00000 24.12000 1064 1.0800000 702.0000 1.896000
## 211 66.20000 23.74000 1086 0.9200000 707.0000 1.496000
## 212 66.60000 23.48000 1074 1.0000000 711.6000 1.696000
## 213 65.80000 23.72000 1060 1.0600000 708.0000 1.846000
## 214 65.80000 24.20000 1062 0.9400000 715.4000 1.548000
## 215 65.40000 23.68000 1064 1.7200000 728.8000 3.490000
## 216 65.20000 24.08000 1070 1.6000000 658.6000 3.190000
## 217 65.20000 23.68000 1068 1.0200000 720.2000 1.746000
## 218 64.80000 24.24000 1070 0.9600000 708.8000 1.598000
## 219 65.40000 24.22000 1098 1.8000000 734.4000 3.688000
## 220 64.60000 23.88000 1084 1.8400000 727.2000 3.786000
## 221 65.40000 23.96000 1090 0.9400000 727.8000 1.548000
## 222 65.00000 23.50000 1082 0.9400000 726.2000 1.548000
## 223 64.80000 23.92000 1092 0.9600000 726.4000 1.598000
## 224 66.20000 24.04000 1062 1.1400000 744.2000 2.046000
## 225 65.00000 24.10000 1064 1.8400000 729.6000 3.786000
## 226 66.40000 23.80000 1062 1.7400000 722.4000 3.540000
## 227 72.00000 23.74000 44 0.9000000 511.3035 1.402000
## 228 66.00000 23.98000 1090 0.9400000 722.6000 1.548000
## 229 64.20000 23.78000 1076 0.9600000 727.8000 1.598000
## 230 64.40000 23.58000 1072 0.9600000 723.4000 1.598000
## 231 65.00000 24.12000 1076 0.9400000 729.4000 1.548000
## 232 64.20000 23.74000 1080 0.9400000 728.0000 1.548000
## 233 65.20000 24.18000 1074 0.8800000 734.2000 1.398000
## 234 64.80000 23.96000 1074 1.8200000 735.4000 3.736000
## 235 65.20000 23.62000 1060 1.8200000 720.6000 3.736000
## 236 68.40000 23.78000 1074 1.0400000 725.8000 1.798000
## 237 67.40000 23.82000 1076 0.9600000 732.2000 1.596000
## 238 65.60000 23.56000 1078 0.9400000 728.6000 1.548000
## 239 66.80000 23.66000 1054 1.0400000 726.2000 1.796000
## 240 67.00000 24.00000 1066 1.0000000 731.0000 1.696000
## 241 67.60000 23.72000 1062 0.9600000 725.4000 1.598000
## 242 66.80000 23.74000 1058 1.8200000 728.4000 3.738000
## 243 75.20000 23.88000 44 1.7600000 259.4330 3.610000
## 244 67.80000 23.86000 1074 1.6800000 737.4000 3.392000
## 245 66.00000 23.54000 1064 0.9400000 724.2000 1.548000
## 246 66.20000 23.60000 1064 0.9400000 762.4000 1.548000
## 247 66.20000 23.56000 1056 0.9000000 661.0000 1.448000
## 248 64.00000 23.92000 1064 1.7800000 738.6000 3.638000
## 249 65.00000 23.84000 42 1.7600000 259.4330 3.588000
## 250 65.60000 23.68000 1056 1.0600000 724.4000 1.846000
## 251 72.40000 23.68000 42 0.6800000 214.8635 0.902000
## 252 66.20000 23.64000 1066 0.9600000 730.8000 1.596000
## 253 65.80000 23.88000 668 0.8400000 214.8635 1.298000
## 254 64.60000 23.58000 1070 1.6800000 725.8000 3.390000
## 255 64.40000 24.18000 1068 1.7200000 722.6000 3.488000
## 256 73.80000 23.76000 38 0.9295738 582.2000 1.551119
## 257 67.00000 23.76000 1044 0.5400000 749.2000 1.766000
## 258 65.40000 23.84000 1048 1.3200000 718.8000 3.714000
## 259 65.80000 23.82000 1116 0.5000000 727.0000 1.666000
## 260 65.00000 23.96000 1124 0.5200000 728.2000 1.716000
## 261 65.80000 23.82000 1184 1.3200000 732.4000 3.714000
## 262 65.00000 23.92000 1226 1.3400000 667.0000 3.764000
## 263 65.00000 23.94000 1188 0.4600000 560.2000 1.566000
## 264 63.80000 24.32000 1184 1.3400000 735.0000 3.764000
## 265 64.40000 23.72000 1180 0.6000000 746.6000 1.918000
## 266 65.00000 23.58000 1180 0.6000000 725.6000 1.918000
## 267 65.00000 24.16000 1178 0.5800000 731.6000 1.868000
## Pressure_Vacuum Oxygen_Filler Bowl_Setpoint Pressure_Setpoint Air_Pressurer
## 1 -3.800000 0.02200000 130.0000 45.20000 142.600
## 2 -4.400000 0.03000000 120.0000 46.00000 147.200
## 3 -4.200000 0.04600000 120.0000 46.00000 146.600
## 4 -4.000000 0.07579778 120.0000 46.00000 146.400
## 5 -4.000000 0.08200000 120.0000 50.00000 145.800
## 6 -3.800000 0.06400000 120.0000 46.00000 146.000
## 7 -4.200000 0.04200000 120.0000 46.00000 145.000
## 8 -4.400000 0.09600000 120.0000 46.00000 146.000
## 9 -4.400000 0.04600000 120.0000 46.00000 146.200
## 10 -4.200000 0.09600000 120.0000 46.00000 146.000
## 11 -4.200000 0.06600000 120.0000 46.00000 147.000
## 12 -4.200000 0.04800000 120.0000 46.00000 147.000
## 13 -4.800000 0.06600000 120.0000 46.00000 147.000
## 14 -4.800000 0.05000000 120.0000 46.00000 142.400
## 15 -4.200000 0.04600000 120.0000 46.00000 142.400
## 16 -4.800000 0.16000000 120.0000 46.00000 142.200
## 17 -4.000000 0.10200000 120.0000 46.00000 142.000
## 18 -4.400000 0.06000000 120.0000 46.00000 142.200
## 19 -4.200000 0.15400000 120.0000 46.00000 142.400
## 20 -4.400000 0.02200000 120.0000 46.00000 142.600
## 21 -4.400000 0.02200000 120.0000 46.00000 142.400
## 22 -4.400000 0.05400000 120.0000 46.00000 141.800
## 23 -4.400000 0.02200000 120.0000 46.00000 142.800
## 24 -4.000000 0.02200000 120.0000 46.00000 142.800
## 25 -4.600000 0.02400000 120.0000 46.00000 142.600
## 26 -4.400000 0.02200000 120.0000 46.00000 142.200
## 27 -4.200000 0.02200000 120.0000 46.00000 142.200
## 28 -3.800000 0.17400000 120.0000 46.00000 142.000
## 29 -3.800000 0.02200000 120.0000 50.00000 142.000
## 30 -4.000000 0.02400000 120.0000 46.00000 141.800
## 31 -4.000000 0.06600000 120.0000 46.00000 142.000
## 32 -4.200000 0.02400000 120.0000 46.00000 141.800
## 33 -4.200000 0.02200000 120.0000 46.00000 142.400
## 34 -4.200000 0.02200000 120.0000 46.00000 142.000
## 35 -4.000000 0.03600000 120.0000 46.00000 141.600
## 36 -4.000000 0.02200000 120.0000 46.00000 142.000
## 37 -3.600000 0.02200000 120.0000 46.00000 142.600
## 38 -3.600000 0.02200000 120.0000 46.00000 142.400
## 39 -4.400000 0.05200000 120.0000 46.00000 142.600
## 40 -4.400000 0.05000000 120.0000 46.00000 141.800
## 41 -4.400000 0.04200000 120.0000 46.00000 142.800
## 42 -4.600000 0.02400000 120.0000 46.00000 143.200
## 43 -5.000000 0.02200000 120.0000 46.00000 142.600
## 44 -5.000000 0.02200000 120.0000 46.00000 142.600
## 45 -5.400000 0.02400000 120.0000 46.00000 141.400
## 46 -5.000000 0.03600000 120.0000 46.00000 142.800
## 47 -5.200000 0.03600000 120.0000 46.00000 142.800
## 48 -4.800000 0.02400000 120.0000 46.00000 141.800
## 49 -5.200000 0.02400000 120.0000 46.00000 142.400
## 50 -4.800000 0.02400000 120.0000 46.00000 142.400
## 51 -5.200000 0.07000000 120.0000 46.00000 142.400
## 52 -4.800000 0.02200000 120.0000 50.00000 142.600
## 53 -5.200000 0.12200000 120.0000 46.00000 142.000
## 54 -5.000000 0.02400000 120.0000 46.00000 142.800
## 55 -5.000000 0.02400000 120.0000 46.00000 143.000
## 56 -5.000000 0.04200000 120.0000 46.00000 143.000
## 57 -5.400000 0.12000000 120.0000 46.00000 142.400
## 58 -5.000000 0.06800000 120.0000 46.00000 142.800
## 59 -5.000000 0.06600000 120.0000 46.00000 141.200
## 60 -4.600000 0.04200000 120.0000 46.00000 142.000
## 61 -4.400000 0.05800000 120.0000 46.00000 142.400
## 62 -4.800000 0.05800000 120.0000 46.00000 142.600
## 63 -4.400000 0.09200000 120.0000 46.00000 143.000
## 64 -4.400000 0.14600000 120.0000 46.00000 142.800
## 65 -4.200000 0.10800000 120.0000 46.00000 142.600
## 66 -4.800000 0.05000000 120.0000 46.00000 142.800
## 67 -5.400000 0.15800000 120.0000 46.00000 142.800
## 68 -5.400000 0.13800000 120.0000 46.00000 142.600
## 69 -5.600000 0.13200000 120.0000 46.00000 142.200
## 70 -5.400000 0.17200000 120.0000 46.00000 142.200
## 71 -5.200000 0.22000000 120.0000 48.00000 142.400
## 72 -5.400000 0.12600000 120.0000 48.00000 142.600
## 73 -5.800000 0.08600000 120.0000 48.00000 143.400
## 74 -5.800000 0.11600000 120.0000 48.00000 143.000
## 75 -5.600000 0.06800000 110.0000 48.00000 142.600
## 76 -5.600000 0.06000000 110.0000 48.00000 142.600
## 77 -5.800000 0.04400000 130.0000 49.71681 142.400
## 78 -5.000000 0.07600000 130.0000 48.00000 142.400
## 79 -5.400000 0.05800000 120.0000 48.00000 142.800
## 80 -5.400000 0.05200000 120.0000 48.00000 142.600
## 81 -5.400000 0.07000000 120.0000 46.00000 143.200
## 82 -4.400000 0.16800000 120.0000 48.00000 142.600
## 83 -4.400000 0.17000000 120.0000 48.00000 142.600
## 84 -4.400000 0.09000000 120.0000 48.00000 142.800
## 85 -4.200000 0.06666776 120.0000 48.00000 142.400
## 86 -5.000000 0.06800000 120.0000 48.00000 142.200
## 87 -5.000000 0.04600000 120.0000 46.00000 142.800
## 88 -5.800000 0.06600000 120.0000 48.00000 142.200
## 89 -5.800000 0.19400000 120.0000 50.00000 143.800
## 90 -5.400000 0.08200000 120.0000 48.00000 143.400
## 91 -5.200000 0.08400000 130.0000 50.00000 143.400
## 92 -4.438868 0.13335039 110.1345 46.00000 143.067
## 93 -5.800000 0.35400000 120.0000 46.00000 143.200
## 94 -5.800000 0.39800000 120.0000 46.00000 143.000
## 95 -5.400000 0.18600000 120.0000 46.00000 142.200
## 96 -5.400000 0.07200000 120.0000 46.00000 142.800
## 97 -5.600000 0.04000000 120.0000 46.00000 142.200
## 98 -5.200000 0.07000000 120.0000 46.00000 142.400
## 99 -4.600000 0.05800000 120.0000 52.00000 142.000
## 100 -4.800000 0.06600000 120.0000 52.00000 142.400
## 101 -5.000000 0.05800000 120.0000 52.00000 143.000
## 102 -5.000000 0.10400000 120.0000 46.00000 142.400
## 103 -5.200000 0.10800000 120.0000 46.00000 142.600
## 104 -5.400000 0.11600000 120.0000 46.00000 142.400
## 105 -4.800000 0.08000000 120.0000 46.00000 142.000
## 106 -4.800000 0.05200000 120.0000 46.00000 142.400
## 107 -5.000000 0.18400000 120.0000 46.00000 142.800
## 108 -5.400000 0.12200000 120.0000 46.00000 143.000
## 109 -5.400000 0.11600000 120.0000 46.00000 141.800
## 110 -5.400000 0.08800000 120.0000 46.00000 142.200
## 111 -5.800000 0.07400000 120.0000 46.00000 142.000
## 112 -5.800000 0.07200000 120.0000 46.00000 142.600
## 113 -5.000000 0.06000000 120.0000 46.00000 142.200
## 114 -5.400000 0.05400000 120.0000 46.00000 142.400
## 115 -5.600000 0.11600000 120.0000 46.00000 142.000
## 116 -5.400000 0.00560000 120.0000 46.00000 142.000
## 117 -5.400000 0.00880000 120.0000 46.00000 142.200
## 118 -5.200000 0.00520000 120.0000 46.00000 141.600
## 119 -5.000000 0.00760000 120.0000 46.00000 141.800
## 120 -4.800000 0.01140000 120.0000 46.00000 142.400
## 121 -5.400000 0.00880000 120.0000 46.00000 142.600
## 122 -5.600000 0.00700000 120.0000 46.00000 142.800
## 123 -5.600000 0.00700000 120.0000 46.00000 142.200
## 124 -5.200000 0.00840000 120.0000 46.00000 142.200
## 125 -5.200000 0.00660000 120.0000 46.00000 142.400
## 126 -5.600000 0.00500000 120.0000 46.00000 142.400
## 127 -5.400000 0.00940000 120.0000 46.00000 142.800
## 128 -5.400000 0.01840000 120.0000 44.16818 142.800
## 129 -5.400000 0.00800000 120.0000 46.00000 142.800
## 130 -5.400000 0.00880000 120.0000 46.00000 142.400
## 131 -5.400000 0.00720000 120.0000 46.00000 142.200
## 132 -5.200000 0.00980000 120.0000 46.00000 141.600
## 133 -5.800000 0.02640000 130.0000 50.00000 142.400
## 134 -5.800000 0.01080000 130.0000 50.00000 142.600
## 135 -5.800000 0.01140000 130.0000 50.00000 142.000
## 136 -5.200000 0.01940000 100.0000 50.00000 143.200
## 137 -4.600000 0.04660000 120.0000 46.00000 142.400
## 138 -4.600000 0.04340000 120.0000 46.00000 142.400
## 139 -4.600000 0.04360000 120.0000 46.00000 141.800
## 140 -5.000000 0.04680000 120.0000 46.00000 142.200
## 141 -5.800000 0.04540000 80.0000 50.00000 142.800
## 142 -5.600000 0.05200000 90.0000 50.00000 143.000
## 143 -5.600000 0.05720000 80.0000 50.00000 141.800
## 144 -5.800000 0.03740000 80.0000 50.00000 142.200
## 145 -6.200000 0.03220000 80.0000 50.00000 142.400
## 146 -6.200000 0.03300000 80.0000 50.00000 142.400
## 147 -6.200000 0.03320000 80.0000 50.00000 141.800
## 148 -6.200000 0.03640000 80.0000 50.00000 146.600
## 149 -5.800000 0.04440000 80.0000 50.00000 145.800
## 150 -6.000000 0.04140000 80.0000 50.00000 146.400
## 151 -6.000000 0.04140000 80.0000 50.00000 146.600
## 152 -5.600000 0.03720000 80.0000 50.00000 146.000
## 153 -5.200000 0.03400000 80.0000 50.00000 146.600
## 154 -5.600000 0.03280000 110.0000 50.00000 147.000
## 155 -5.400000 0.03360000 80.0000 50.00000 146.800
## 156 -5.400000 0.03240000 100.0000 50.00000 146.600
## 157 -5.400000 0.03680000 100.0000 50.00000 146.800
## 158 -5.400000 0.02940000 80.0000 50.00000 146.400
## 159 -5.400000 0.03040000 80.0000 50.00000 146.400
## 160 -5.400000 0.04440000 90.0000 50.00000 142.200
## 161 -4.800000 0.03840000 90.0000 50.00000 142.800
## 162 -5.200000 0.03060000 90.0000 48.00000 142.600
## 163 -5.200000 0.03440000 90.0000 50.00000 142.200
## 164 -5.000000 0.03320000 90.0000 50.00000 142.800
## 165 -5.000000 0.03340000 90.0000 50.00000 142.200
## 166 -5.200000 0.03120000 90.0000 50.00000 143.200
## 167 -5.000000 0.03000000 90.0000 50.00000 142.200
## 168 -5.800000 0.02800000 90.0000 46.00000 143.200
## 169 -6.000000 0.02900000 120.0000 46.00000 142.600
## 170 -5.600000 0.03800000 90.0000 46.00000 142.800
## 171 -5.400000 0.05700000 90.0000 46.00000 142.200
## 172 -5.200000 0.03520000 120.0000 46.00000 142.200
## 173 -5.400000 0.02920000 90.0000 50.00000 142.200
## 174 -5.400000 0.03800000 90.0000 50.00000 142.400
## 175 -5.400000 0.03800000 90.0000 50.00000 142.400
## 176 -5.400000 0.03300000 120.0000 50.00000 142.400
## 177 -5.400000 0.03460000 70.0000 50.00000 141.400
## 178 -5.200000 0.03380000 70.0000 50.00000 142.600
## 179 -5.000000 0.03060000 70.0000 50.00000 142.200
## 180 -5.000000 0.03360000 70.0000 50.00000 141.400
## 181 -5.000000 0.04520000 70.0000 50.00000 142.000
## 182 -5.000000 0.03180000 70.0000 50.00000 142.600
## 183 -5.200000 0.03160000 70.0000 46.00000 143.000
## 184 -5.200000 0.03960000 70.0000 50.00000 142.600
## 185 -5.200000 0.03080000 70.0000 50.00000 142.600
## 186 -5.600000 0.03000000 100.0000 50.00000 141.800
## 187 -5.400000 0.03580000 110.0000 50.00000 141.800
## 188 -5.200000 0.05560000 120.0000 50.00000 142.000
## 189 -5.600000 0.03820000 90.0000 50.00000 142.000
## 190 -5.800000 0.03680000 90.0000 50.00000 143.200
## 191 -5.400000 0.04120000 90.0000 50.00000 143.000
## 192 -5.200000 0.03180000 120.0000 50.00000 142.800
## 193 -5.000000 0.04760000 90.0000 50.00000 143.400
## 194 -5.800000 0.05040000 90.0000 46.00000 142.800
## 195 -5.600000 0.03320000 100.0000 46.00000 143.600
## 196 -5.800000 0.03260000 90.0000 50.00000 142.400
## 197 -5.400000 0.03420000 90.0000 50.00000 142.800
## 198 -5.200000 0.03380000 90.0000 50.00000 142.400
## 199 -5.400000 0.04340000 90.0000 50.00000 142.000
## 200 -5.200000 0.04280000 100.0000 50.00000 142.800
## 201 -5.400000 0.05300000 90.0000 46.00000 142.200
## 202 -5.600000 0.04000000 90.0000 46.00000 143.200
## 203 -6.000000 0.05360000 90.0000 46.00000 144.400
## 204 -6.200000 0.03040000 120.0000 50.00000 142.600
## 205 -6.200000 0.03060000 90.0000 50.00000 141.600
## 206 -6.400000 0.03120000 90.0000 46.00000 142.600
## 207 -6.400000 0.03220000 90.0000 46.00000 142.600
## 208 -5.400000 0.04840000 90.0000 50.00000 143.400
## 209 -5.800000 0.04860000 120.0000 50.00000 143.200
## 210 -5.800000 0.03480000 100.0000 50.00000 143.600
## 211 -5.600000 0.04600000 100.0000 50.00000 143.000
## 212 -5.800000 0.03580000 100.0000 50.00000 142.200
## 213 -6.000000 0.03260000 100.0000 50.00000 142.600
## 214 -5.800000 0.01580000 100.0000 50.00000 142.800
## 215 -5.600000 0.01140000 90.0000 50.00000 142.400
## 216 -5.600000 0.03000000 90.0000 50.00000 142.400
## 217 -5.800000 0.00260000 90.0000 50.00000 142.400
## 218 -5.400000 0.00480000 90.0000 50.00000 142.600
## 219 -5.000000 0.00900000 100.0000 44.00000 143.200
## 220 -5.600000 0.00940000 120.0000 46.00000 142.400
## 221 -5.800000 0.00260000 120.0000 50.00000 142.000
## 222 -5.800000 0.00260000 110.0000 50.00000 143.000
## 223 -5.600000 0.00260000 110.0000 50.00000 142.800
## 224 -5.600000 0.00260000 110.0000 50.00000 142.600
## 225 -5.600000 0.01540000 110.0000 46.00000 142.400
## 226 -5.600000 0.00660000 110.0000 50.00000 142.400
## 227 -5.200000 0.00360000 110.0000 50.00000 142.200
## 228 -5.200000 0.00480000 110.0000 50.00000 142.200
## 229 -5.400000 0.00260000 110.0000 50.00000 142.400
## 230 -5.400000 0.00260000 110.0000 50.00000 142.800
## 231 -5.200000 0.00260000 110.0000 50.00000 143.200
## 232 -5.200000 0.01960000 110.0000 50.00000 142.600
## 233 -5.000000 0.02300000 110.0000 50.00000 142.000
## 234 -5.400000 0.02180000 110.0000 50.00000 142.600
## 235 -5.600000 0.02820000 110.0000 46.00000 143.200
## 236 -5.000000 0.01660000 110.0000 44.00000 143.200
## 237 -5.400000 0.01620000 110.0000 44.00000 143.400
## 238 -5.800000 0.01260000 110.0000 44.00000 143.400
## 239 -5.600000 0.01020000 110.0000 50.00000 143.200
## 240 -5.600000 0.01080000 110.0000 50.00000 142.600
## 241 -5.200000 0.01240000 110.0000 50.00000 143.000
## 242 -5.400000 0.00960000 110.0000 50.00000 142.400
## 243 -5.400000 0.02920000 110.0000 50.00000 143.000
## 244 -5.000000 0.01180000 110.0000 50.00000 142.800
## 245 -4.800000 0.00420000 110.0000 50.00000 142.200
## 246 -4.800000 0.00620000 120.0000 50.00000 142.400
## 247 -4.800000 0.00240000 110.0000 50.00000 142.200
## 248 -5.200000 0.00240000 110.0000 46.00000 141.600
## 249 -5.800000 0.00260000 110.0000 44.00000 142.400
## 250 -6.000000 0.00260000 110.0000 44.00000 142.800
## 251 -5.000000 0.00260000 110.0000 50.00000 142.400
## 252 -5.000000 0.00600000 110.0000 50.00000 141.600
## 253 -4.800000 0.01960000 110.0000 50.00000 141.800
## 254 -4.600000 0.04760000 110.0000 50.00000 141.600
## 255 -4.800000 0.01360000 110.0000 44.00000 142.400
## 256 -4.600000 0.01100000 110.0000 44.00000 141.800
## 257 -5.200000 0.02820000 110.0000 44.00000 142.000
## 258 -6.000000 0.01480000 110.0000 50.00000 142.600
## 259 -5.600000 0.01080000 110.0000 50.00000 142.200
## 260 -5.800000 0.00260000 110.0000 50.00000 142.000
## 261 -5.800000 0.00260000 110.0000 46.00000 142.000
## 262 -5.800000 0.00740000 110.0000 46.00000 141.800
## 263 -5.800000 0.00380000 110.0000 50.00000 142.400
## 264 -5.600000 0.00240000 110.0000 48.00000 142.600
## 265 -6.200000 0.00680000 110.0000 50.00000 142.000
## 266 -6.000000 0.00260000 110.0000 50.00000 142.200
## 267 -5.800000 0.00620000 110.0000 50.00000 142.800
## Alch_Rel Carb_Rel Balling_Lvl code_a code_b code_c code_d PH
## 1 6.560000 5.340000 1.48 0 0 0 1 8.53260
## 2 7.140000 5.580000 3.04 1 0 0 0 8.43936
## 3 6.520000 5.340000 1.46 0 1 0 0 8.50064
## 4 6.480000 5.500000 1.48 0 1 0 0 8.54560
## 5 6.500000 5.380000 1.46 0 1 0 0 8.47364
## 6 6.500000 5.420000 1.44 0 1 0 0 8.52224
## 7 7.180000 5.460000 3.02 1 0 0 0 8.48584
## 8 7.160000 5.420000 3.00 0 1 0 0 8.55580
## 9 7.140000 5.440000 3.10 1 0 0 0 8.54624
## 10 7.780000 5.520000 3.12 0 0 0 1 8.60420
## 11 6.520000 5.360000 1.38 0 1 0 0 8.55172
## 12 6.500000 5.380000 1.42 0 1 0 0 8.54156
## 13 6.540000 5.280000 1.46 0 1 0 0 8.45456
## 14 6.540000 5.220000 1.44 0 1 0 0 8.63992
## 15 6.620000 5.260000 1.60 0 0 1 0 8.22996
## 16 6.520000 5.280000 1.60 0 0 0 0 8.63712
## 17 6.500000 5.360000 1.40 0 1 0 0 8.58236
## 18 6.520000 5.300000 1.44 0 1 0 0 8.52048
## 19 7.760000 5.620000 3.16 0 0 0 1 8.52324
## 20 6.560000 5.380000 1.46 0 1 0 0 8.69096
## 21 6.580000 5.400000 1.46 0 1 0 0 8.69288
## 22 6.500000 5.480000 1.36 0 1 0 0 8.66884
## 23 7.080000 5.540000 3.18 1 0 0 0 8.58784
## 24 6.500000 5.460000 1.40 0 1 0 0 8.61564
## 25 6.500000 5.380000 1.40 0 1 0 0 8.64280
## 26 6.540000 5.320000 1.40 0 0 1 0 8.49212
## 27 6.620000 5.340000 1.52 0 0 1 0 8.32224
## 28 7.740000 5.660000 3.28 0 0 0 1 8.66036
## 29 7.740000 5.620000 3.24 0 0 0 1 8.65440
## 30 7.740000 5.620000 3.26 0 0 0 1 8.68064
## 31 7.720000 5.560000 3.28 0 0 0 1 8.63104
## 32 7.720000 5.580000 3.28 0 0 0 1 8.71760
## 33 6.500000 5.380000 1.50 0 1 0 0 8.64488
## 34 6.500000 5.360000 1.52 0 1 0 0 8.67024
## 35 6.520000 5.340000 1.56 0 1 0 0 8.68264
## 36 7.160000 5.440000 3.00 1 0 0 0 8.59772
## 37 7.140000 5.540000 3.08 1 0 0 0 8.54148
## 38 7.140000 5.560000 3.06 1 0 0 0 8.56008
## 39 7.680000 5.580000 3.32 0 0 0 1 8.66456
## 40 7.700000 5.600000 3.32 0 0 0 1 8.73572
## 41 7.700000 5.620000 3.34 0 0 0 1 8.76388
## 42 6.520000 5.500000 1.38 0 1 0 0 8.62192
## 43 6.660000 5.380000 1.34 0 0 1 0 8.26112
## 44 6.580000 5.400000 1.38 0 0 1 0 8.21048
## 45 6.560000 5.400000 1.42 0 1 0 0 8.71396
## 46 7.700000 5.620000 3.28 0 0 0 1 8.75104
## 47 7.700000 5.620000 3.30 0 0 0 1 8.73824
## 48 6.580000 5.400000 1.48 0 1 0 0 8.69640
## 49 7.120000 5.520000 3.10 1 0 0 0 8.69852
## 50 7.140000 5.500000 3.06 1 0 0 0 8.77260
## 51 7.700000 5.640000 3.38 0 0 0 1 8.64468
## 52 6.580000 5.380000 1.42 0 1 0 0 8.70708
## 53 6.560000 5.380000 1.48 0 1 0 0 8.71092
## 54 6.580000 5.360000 1.48 0 1 0 0 8.75724
## 55 6.580000 5.360000 1.48 0 1 0 0 8.77488
## 56 7.720000 5.580000 3.28 0 0 0 1 8.73768
## 57 6.540000 5.300000 1.32 0 0 1 0 8.47124
## 58 6.600000 5.400000 1.48 0 0 1 0 8.51096
## 59 6.560000 5.420000 1.38 0 1 0 0 8.71000
## 60 6.560000 5.400000 1.42 0 1 0 0 8.77592
## 61 6.540000 5.380000 1.42 0 1 0 0 8.76704
## 62 6.540000 5.340000 1.44 0 1 0 0 8.73544
## 63 7.720000 5.640000 3.26 0 0 0 1 8.78128
## 64 6.520000 5.420000 1.44 0 1 0 0 8.77380
## 65 6.540000 5.400000 1.54 0 1 0 0 8.79848
## 66 6.520000 5.380000 1.50 0 1 0 0 8.76756
## 67 6.540000 5.400000 1.44 0 1 0 0 8.59088
## 68 6.520000 5.420000 1.46 0 1 0 0 8.59072
## 69 6.520000 5.420000 1.44 0 1 0 0 8.58784
## 70 6.500000 5.400000 1.44 0 1 0 0 8.56180
## 71 6.640000 5.280000 1.32 0 0 1 0 8.46556
## 72 6.640000 5.320000 1.42 0 0 1 0 8.34068
## 73 7.700000 5.600000 3.32 0 0 0 1 8.55224
## 74 7.700000 5.620000 3.34 0 0 0 1 8.53696
## 75 7.040000 5.520000 3.26 1 0 0 0 8.52256
## 76 7.100000 5.520000 3.14 1 0 0 0 8.53324
## 77 7.680000 5.640000 3.36 0 0 0 1 8.58616
## 78 6.560000 5.380000 1.36 0 1 0 0 8.66956
## 79 7.720000 5.620000 3.24 0 0 0 1 8.71008
## 80 7.700000 5.660000 3.30 0 0 0 1 8.69744
## 81 6.560000 5.360000 1.38 0 1 0 0 8.77920
## 82 6.640000 5.340000 1.26 0 0 1 0 8.68544
## 83 6.660000 5.360000 1.26 0 0 1 0 8.70828
## 84 6.640000 5.300000 1.32 0 0 1 0 8.67752
## 85 6.560000 5.660000 1.44 0 1 0 0 8.72788
## 86 6.520000 5.320000 1.42 0 1 0 0 8.69992
## 87 7.740000 5.600000 3.18 0 0 0 1 8.74320
## 88 6.560000 5.380000 1.44 0 1 0 0 8.66860
## 89 7.080000 5.320000 2.86 1 0 0 0 8.55324
## 90 6.580000 5.360000 1.40 0 1 0 0 8.71936
## 91 7.180000 5.700000 2.84 1 0 0 0 8.67104
## 92 7.145396 5.494898 0.00 1 0 0 0 8.59224
## 93 7.100000 5.620000 3.00 1 0 0 0 8.53292
## 94 7.120000 5.580000 3.00 1 0 0 0 8.55080
## 95 7.700000 5.680000 3.28 0 0 0 1 8.60156
## 96 6.580000 5.400000 1.48 0 1 0 0 8.64612
## 97 7.720000 5.600000 3.26 0 0 0 1 8.63292
## 98 6.580000 5.360000 1.44 0 1 0 0 8.67608
## 99 7.140000 5.540000 3.04 1 0 0 0 8.65700
## 100 7.100000 5.500000 3.04 1 0 0 0 8.66600
## 101 7.720000 5.440000 3.24 0 0 0 1 8.69412
## 102 7.780000 5.560000 3.10 0 0 0 1 8.69228
## 103 6.520000 5.380000 1.44 0 1 0 0 8.70224
## 104 6.560000 5.360000 1.36 0 1 0 0 8.70236
## 105 6.540000 5.360000 1.42 0 1 0 0 8.78596
## 106 6.540000 5.400000 1.36 0 1 0 0 8.76372
## 107 6.560000 5.440000 1.38 0 0 1 0 8.49032
## 108 6.600000 5.320000 1.44 0 0 1 0 8.44480
## 109 6.560000 5.320000 1.38 0 0 1 0 8.50832
## 110 6.500000 5.300000 1.50 0 0 1 0 8.51076
## 111 6.580000 5.380000 1.34 0 1 0 0 8.68596
## 112 6.540000 5.380000 1.34 0 1 0 0 8.69428
## 113 7.800000 5.680000 3.08 0 0 0 1 8.67940
## 114 7.800000 5.620000 3.04 0 0 0 1 8.72348
## 115 6.520000 5.380000 1.26 0 1 0 0 8.64556
## 116 6.520000 5.440000 1.38 0 1 0 0 8.72080
## 117 6.500000 5.400000 1.40 0 1 0 0 8.72448
## 118 7.740000 5.560000 3.16 0 0 0 1 8.71148
## 119 6.540000 5.400000 1.36 0 1 0 0 8.72016
## 120 6.560000 5.360000 1.44 0 1 0 0 8.68944
## 121 6.560000 5.340000 1.46 0 1 0 0 8.69292
## 122 6.580000 5.360000 1.38 0 1 0 0 8.71612
## 123 6.580000 5.360000 1.38 0 1 0 0 8.73072
## 124 6.580000 5.360000 1.36 0 1 0 0 8.68196
## 125 6.620000 5.380000 1.32 0 1 0 0 8.53308
## 126 7.240000 5.520000 2.96 1 0 0 0 8.41492
## 127 6.560000 5.260000 1.46 0 0 0 0 8.49408
## 128 6.640000 5.420000 1.64 0 0 1 0 8.29832
## 129 7.780000 5.700000 3.04 0 0 0 1 8.46444
## 130 7.760000 5.600000 3.06 0 0 0 1 8.47740
## 131 6.580000 5.380000 1.22 0 1 0 0 8.52668
## 132 6.580000 5.360000 1.30 0 1 0 0 8.51032
## 133 7.780000 5.640000 3.06 0 0 0 1 8.49216
## 134 6.600000 5.300000 1.44 0 0 1 0 8.47764
## 135 7.180000 5.540000 2.98 1 0 0 0 8.46896
## 136 7.180000 5.520000 2.96 1 0 0 0 8.50644
## 137 7.760000 5.640000 3.02 0 0 0 1 8.46068
## 138 7.760000 5.720000 3.08 0 0 0 1 8.57096
## 139 7.760000 5.640000 3.04 0 0 0 1 8.41368
## 140 7.740000 5.660000 3.08 0 0 0 1 8.41688
## 141 6.540000 5.340000 1.34 0 1 0 0 8.45308
## 142 6.560000 5.320000 1.32 0 1 0 0 8.50648
## 143 6.580000 5.320000 1.34 0 1 0 0 8.46936
## 144 6.548039 5.260000 0.00 0 1 0 0 8.50832
## 145 7.140000 5.500000 3.06 1 0 0 0 8.40508
## 146 7.140000 5.500000 3.10 1 0 0 0 8.50132
## 147 7.140000 5.500000 3.08 1 0 0 0 8.49236
## 148 6.580000 5.340000 1.38 0 1 0 0 8.53888
## 149 6.540000 5.320000 1.36 0 1 0 0 8.47508
## 150 6.540000 5.320000 1.36 0 1 0 0 8.57652
## 151 6.520000 5.280000 1.30 0 1 0 0 8.61056
## 152 6.540000 5.260000 1.42 0 1 0 0 8.56412
## 153 7.160000 5.400000 2.98 1 0 0 0 8.48500
## 154 6.580000 5.320000 1.32 0 1 0 0 8.66992
## 155 6.500000 5.280000 1.68 0 0 1 0 8.46428
## 156 6.520000 5.300000 1.66 0 0 1 0 8.45508
## 157 6.580000 5.360000 1.72 0 0 1 0 8.44268
## 158 6.520000 5.380000 1.36 0 1 0 0 8.49844
## 159 6.520000 5.400000 1.32 0 1 0 0 8.57460
## 160 6.520000 5.320000 1.36 0 1 0 0 8.55736
## 161 6.540000 5.320000 1.30 0 1 0 0 8.58264
## 162 7.760000 5.640000 3.20 0 0 0 1 8.59660
## 163 6.540000 5.320000 1.32 0 1 0 0 8.60104
## 164 6.520000 5.340000 1.28 0 1 0 0 8.63520
## 165 6.520000 5.340000 1.30 0 1 0 0 8.67152
## 166 6.520000 5.320000 1.28 0 1 0 0 8.51492
## 167 6.580000 5.320000 1.38 0 0 0 0 8.48576
## 168 7.780000 5.640000 3.14 0 0 0 1 8.74484
## 169 7.780000 5.640000 3.20 0 0 0 1 8.61608
## 170 7.820000 5.560000 3.04 0 0 0 1 8.76272
## 171 6.560000 5.320000 1.34 0 1 0 0 8.38476
## 172 6.540000 5.320000 1.38 0 1 0 0 8.42752
## 173 6.560000 5.360000 1.44 0 1 0 0 8.30856
## 174 6.560000 5.340000 1.42 0 1 0 0 8.43836
## 175 6.560000 5.360000 1.36 0 1 0 0 8.50648
## 176 6.560000 5.360000 1.30 0 1 0 0 8.55104
## 177 6.560000 5.320000 1.42 0 1 0 0 8.42460
## 178 6.540000 5.320000 1.44 0 1 0 0 8.46716
## 179 7.060000 5.540000 3.12 1 0 0 0 8.40680
## 180 6.580000 5.320000 1.30 0 1 0 0 8.46568
## 181 6.560000 5.300000 1.38 0 1 0 0 8.47472
## 182 7.760000 5.640000 3.20 0 0 0 1 8.54616
## 183 6.560000 5.300000 1.36 0 1 0 0 8.50240
## 184 6.560000 5.280000 1.34 0 1 0 0 8.49848
## 185 6.560000 5.300000 1.34 0 1 0 0 8.49684
## 186 6.580000 5.440000 1.56 0 0 1 0 8.30392
## 187 6.620000 5.460000 1.84 0 0 1 0 8.39192
## 188 7.740000 5.320000 3.18 0 0 0 1 8.47608
## 189 6.560000 5.260000 1.36 0 1 0 0 8.44296
## 190 7.120000 5.460000 3.08 1 0 0 0 8.34356
## 191 7.120000 5.440000 3.06 1 0 0 0 8.34376
## 192 6.560000 5.360000 1.38 0 1 0 0 8.44948
## 193 7.740000 5.560000 3.18 0 0 0 1 8.49900
## 194 7.700000 5.600000 3.22 0 0 0 1 8.47752
## 195 7.700000 5.500000 3.32 0 0 0 1 8.48616
## 196 6.520000 5.480000 1.46 0 1 0 0 8.32264
## 197 7.160000 5.540000 2.98 1 0 0 0 8.24236
## 198 7.160000 5.560000 2.92 1 0 0 0 8.20712
## 199 6.520000 5.460000 1.42 1 0 0 0 8.27348
## 200 6.540000 5.380000 1.40 0 1 0 0 8.37592
## 201 7.720000 5.580000 3.32 0 0 0 1 8.41308
## 202 7.740000 5.580000 3.28 0 0 0 1 8.41996
## 203 6.520000 5.180000 1.40 0 1 0 0 8.45488
## 204 6.600000 5.360000 1.60 0 0 1 0 8.35056
## 205 6.540000 5.360000 1.46 0 1 0 0 8.38408
## 206 7.740000 5.600000 3.26 0 0 0 1 8.49580
## 207 7.740000 5.600000 3.26 0 0 0 1 8.50076
## 208 7.160000 5.440000 3.02 0 1 0 0 8.38696
## 209 6.600000 5.440000 1.44 0 0 0 0 8.46848
## 210 6.580000 5.380000 1.36 0 0 0 0 8.32388
## 211 6.600000 5.440000 1.50 0 0 1 0 8.33604
## 212 6.480000 5.420000 1.48 0 0 1 0 8.35524
## 213 6.500000 5.360000 1.50 0 0 1 0 8.40080
## 214 6.540000 5.280000 1.32 0 1 0 0 8.52608
## 215 7.100000 5.520000 3.26 1 0 0 0 8.42732
## 216 7.180000 5.520000 3.04 1 0 0 0 8.40580
## 217 6.560000 5.340000 1.44 0 1 0 0 8.36784
## 218 6.560000 5.260000 1.38 0 1 0 0 8.32192
## 219 7.680000 5.600000 3.38 0 0 0 1 8.50324
## 220 7.660000 5.660000 3.40 0 0 0 1 8.53944
## 221 6.580000 5.280000 1.30 0 1 0 0 8.47244
## 222 6.540000 5.340000 1.36 0 1 0 0 8.47136
## 223 6.540000 5.360000 1.36 0 1 0 0 8.45876
## 224 6.400000 5.560000 1.82 0 0 1 0 8.36240
## 225 7.640000 5.600000 3.42 0 0 0 1 8.58916
## 226 7.120000 5.620000 3.30 1 0 0 0 8.48316
## 227 6.420000 5.300000 1.44 0 1 0 0 8.47976
## 228 6.520000 5.420000 1.30 0 1 0 0 8.49092
## 229 6.560000 5.340000 1.36 0 1 0 0 8.49828
## 230 6.560000 5.360000 1.36 0 1 0 0 8.47296
## 231 6.560000 5.340000 1.36 0 1 0 0 8.48256
## 232 6.560000 5.380000 1.36 0 1 0 0 8.50332
## 233 6.540000 5.340000 1.36 0 1 0 0 8.50756
## 234 7.640000 5.740000 3.42 0 0 0 1 8.58476
## 235 7.680000 5.700000 3.38 0 0 0 1 8.59636
## 236 6.560000 5.360000 1.62 0 0 0 0 8.51276
## 237 6.500000 5.480000 1.32 0 1 0 0 8.62428
## 238 6.560000 5.380000 1.34 0 1 0 0 8.67048
## 239 6.500000 5.460000 1.50 0 1 0 0 8.50076
## 240 6.520000 5.360000 1.38 0 1 0 0 8.50516
## 241 6.500000 5.420000 1.38 0 1 0 0 8.50604
## 242 7.680000 5.700000 3.42 0 0 0 1 8.54792
## 243 7.660000 5.660000 3.42 0 0 0 1 8.52992
## 244 7.060000 5.580000 3.34 1 0 0 0 8.52876
## 245 6.500000 5.420000 1.44 0 1 0 0 8.40460
## 246 6.500000 5.420000 1.44 0 1 0 0 8.40324
## 247 6.500000 5.400000 1.46 0 1 0 0 8.41812
## 248 7.680000 5.740000 3.36 0 0 0 1 8.53620
## 249 7.640000 5.600000 3.42 0 0 0 1 8.58388
## 250 6.580000 5.320000 1.50 0 1 0 0 8.48300
## 251 6.520000 5.400000 1.44 0 1 0 0 8.45100
## 252 6.580000 5.300000 1.48 0 1 0 0 8.46284
## 253 6.600000 5.280000 1.38 0 1 0 0 8.47992
## 254 7.680000 5.560000 3.28 0 0 0 1 8.57440
## 255 7.680000 5.640000 3.32 0 0 0 1 8.54308
## 256 6.548039 5.317339 0.00 0 0 0 0 8.51044
## 257 6.620000 5.560000 1.52 0 0 0 0 8.49948
## 258 7.680000 5.500000 3.32 0 0 0 1 8.63540
## 259 6.540000 5.240000 1.44 0 1 0 0 8.52052
## 260 6.520000 5.280000 1.38 0 1 0 0 8.50924
## 261 7.640000 5.640000 3.30 0 0 0 1 8.61076
## 262 7.660000 5.620000 3.38 0 0 0 1 8.63524
## 263 6.600000 5.380000 1.46 0 1 0 0 8.46648
## 264 7.740000 5.620000 3.36 0 0 0 1 8.60948
## 265 6.520000 5.360000 1.62 0 0 1 0 8.26152
## 266 6.500000 5.240000 1.62 0 0 1 0 8.28184
## 267 6.540000 5.220000 1.62 0 0 1 0 8.14992
# writexl::write_xlsx(X_test_imputed, file= "project2_PH_prediction.xlsx")