# if you haven't run this code before, you'll need to download the below packages first
# instructions on how to do this are included in the video
# but as a reminder, you use the packages tab to the right
library(psych) # for the describe() command
library(expss) # for the cross_cases() command
## Loading required package: maditr
##
## To drop variable use NULL: let(mtcars, am = NULL) %>% head()
##
## Attaching package: 'maditr'
## The following object is masked from 'package:base':
##
## sort_by
# Import data for the lab
# for the hw, import the mydata.csv that you created in the data prep lab
d2 <- read.csv(file="Data/mydata.csv", header = T)
table(d2$race_rc) #the table command shows what the levels of this variable are, and how many participants are in each level
##
## asian black hispanic multiracial nativeamer other
## 201 226 271 281 12 94
## white
## 1962
table(d2$marriage5)
##
## are currently divorced from one another
## 709
## are currently married to one another
## 2061
## never married each other and are not together
## 233
## never married each other but are currently together
## 44
table(d2$moa_role)
##
## 1 1.16666666666667 1.33333333333333 1.5
## 5 13 20 48
## 1.66666666666667 1.83333333333333 2 2.16666666666667
## 86 112 146 159
## 2.33333333333333 2.5 2.66666666666667 2.83333333333333
## 179 194 202 197
## 3 3.16666666666667 3.33333333333333 3.5
## 235 233 232 251
## 3.66666666666667 3.83333333333333 4
## 211 206 318
table(d2$moa_safety)
##
## 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4
## 10 16 22 71 77 128 258 293 367 414 464 392 535
table(d2$belong)
##
## 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2
## 2 5 7 8 14 17 26 30 30 49 52 78 75 133 103 144 165 185 171 208
## 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5
## 209 174 184 185 173 155 104 104 86 64 40 25 21 15 3 1 1 1
table(d2$npi)
##
## 0 0.0769230769230769 0.153846153846154 0.230769230769231
## 674 695 481 251
## 0.307692307692308 0.384615384615385 0.615384615384615 0.692307692307692
## 95 24 159 229
## 0.769230769230769 0.846153846153846 0.923076923076923 1
## 175 146 83 35
hist(d2$moa_role) #the hist command created a histogram of the variable
hist(d2$moa_safety)
hist(d2$belong)
hist(d2$npi)
We analyzed the skew and kurtosis of our continuous variables and all were within the accepted range (-2/+2).
We analyzed the skew and kurtosis of our … and most were within the accepted range (-2/+2). However, some variables (none) were outside of the accepted range. For this analysis, we will use them anyway, but outside of this class this is bad practice.
describe(d2) #use this to check univariate normality
## vars n mean sd median trimmed mad min max range skew kurtosis
## race_rc* 1 3047 5.56 2.11 7.00 5.91 0.00 1.0 7 6.0 -1.01 -0.61
## marriage5* 2 3047 1.87 0.59 2.00 1.83 0.00 1.0 4 3.0 0.46 1.50
## moa_role 3 3047 2.96 0.72 3.00 3.00 0.74 1.0 4 3.0 -0.32 -0.85
## moa_safety 4 3047 3.20 0.64 3.25 3.26 0.74 1.0 4 3.0 -0.71 0.04
## belong 5 3047 3.23 0.61 3.30 3.25 0.59 1.3 5 3.7 -0.27 -0.12
## npi 6 3047 0.28 0.31 0.15 0.24 0.23 0.0 1 1.0 0.94 -0.69
## se
## race_rc* 0.04
## marriage5* 0.01
## moa_role 0.01
## moa_safety 0.01
## belong 0.01
## npi 0.01
cross_cases(d2, race_rc, marriage5) #UPDATE WITH CATEGORICAL VARIABLE NAMES
| Â marriage5Â | ||||
|---|---|---|---|---|
|  are currently divorced from one another |  are currently married to one another |  never married each other and are not together |  never married each other but are currently together | |
|  race_rc | ||||
|    asian | 23 | 169 | 8 | 1 |
|    black | 63 | 93 | 62 | 8 |
|    hispanic | 62 | 165 | 36 | 8 |
|    multiracial | 76 | 170 | 32 | 3 |
|    nativeamer | 3 | 8 | 1 | |
|    other | 23 | 58 | 10 | 3 |
|    white | 459 | 1398 | 85 | 20 |
|    #Total cases | 709 | 2061 | 233 | 44 |
plot(d2$moa_role, d2$npi,
main="Scatterplot of moa_role and npi",
xlab = "moa_role",
ylab = "npi")
plot(d2$moa_safety, d2$belong,
main="Scatterplot of moa_safety and belong",
xlab = "moa_safety",
ylab = "belong")
#boxplots use one CATEGORICAL and one CONTINOUS
# make sure to enter them in the RIGHT ORDER
# CATEGORICAL GOES BEFORE THE TILDE~
# CONTINOUS GOES AFTER ~
boxplot(data=d2, belong~marriage5,
main="Boxplot of marriage5 and belong",
xlab = "marriage5",
ylab = "belong")
boxplot(data=d2, npi~race_rc,
main="Boxplot of race_rc and npi",
xlab = "race_rc",
ylab = "npi")