Investigating the Relationship Between Youth Social Media Usage and Depression: A Self-Report Analysis

Introduction

Our project is about comparing the self reported social media use habits scores in different groups from survey responses gauging the impact of social media on mental health using a Likert scale (1-5). Youths will defined as individuals ages under 25 to compare groups before and after a fully developed prefrontal cortex. We focused on Depression score as th disorder is severe and may lead to life-threatening consequences such as suicide. 

Problem Statement

The rise of social platforms has created an environment where people portray an idealized version of themselves online. This has lead to the increasing number of youths fixating on social comparison and the idea of FOMO. Constant exposure to curated images of success, beauty, and happiness can exacerbate feelings of loneliness, isolation, feelings of inadequacy and lower self-esteem, which are risk factors for depression.

Project Objectives

To investigate the relationship between gender, relationship status, and age on the severity of depression scores using nonparametric ANOVA analysis

Step 1: Install and Load Required Libraries

library(ggpubr)
## Loading required package: ggplot2
library(tidyverse) 
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ lubridate 1.9.3     ✔ tibble    3.2.1
## ✔ purrr     1.0.2     ✔ tidyr     1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readxl) 
library(dplyr)
library(ggplot2)
theme_set(theme_pubr()) # gives a clear report ready plot

Step 2: Import & Clean the Dataset

social_media_df <-read_excel(file.choose())

# Removes unecessary collumns
response_df <- social_media_df[ -c(1, 5:8, 10:18)] 

Rename columns

colnames(response_df)
## [1] "1. What is your age?"                                                                      
## [2] "2. Gender"                                                                                 
## [3] "3. Relationship Status"                                                                    
## [4] "8. What is the average time you spend on social media every day?"                          
## [5] "18. How often do you feel depressed or down?"                                              
## [6] "19. On a scale of 1 to 5, how frequently does your interest in daily activities fluctuate?"
## [7] "20. On a scale of 1 to 5, how often do you face issues regarding sleep?"
# Rename column to simplify analysis

names(response_df)[names(response_df) == "1. What is your age?"] <- 
  "Age"
names(response_df)[names(response_df) == "2. Gender"] <- 
  "Gender"
names(response_df)[names(response_df) == "3. Relationship Status"] <- 
  "Relationship_Status"
names(response_df)[names(response_df) == "8. What is the average time you spend on social media every day?"] <- 
  "Avg_Time"

# Re-name Questions to "Depression"

names(response_df)[names(response_df) == "18. How often do you feel depressed or down?"] <- 
  "Depression_Q1"
names(response_df)[names(response_df) == "19. On a scale of 1 to 5, how frequently does your interest in daily activities fluctuate?"] <- 
  "Depression_Q2"
names(response_df)[names(response_df) == "20. On a scale of 1 to 5, how often do you face issues regarding sleep?"] <- 
  "Depression_Q3"
colnames(response_df)
## [1] "Age"                 "Gender"              "Relationship_Status"
## [4] "Avg_Time"            "Depression_Q1"       "Depression_Q2"      
## [7] "Depression_Q3"

Focus on only male and female respondents

# To simplify analysis delete data from alternative options

response_df <- response_df[!grepl('There are others???', response_df$Gender),]
response_df <- response_df[!grepl('NB', response_df$Gender),]
response_df <- response_df[!grepl('Non binary', response_df$Gender),]
response_df <- response_df[!grepl('unsure', response_df$Gender),]
response_df <- response_df[!grepl('Trans', response_df$Gender),]
response_df <- response_df[!grepl('Nonbinary', response_df$Gender),]
response_df <- response_df[!grepl('Non-binary', response_df$Gender),]

response_df
## # A tibble: 474 × 7
##      Age Gender Relationship_Status Avg_Time         Depression_Q1 Depression_Q2
##    <dbl> <chr>  <chr>               <chr>                    <dbl>         <dbl>
##  1    21 Male   In a relationship   Between 2 and 3…             5             4
##  2    21 Female Single              More than 5 hou…             5             4
##  3    21 Female Single              Between 3 and 4…             4             2
##  4    21 Female Single              More than 5 hou…             4             3
##  5    21 Female Single              Between 2 and 3…             4             4
##  6    22 Female Single              Between 2 and 3…             3             2
##  7    21 Female Married             Between 3 and 4…             5             5
##  8    21 Female In a relationship   More than 5 hou…             5             5
##  9    21 Female In a relationship   More than 5 hou…             5             5
## 10    20 Male   Single              Less than an Ho…             1             1
## # ℹ 464 more rows
## # ℹ 1 more variable: Depression_Q3 <dbl>

Step 3: Create Data Frame for Row-mean Scores in “Depression” and Variables of Interest

# Depression row mean scores

Depression_df <- data.frame (response_df$Depression_Q1, 
                             response_df$Depression_Q2,
                             response_df$Depression_Q3)
Depression_df <- data.frame(rowMeans(Depression_df))
colnames(Depression_df) <- ("Depression")

Make new data frame

# Update data in new frame
mhealth_df <- data.frame(response_df$Age, Depression_df, response_df$Gender, response_df$Relationship_Status)

## Rename columns
names(mhealth_df)[names(mhealth_df) == "response_df.Age"] <- 
  "Age"
names(mhealth_df)[names(mhealth_df) == "response_df.Gender"] <- 
  "Gender"
names(mhealth_df)[names(mhealth_df) == "response_df.Relationship_Status"] <- 
  "Relationship_Status"

colnames(mhealth_df)
## [1] "Age"                 "Depression"          "Gender"             
## [4] "Relationship_Status"

Filter ages <25 & >= 25

mhealth1_df <- subset(mhealth_df, Age < 25)
mhealth2_df <- subset(mhealth_df, Age > 24)

Step 4: Summarize Data and Data Visualization

Defining the variables

Variable                 | Definition
-------------------------|------------
1. Age                   | Respondents age (age under 25 and Age Over 25)
2. Gender                | Respondents who are Male or Female
3. Relationship_Status   | Respondents who are Single, In a relationship, Married and Divorced 
4. Depression            | The mean score for questions pertaining to Depression

Questions aggregated defined as the variable “Depression”

18. How often do you feel depressed or down?
19. On a scale of 1 to 5, how frequently does your interest in daily activities fluctuate?
20. On a scale of 1 to 5, how often do you face issues regarding sleep?

Descriptive statistics

# 5 number summary for Age and Depression
summary(mhealth_df$Age)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   13.00   21.00   22.00   26.12   26.00   91.00
summary(mhealth1_df$Depression)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   2.667   3.333   3.400   4.000   5.000
Interpretation: For the summary of age
(1) The youngest respondent is 13 years old, while the oldest is 91 years old.
(2) The median age is 22 years.
(3) The mean age is 26.12 years.
(4) For the summary of depression scores among respondents aged less than 25.
(5) The minimum depression score is 1 ->  the lowest level of depression reported.
(6) The median depression score is approximately 3.33.
(7) The mean depression score is approximately 3.4.

Create cross-tabulation and proportion Table

cross_tab_gender_relationship <- table(mhealth_df$Gender, mhealth_df$Relationship_Status)
prop_table_gender_relationship <- prop.table(cross_tab_gender_relationship, margin = 2)

Create tables for gender and relationship status

gender_table <- as.data.frame(table(mhealth_df$Gender))
colnames(gender_table) <- c("Gender", "Frequency")
gender_table$Proportion <- gender_table$Frequency / sum(gender_table$Frequency)
relationship_table <- as.data.frame(table(mhealth_df$Relationship_Status))
colnames(relationship_table) <- c("Relationship_Status", "Frequency")
relationship_table$Proportion <- relationship_table$Frequency / sum(relationship_table$Frequency)

Display the tables

print(gender_table)
##   Gender Frequency Proportion
## 1 Female       263  0.5548523
## 2   Male       211  0.4451477
print(relationship_table)
##   Relationship_Status Frequency Proportion
## 1            Divorced         6 0.01265823
## 2   In a relationship        87 0.18354430
## 3             Married       101 0.21308017
## 4              Single       280 0.59071730
Interpretation: Gender Table
(1) Table shows the frequency and proportion of respondents by gender.
(2) 263 female respondents and 211 male respondents.
(3) The proportion indicates the proportion of each gender category relative to the total number of respondents. For example, approximately 55.49% of the respondents are female, while approximately 44.51% are male
(4) Relationship Status Table:The table presents the frequency and proportion of respondents by relationship status.
(5)Among the respondents:
   (a) 6 respondents are divorced, making up approximately 1.27% of the total.
   (b) 87 respondents are in a relationship, which is about 18.35% of the total.
   (c) 101 respondents are married, accounting for approximately 21.31% of the total.
   (d) 280 respondents are single, representing about 59.07% of the total.

Histogram of depression scores

# Show distribution of Depression Scores
ggplot(mhealth_df, aes(x = Depression)) +
  geom_histogram(binwidth = 1, fill = "skyblue", color = "black") +
  labs(title = "Histogram of Depression", x = "Depression Score", y = "Frequency") +
  theme_pubr()

Interpretation: Histogram of Depression Scores
The histogram shows the distribution of depression scores
The x-axis represents the depression score, while the y-axis represents the frequency (number of respondents)
The bars show how many respondents fall into each depression score range
The histogram's shape and spread can provide insights into the distribution of depression scores among the respondents, such as whether the scores are normally distributed, skewed, or exhibit other patterns

Boxplot of depression Scores by gender

# Create variables showing male and female depression score

MD <- mhealth_df[mhealth_df$Gender == "Male", "Depression"]
FD <- mhealth_df[mhealth_df$Gender == "Female", "Depression"]

boxplot(MD, FD, names = c("Male", "Female"), ylab = "Depression Levels",
        main = "Depression Scores by Gender", col = c("#00AFBB", "pink"))

Interpretation: Boxplot of Depression Scores by Gender
A low score of 1 generally indicates low intensity, and a high score of 5 typically indicates high intensity.
Feelings of Depression [Depression] - Question 18 / How often do you feel depressed or down?
Fluctuation of interest [Depression] - Question 19 / On a scale of 1 to 5, how frequently does your interest in daily activities fluctuate?
Sleep Issues [Depression] - Question 20 / On a scale of 1 to 5, how often do you face issues regarding sleep?
Females report higher depression scores than Males.

Boxplot of depression scores by relationship status

# Create variables showing depressions score in each relationship status

single <- mhealth_df[mhealth_df$Relationship_Status == "Single", "Depression"]
relationship <- mhealth_df[mhealth_df$Relationship_Status == "In a relationship", "Depression"]
married <- mhealth_df[mhealth_df$Relationship_Status == "Married", "Depression"]
divorced <- mhealth_df[mhealth_df$Relationship_Status == "Divorced", "Depression"]

boxplot(single, relationship, married, divorced,
        main = "Depression Scores by Relationship Status",
        xlab = "Relationship_Status",
        ylab = "Depression Scores",
        col = c("lightblue", "lightgreen", "lightcoral", "gray"),
        names = c("Single", "In a Relationship", "Married", "Divorced"))

Interpretation: Boxplot of Depression Scores by Relationship Status
We see that Single and in a relationship have the highest depression scores while divorced individuals show the lowest depression score.
The distribution of depression scores varies across different relationship statuses.
Single and divorced participants have a wider spread of depression scores, suggesting more variability in their mental health.
Those in a relationship or married tend to have less variability in their depression scores.

Step 5: Assumptions

(1) variables are independent of one another
(2) Data is normally distrubted
(3) Alpha = 0.05

Step 6: Testing Assumptions

Test of independence: “Depression” and “Gender”

# Test independence using Pearson's Chi-squared test

chisq_g <- chisq.test(mhealth_df$Depression,mhealth_df$Gender)
print(chisq_g)
## 
##  Pearson's Chi-squared test
## 
## data:  mhealth_df$Depression and mhealth_df$Gender
## X-squared = 13.006, df = 12, p-value = 0.3686
Interpretation: Since p-value (0.37) > 0.5 We conclude that gender and depression are dependent of each other.

Testing to find out if “Depression” is normally distributed

# Test normality of data using Shapiro-Wilk test

shapiro.test(Depression_df$Depression)
## 
##  Shapiro-Wilk normality test
## 
## data:  Depression_df$Depression
## W = 0.97135, p-value = 5.246e-08
Interpretation: Since the p-value (5.246e-08) is less than the significance level (0.05), we reject the null hypothesis. This suggests that the 'Depression' scores are not normally distributed in the population.

Testing to find out if “Age” is normally distributed

# Test normality of data using Shapiro-Wilk test

shapiro.test(response_df$Age)
## 
##  Shapiro-Wilk normality test
## 
## data:  response_df$Age
## W = 0.7261, p-value < 2.2e-16
Interpretation: Since the p-value (2.2e-16) is less than the significance level (0.05), we reject the null hypothesis. This indicates that the 'Age' variable is not normally distributed in the population.
Explaning method choice: 
The Kruskal-Wallis test is used instead of parametric tests due to the non-normal distribution of depression scores, assessing whether there are significant differences among groups based on age, gender, and marital status.

Since the Age and Depression is not normally distributed, we will use the non-parametric Mann-Whitney U test to determine if there is a significant difference in the median depression scores among the different age groups.

Step 7: Mann-Whitney U test for depression scores between individuals under and over the age of 25

Parameters

M1 = the population median depression score for Age < 25
M2 = the population median depression score for Age > 25 

Hypothesis

H0: M1 = M2
Ha: M1 ≠ M2

Two groups based on their age: those under 25 and those 25 or older.

group_under_25 <- subset(mhealth_df, Age < 25)$Depression
group_over_25 <- subset(mhealth_df, Age > 24)$Depression
wilcox.test(group_under_25, group_over_25,
            paired = FALSE)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  group_under_25 and group_over_25
## W = 32082, p-value = 3.987e-08
## alternative hypothesis: true location shift is not equal to 0
Interpretation: Since p-value (0.00)< level of significance (0.05), we reject H0.
Conclusion: There is sufficient evidence to conclude that there is a significant difference in depression scores between individuals under 25 and those 25 and older who use social media.

Step 8: Kruskal-Wallis Test for Depression Scores by Gender

Parameters

M3 = the population median depression score for Females
M4 = the population median depression score for Males

Hypothesis

H0: M3 = M4 
Ha: M3 ≠ M4

Clean and extract data for specific needs.

# Extracting Male and Depression values and inserting them into new dataset called MD

MD <- mhealth_df[mhealth_df$Gender =="Male", "Depression"]

# Extracting Female and Depression values and inserting them into new dataset called FD

FD <- mhealth_df[mhealth_df$Gender =="Female", "Depression"]

# recalling both MD and FD to see results and double check work
MD
##   [1] 4.666667 1.000000 4.666667 5.000000 3.000000 2.666667 2.000000 2.333333
##   [9] 2.000000 2.333333 2.333333 4.333333 3.666667 4.333333 3.000000 2.666667
##  [17] 2.333333 4.666667 2.666667 3.000000 2.000000 1.666667 3.000000 5.000000
##  [25] 1.333333 2.000000 3.333333 3.000000 3.666667 3.333333 3.000000 4.000000
##  [33] 3.666667 1.666667 5.000000 1.666667 3.000000 3.666667 4.333333 4.333333
##  [41] 3.333333 3.666667 2.666667 2.333333 3.666667 3.000000 3.000000 3.000000
##  [49] 2.000000 4.333333 3.333333 4.333333 2.666667 2.666667 3.000000 4.333333
##  [57] 4.000000 2.666667 2.333333 2.666667 1.666667 4.333333 3.000000 3.333333
##  [65] 2.000000 2.333333 2.666667 2.000000 2.333333 3.666667 3.333333 3.000000
##  [73] 2.666667 3.333333 3.000000 2.333333 2.333333 1.666667 1.666667 3.333333
##  [81] 5.000000 1.333333 3.333333 2.000000 2.000000 2.000000 4.666667 2.000000
##  [89] 1.333333 1.333333 3.333333 3.666667 5.000000 2.333333 4.666667 2.666667
##  [97] 1.000000 5.000000 1.000000 2.000000 1.000000 2.333333 4.333333 3.000000
## [105] 2.666667 4.333333 4.000000 3.666667 1.333333 3.000000 3.333333 3.666667
## [113] 2.666667 3.333333 3.333333 3.666667 3.333333 5.000000 5.000000 4.000000
## [121] 4.000000 3.333333 4.666667 2.333333 2.666667 2.666667 2.666667 3.333333
## [129] 5.000000 3.666667 3.000000 4.000000 5.000000 2.333333 3.666667 3.000000
## [137] 3.666667 4.666667 4.000000 2.666667 2.666667 2.666667 1.666667 2.333333
## [145] 3.333333 3.000000 3.333333 3.666667 1.000000 2.000000 4.000000 2.000000
## [153] 3.333333 2.666667 4.000000 2.666667 2.000000 5.000000 2.666667 3.666667
## [161] 3.000000 3.666667 3.666667 3.333333 2.666667 3.333333 3.333333 3.333333
## [169] 3.666667 5.000000 3.666667 3.000000 4.000000 1.000000 1.000000 5.000000
## [177] 3.000000 4.666667 4.333333 3.333333 2.000000 3.666667 2.666667 4.666667
## [185] 4.333333 2.666667 5.000000 4.333333 5.000000 3.000000 3.666667 3.000000
## [193] 2.333333 3.333333 3.000000 4.333333 1.000000 2.333333 1.333333 2.666667
## [201] 1.000000 3.333333 2.000000 2.333333 2.666667 2.333333 2.666667 1.000000
## [209] 3.666667 4.333333 2.333333
FD
##   [1] 4.666667 3.666667 3.000000 3.000000 3.000000 4.333333 3.666667 3.666667
##   [9] 3.000000 3.000000 3.000000 4.000000 3.000000 2.666667 3.000000 3.333333
##  [17] 4.000000 2.666667 4.333333 3.000000 2.333333 2.666667 2.000000 3.666667
##  [25] 2.666667 3.000000 1.000000 3.666667 4.333333 3.666667 3.000000 3.666667
##  [33] 4.333333 4.666667 3.333333 4.333333 4.666667 3.333333 5.000000 4.666667
##  [41] 3.333333 1.333333 4.666667 3.666667 2.333333 4.000000 4.333333 2.666667
##  [49] 2.333333 3.666667 4.000000 1.000000 3.000000 3.000000 3.000000 3.000000
##  [57] 3.666667 3.666667 3.333333 4.666667 1.000000 3.000000 4.000000 2.666667
##  [65] 2.000000 4.000000 3.666667 4.000000 2.000000 1.333333 2.000000 1.000000
##  [73] 1.333333 4.000000 2.666667 5.000000 3.000000 3.666667 2.333333 2.666667
##  [81] 2.333333 4.000000 2.000000 3.333333 4.666667 4.000000 2.000000 3.666667
##  [89] 2.333333 4.333333 1.000000 4.000000 4.333333 2.333333 4.333333 3.333333
##  [97] 3.666667 2.333333 3.666667 4.000000 2.333333 2.666667 4.000000 4.000000
## [105] 1.666667 2.333333 2.333333 3.333333 2.000000 1.000000 3.666667 3.333333
## [113] 3.666667 2.333333 3.333333 3.000000 3.666667 3.000000 3.666667 3.000000
## [121] 2.000000 1.666667 1.000000 3.333333 4.333333 4.666667 3.333333 4.333333
## [129] 2.666667 3.333333 2.333333 2.333333 1.333333 4.333333 1.000000 4.333333
## [137] 2.666667 4.000000 5.000000 2.000000 3.000000 2.666667 2.666667 4.666667
## [145] 2.333333 2.333333 2.666667 2.666667 4.000000 2.666667 2.666667 5.000000
## [153] 3.333333 5.000000 3.000000 1.666667 4.000000 3.666667 4.333333 3.000000
## [161] 3.666667 3.000000 4.333333 5.000000 1.000000 1.333333 4.000000 3.666667
## [169] 4.333333 2.666667 4.000000 2.000000 3.000000 2.000000 4.666667 2.666667
## [177] 4.333333 3.333333 4.666667 5.000000 5.000000 4.666667 3.333333 4.333333
## [185] 3.000000 3.666667 3.000000 3.333333 4.666667 5.000000 5.000000 3.666667
## [193] 2.333333 4.333333 4.000000 3.333333 3.666667 3.333333 2.666667 2.666667
## [201] 4.000000 1.666667 4.000000 4.000000 4.000000 4.666667 3.333333 3.666667
## [209] 1.666667 4.666667 4.333333 2.000000 5.000000 4.666667 3.333333 4.333333
## [217] 3.333333 2.000000 1.666667 4.000000 5.000000 3.000000 5.000000 4.666667
## [225] 3.333333 3.333333 3.666667 2.333333 4.666667 3.666667 2.000000 4.333333
## [233] 3.000000 3.000000 3.666667 2.666667 4.333333 5.000000 4.000000 3.666667
## [241] 3.333333 1.666667 2.000000 3.666667 4.666667 4.333333 3.666667 2.000000
## [249] 3.333333 3.333333 1.333333 2.666667 2.333333 3.333333 4.000000 4.666667
## [257] 3.666667 3.333333 3.666667 2.333333 4.666667 3.000000 2.000000

Build Model

# Wilcox test and saving the results under “results”. Wilcox is calling MD and FD 

results = wilcox.test(MD, FD)
Interpretation: 
Since, p-value 0.02 < 0.05, we reject the null hypothesis. 
It is clear that there is a significant difference between the scores of females and Males. To see whether females or males reported higher depression, we can go back to the data visualization. We see that Females reported higher depression scores compared to Men and that the samples are in fact, different from each other.

Step 9: Kruskal-Wallis Test for Depression by Relationship Status

Parameters

M5 = the population median depression score for Single 
M6 = the population median depression score for In a Relationship
M7 = the population median depression score for Married
M8 = the population median depression score for Divorced

Hypothesis

H0: M5 = M6 = M7 = M8
Ha: M5 ≠ M6 ≠ M7 ≠ M8

Kruskal-Wallis test (nonparametric altenative to ANOVA)

kruskal.test(Depression~Relationship_Status, data = mhealth_df)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Depression by Relationship_Status
## Kruskal-Wallis chi-squared = 47.779, df = 3, p-value = 2.373e-10
pairwise.wilcox.test(mhealth_df$Depression, mhealth_df$Relationship_Status,
                     p.adjust.method = "BH")
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  mhealth_df$Depression and mhealth_df$Relationship_Status 
## 
##                   Divorced In a relationship Married
## In a relationship 0.16     -                 -      
## Married           0.71     1.4e-06           -      
## Single            0.16     0.71              2.3e-10
## 
## P value adjustment method: BH
Interpretation: a p-value of 0.00 indicates we can reject our null hypothesis and conclude that 
not all population median are equal

Step 10: Pairwise comparison

Pairwise comparison is necessary because there is significant difference in the population mean depression Scores in individuals who are single, in a relationship, married, or divorced.
pairwise.wilcox.test(mhealth_df$Depression, mhealth_df$Relationship_Status,
                     p.adjust.method = "BH")
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  mhealth_df$Depression and mhealth_df$Relationship_Status 
## 
##                   Divorced In a relationship Married
## In a relationship 0.16     -                 -      
## Married           0.71     1.4e-06           -      
## Single            0.16     0.71              2.3e-10
## 
## P value adjustment method: BH
Interpretation: with a p-value of 0.00, we can conclude there is a significant difference in the population medians in the groups "In a relatinship" and "Mariied" and "Married" and "Single"

Step 11: Conclusions

(1) Women report higher depression scores.
(2) Age group < 25 reported higher depression scores.
(3) The depression score data was not normally distributed, binomial distributed.
(4) The depression scores are not independent of relationship status and age as we initially assumed.

Step 12: Recommendations

(1) Establish Comprehensive Mental Health Support Services for Youth: Integrate mental health education into school curriculums and extracurricular activities to promote early intervention to help destigmatize mental health support. 
(2) Prioritize Women's Mental Health Initiatives: Partner with women's health organizations, community centers, and employers to raise awareness about women's mental health issues and promote access to support services.
(3) Enhance Employee Wellness Programs Offer employee assistance programs (EAPs) that provide confidential counseling, mental health resources, and referrals to specialized care when needed