Goal is to automate building and tuning a classification model to predict climbers deaths, using the h2o::h2o.automl.

Set up Import data Import the cleaned data from Module 7.

library(h2o)
## Warning: package 'h2o' was built under R version 4.3.3
## 
## ----------------------------------------------------------------------
## 
## Your next step is to start H2O:
##     > h2o.init()
## 
## For H2O package documentation, ask for help:
##     > ??h2o
## 
## After starting H2O, you can use the Web UI at http://localhost:54321
## For more information visit https://docs.h2o.ai
## 
## ----------------------------------------------------------------------
## 
## Attaching package: 'h2o'
## The following objects are masked from 'package:stats':
## 
##     cor, sd, var
## The following objects are masked from 'package:base':
## 
##     %*%, %in%, &&, ||, apply, as.factor, as.numeric, colnames,
##     colnames<-, ifelse, is.character, is.factor, is.numeric, log,
##     log10, log1p, log2, round, signif, trunc
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.3     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.3     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ lubridate::day()   masks h2o::day()
## ✖ dplyr::filter()    masks stats::filter()
## ✖ lubridate::hour()  masks h2o::hour()
## ✖ dplyr::lag()       masks stats::lag()
## ✖ lubridate::month() masks h2o::month()
## ✖ lubridate::week()  masks h2o::week()
## ✖ lubridate::year()  masks h2o::year()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.1.1 ──
## ✔ broom        1.0.5     ✔ rsample      1.2.0
## ✔ dials        1.2.0     ✔ tune         1.1.2
## ✔ infer        1.0.5     ✔ workflows    1.1.3
## ✔ modeldata    1.2.0     ✔ workflowsets 1.0.1
## ✔ parsnip      1.1.1     ✔ yardstick    1.2.0
## ✔ recipes      1.0.8     
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter()   masks stats::filter()
## ✖ recipes::fixed()  masks stringr::fixed()
## ✖ dplyr::lag()      masks stats::lag()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step()   masks stats::step()
## • Dig deeper into tidy modeling with R at https://www.tmwr.org
library(tidyquant)
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## 
## ######################### Warning from 'xts' package ##########################
## #                                                                             #
## # The dplyr lag() function breaks how base R's lag() function is supposed to  #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or       #
## # source() into this session won't work correctly.                            #
## #                                                                             #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop           #
## # dplyr from breaking base R's lag() function.                                #
## #                                                                             #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning.  #
## #                                                                             #
## ###############################################################################
## 
## Attaching package: 'xts'
## 
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## 
## Attaching package: 'PerformanceAnalytics'
## 
## The following object is masked from 'package:graphics':
## 
##     legend
## 
## Loading required package: quantmod
## Loading required package: TTR
## 
## Attaching package: 'TTR'
## 
## The following object is masked from 'package:dials':
## 
##     momentum
## 
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
data <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/members.csv')
## Rows: 76519 Columns: 21
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (10): expedition_id, member_id, peak_id, peak_name, season, sex, citizen...
## dbl  (5): year, age, highpoint_metres, death_height_metres, injury_height_me...
## lgl  (6): hired, success, solo, oxygen_used, died, injured
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
factors_vec <- data %>% select(year, age, highpoint_metres, death_height_metres, injury_height_metres) %>%
    names()

# Treating missing values
data_clean <- data %>% 
    select(-death_cause, -injury_type, -death_height_metres, - injury_height_metres) %>%
    drop_na() %>%
    
    # Mutate logical Variables
    mutate(died = case_when(died == "TRUE" ~ "died", died == "FALSE" ~ "no")) %>%
    
    mutate(across(where(is.logical), as.factor)) %>%

    # Recode "died"
    mutate(died = if_else(died == "TRUE", "deaths", died))

Split the Data

set.seed(1234)

data_split <- initial_split(data, strata = "died")
train_tbl <- training(data_split)
test_tbl <- testing(data_split)

Recipes

recipe_obj <- recipe(died ~ ., data = train_tbl) %>%
    
    # Remove zero variance variables
    step_zv(all_predictors()) 

Model

# Initialize h2o
h2o.init()
##  Connection successful!
## 
## R is connected to the H2O cluster: 
##     H2O cluster uptime:         9 days 3 hours 
##     H2O cluster timezone:       America/New_York 
##     H2O data parsing timezone:  UTC 
##     H2O cluster version:        3.44.0.3 
##     H2O cluster version age:    4 months and 18 days 
##     H2O cluster name:           H2O_started_from_R_OPend_zez903 
##     H2O cluster total nodes:    1 
##     H2O cluster total memory:   3.79 GB 
##     H2O cluster total cores:    12 
##     H2O cluster allowed cores:  12 
##     H2O cluster healthy:        TRUE 
##     H2O Connection ip:          localhost 
##     H2O Connection port:        54321 
##     H2O Connection proxy:       NA 
##     H2O Internal Security:      FALSE 
##     R Version:                  R version 4.3.1 (2023-06-16 ucrt)
## Warning in h2o.clusterInfo(): 
## Your H2O cluster version is (4 months and 18 days) old. There may be a newer version available.
## Please download and install the latest version from: https://h2o-release.s3.amazonaws.com/h2o/latest_stable.html
# Split training
split.h2o <- h2o.splitFrame(as.h2o(train_tbl), ratios = c(0.85), seed = 2567)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
train_h2o <- split.h2o[[1]]
valid_h2o <- split.h2o[[2]]
test_h2o <- as.h2o(test_tbl)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
y <- "died"
x <- setdiff(names(train_tbl), y)

models_h2o <- h2o.automl(
    x = x,
    y = y, 
    training_frame    = train_h2o, 
    validation_frame  = valid_h2o, 
    leaderboard_frame = test_h2o, 
    max_runtime_secs = 30, 
    nfolds = 5, 
    seed = 2345
)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
## 19:00:28.705: User specified a validation frame with cross-validation still enabled. Please note that the models will still be validated using cross-validation only, the validation frame will be used to provide purely informative validation metrics on the trained models.
## 19:00:28.709: AutoML: XGBoost is not available; skipping it.
## 19:00:28.709: _train param, Dropping bad and constant columns: [member_id, peak_name, death_cause, peak_id, sex, citizenship, expedition_role, season, expedition_id, injury_type]
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |=============                                                         |  19%
## 19:00:33.408: _train param, Dropping bad and constant columns: [member_id, peak_name, death_cause, peak_id, sex, citizenship, expedition_role, season, expedition_id, injury_type]
  |                                                                            
  |===================                                                   |  27%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |==============================                                        |  42%
  |                                                                            
  |==================================                                    |  49%
## 19:00:43.719: _train param, Dropping unused columns: [member_id, peak_name, death_cause, peak_id, sex, citizenship, expedition_role, season, expedition_id, injury_type]
  |                                                                            
  |========================================                              |  58%
  |                                                                            
  |==============================================                        |  65%
## 19:00:48.310: _train param, Dropping bad and constant columns: [member_id, peak_name, death_cause, peak_id, sex, citizenship, expedition_role, season, expedition_id, injury_type]
  |                                                                            
  |===================================================                   |  73%
## 19:00:50.58: _train param, Dropping bad and constant columns: [member_id, peak_name, death_cause, peak_id, sex, citizenship, expedition_role, season, expedition_id, injury_type]
  |                                                                            
  |========================================================              |  80%
## 19:00:51.897: _train param, Dropping bad and constant columns: [member_id, peak_name, death_cause, peak_id, sex, citizenship, expedition_role, season, expedition_id, injury_type]
  |                                                                            
  |=============================================================         |  87%
## 19:00:53.847: _train param, Dropping bad and constant columns: [member_id, peak_name, death_cause, peak_id, sex, citizenship, expedition_role, season, expedition_id, injury_type]
  |                                                                            
  |==================================================================    |  94%
## 19:00:55.797: _train param, Dropping unused columns: [member_id, peak_name, death_cause, peak_id, sex, citizenship, expedition_role, season, expedition_id, injury_type]
## 19:00:56.924: _train param, Dropping unused columns: [member_id, peak_name, death_cause, peak_id, sex, citizenship, expedition_role, season, expedition_id, injury_type]
  |                                                                            
  |======================================================================| 100%

Examine the output of h2o.automl

models_h2o %>% typeof()
## [1] "S4"
models_h2o %>% slotNames()
## [1] "project_name"   "leader"         "leaderboard"    "event_log"     
## [5] "modeling_steps" "training_info"
models_h2o@leaderboard
##                                                  model_id       auc     logloss
## 1                          GBM_3_AutoML_7_20240508_190028 0.9975800 0.004680771
## 2 StackedEnsemble_BestOfFamily_1_AutoML_7_20240508_190028 0.9945110 0.002919614
## 3                          GBM_1_AutoML_7_20240508_190028 0.9944712 0.002861552
## 4                          DRF_1_AutoML_7_20240508_190028 0.9937626 0.003502198
## 5 StackedEnsemble_BestOfFamily_2_AutoML_7_20240508_190028 0.9937626 0.018274232
## 6    StackedEnsemble_AllModels_1_AutoML_7_20240508_190028 0.9935932 0.012946726
##       aucpr mean_per_class_error       rmse          mse
## 1 0.9856455          0.009312282 0.02134694 0.0004556918
## 2 0.9845382          0.009285770 0.02024188 0.0004097338
## 3 0.9845538          0.009285770 0.02000074 0.0004000296
## 4 0.9859443          0.009285770 0.02172861 0.0004721324
## 5 0.9859443          0.009285770 0.06392251 0.0040860870
## 6 0.9857322          0.009285770 0.05460987 0.0029822376
## 
## [9 rows x 7 columns]
models_h2o@leader
## Model Details:
## ==============
## 
## H2OBinomialModel: gbm
## Model ID:  GBM_3_AutoML_7_20240508_190028 
## Model Summary: 
##   number_of_trees number_of_internal_trees model_size_in_bytes min_depth
## 1              21                       21               17880         1
##   max_depth mean_depth min_leaves max_leaves mean_leaves
## 1         8    7.33333          2        163    63.57143
## 
## 
## H2OBinomialMetrics: gbm
## ** Reported on training data. **
## 
## MSE:  0.0004970244
## RMSE:  0.02229404
## LogLoss:  0.004757673
## Mean Per-Class Error:  0.01440932
## AUC:  0.9995247
## AUCPR:  0.9918435
## Gini:  0.9990494
## R^2:  0.9646597
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        FALSE TRUE    Error       Rate
## FALSE  48015    2 0.000042   =2/48017
## TRUE      20  675 0.028777    =20/695
## Totals 48035  677 0.000452  =22/48712
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold        value idx
## 1                       max f1  0.063413     0.983965 168
## 2                       max f2  0.038868     0.976945 175
## 3                 max f0point5  0.108224     0.992897 164
## 4                 max accuracy  0.063413     0.999548 168
## 5                max precision  0.998186     1.000000   0
## 6                   max recall  0.002479     1.000000 325
## 7              max specificity  0.998186     1.000000   0
## 8             max absolute_mcc  0.063413     0.983823 168
## 9   max min_per_class_accuracy  0.005034     0.992806 242
## 10 max mean_per_class_accuracy  0.005034     0.993529 242
## 11                     max tns  0.998186 48017.000000   0
## 12                     max fns  0.998186   694.000000   0
## 13                     max fps  0.002006 48017.000000 399
## 14                     max tps  0.002479   695.000000 325
## 15                     max tnr  0.998186     1.000000   0
## 16                     max fnr  0.998186     0.998561   0
## 17                     max fpr  0.002006     1.000000 399
## 18                     max tpr  0.002479     1.000000 325
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: gbm
## ** Reported on validation data. **
## ** Validation metrics **
## 
## MSE:  0.0004679748
## RMSE:  0.02163273
## LogLoss:  0.005128165
## Mean Per-Class Error:  0.0141844
## AUC:  0.9924716
## AUCPR:  0.9832142
## Gini:  0.9849432
## R^2:  0.9707256
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        FALSE TRUE    Error     Rate
## FALSE   8536    0 0.000000  =0/8536
## TRUE       4  137 0.028369   =4/141
## Totals  8540  137 0.000461  =4/8677
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold       value idx
## 1                       max f1  0.974702    0.985612 107
## 2                       max f2  0.974702    0.977175 107
## 3                 max f0point5  0.974702    0.994194 107
## 4                 max accuracy  0.974702    0.999539 107
## 5                max precision  0.999014    1.000000   0
## 6                   max recall  0.002123    1.000000 370
## 7              max specificity  0.999014    1.000000   0
## 8             max absolute_mcc  0.974702    0.985483 107
## 9   max min_per_class_accuracy  0.004077    0.985816 165
## 10 max mean_per_class_accuracy  0.019842    0.989010 111
## 11                     max tns  0.999014 8536.000000   0
## 12                     max fns  0.999014  140.000000   0
## 13                     max fps  0.002002 8536.000000 399
## 14                     max tps  0.002123  141.000000 370
## 15                     max tnr  0.999014    1.000000   0
## 16                     max fnr  0.999014    0.992908   0
## 17                     max fpr  0.002002    1.000000 399
## 18                     max tpr  0.002123    1.000000 370
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## H2OBinomialMetrics: gbm
## ** Reported on cross-validation data. **
## ** 5-fold cross-validation on training data (Metrics computed for combined holdout predictions) **
## 
## MSE:  0.0005219622
## RMSE:  0.02284649
## LogLoss:  0.005476449
## Mean Per-Class Error:  0.01798561
## AUC:  0.9925264
## AUCPR:  0.9731345
## Gini:  0.9850529
## R^2:  0.9628866
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##        FALSE TRUE    Error       Rate
## FALSE  48017    0 0.000000   =0/48017
## TRUE      25  670 0.035971    =25/695
## Totals 48042  670 0.000513  =25/48712
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold        value idx
## 1                       max f1  0.972886     0.981685 152
## 2                       max f2  0.972886     0.971014 152
## 3                 max f0point5  0.972886     0.992593 152
## 4                 max accuracy  0.972886     0.999487 152
## 5                max precision  0.997748     1.000000   0
## 6                   max recall  0.001946     1.000000 380
## 7              max specificity  0.997748     1.000000   0
## 8             max absolute_mcc  0.972886     0.981594 152
## 9   max min_per_class_accuracy  0.003002     0.974613 288
## 10 max mean_per_class_accuracy  0.972886     0.982014 152
## 11                     max tns  0.997748 48017.000000   0
## 12                     max fns  0.997748   692.000000   0
## 13                     max fps  0.001672 48017.000000 399
## 14                     max tps  0.001946   695.000000 380
## 15                     max tnr  0.997748     1.000000   0
## 16                     max fnr  0.997748     0.995683   0
## 17                     max fpr  0.001672     1.000000 399
## 18                     max tpr  0.001946     1.000000 380
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
## Cross-Validation Metrics Summary: 
##                              mean       sd cv_1_valid cv_2_valid cv_3_valid
## accuracy                 0.999487 0.000145   0.999589   0.999384   0.999281
## auc                      0.993261 0.002335   0.995417   0.990461   0.995405
## err                      0.000513 0.000145   0.000411   0.000616   0.000719
## err_count                5.000000 1.414214   4.000000   6.000000   7.000000
## f0point5                 0.992611 0.001918   0.994437   0.990854   0.990237
## f1                       0.981741 0.004687   0.986207   0.977444   0.975945
## f2                       0.971119 0.007330   0.978112   0.964392   0.962060
## lift_top_group          70.294120 4.211651  66.278910  71.639710  65.382550
## logloss                  0.005476 0.000914   0.004646   0.006173   0.006716
## max_per_class_error      0.035829 0.009026   0.027211   0.044118   0.046980
## mcc                      0.981658 0.004669   0.986095   0.977387   0.975872
## mean_per_class_accuracy  0.982085 0.004513   0.986395   0.977941   0.976510
## mean_per_class_error     0.017915 0.004513   0.013605   0.022059   0.023490
## mse                      0.000522 0.000144   0.000417   0.000624   0.000726
## pr_auc                   0.973468 0.006299   0.980216   0.966722   0.966781
## precision                1.000000 0.000000   1.000000   1.000000   1.000000
## r2                       0.963021 0.009121   0.971931   0.954648   0.951792
## recall                   0.964171 0.009026   0.972789   0.955882   0.953020
## rmse                     0.022680 0.003078   0.020423   0.024984   0.026945
## specificity              1.000000 0.000000   1.000000   1.000000   1.000000
##                         cv_4_valid cv_5_valid
## accuracy                  0.999589   0.999589
## auc                       0.991169   0.993853
## err                       0.000411   0.000411
## err_count                 4.000000   4.000000
## f0point5                  0.993740   0.993789
## f1                        0.984496   0.984615
## f2                        0.975422   0.975610
## lift_top_group           74.366410  73.803030
## logloss                   0.005014   0.004832
## max_per_class_error       0.030534   0.030303
## mcc                       0.984410   0.984527
## mean_per_class_accuracy   0.984733   0.984849
## mean_per_class_error      0.015267   0.015152
## mse                       0.000421   0.000421
## pr_auc                    0.976271   0.977352
## precision                 1.000000   1.000000
## r2                        0.968230   0.968504
## recall                    0.969466   0.969697
## rmse                      0.020530   0.020518
## specificity               1.000000   1.000000
best_model <- models_h2o@leader

Save and Load

?h2o.getModel
## starting httpd help server ... done
?h2o.saveModel
?h2o.loadModel

# h2o.getModel("GLM_1_AutoML_4_20240423_111307") %>%
   # h2o.saveModel("h2o_models/")

# best_model <- h2o.loadModel("h2o_models/GLM_1_AutoML_4_20240423_111307")

Make Predictions

predictions <- h2o.predict(best_model, newdata = test_h2o)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
predictions_tbl <- predictions %>%
    as_tibble()

predictions_tbl %>%
    bind_cols(test_tbl)
## # A tibble: 19,130 × 24
##    predict FALSE.   TRUE. expedition_id member_id peak_id peak_name  year season
##    <fct>    <dbl>   <dbl> <chr>         <chr>     <chr>   <chr>     <dbl> <chr> 
##  1 FALSE    0.998 0.00230 AMAD78301     AMAD7830… AMAD    Ama Dabl…  1978 Autumn
##  2 FALSE    0.998 0.00216 AMAD79101     AMAD7910… AMAD    Ama Dabl…  1979 Spring
##  3 FALSE    0.998 0.00223 AMAD79101     AMAD7910… AMAD    Ama Dabl…  1979 Spring
##  4 FALSE    0.995 0.00471 AMAD79101     AMAD7910… AMAD    Ama Dabl…  1979 Spring
##  5 FALSE    0.998 0.00247 AMAD79101     AMAD7910… AMAD    Ama Dabl…  1979 Spring
##  6 FALSE    0.998 0.00214 AMAD79101     AMAD7910… AMAD    Ama Dabl…  1979 Spring
##  7 FALSE    0.998 0.00216 AMAD79101     AMAD7910… AMAD    Ama Dabl…  1979 Spring
##  8 FALSE    0.998 0.00220 AMAD79101     AMAD7910… AMAD    Ama Dabl…  1979 Spring
##  9 FALSE    0.998 0.00247 AMAD79101     AMAD7910… AMAD    Ama Dabl…  1979 Spring
## 10 FALSE    0.998 0.00220 AMAD79301     AMAD7930… AMAD    Ama Dabl…  1979 Autumn
## # ℹ 19,120 more rows
## # ℹ 15 more variables: sex <chr>, age <dbl>, citizenship <chr>,
## #   expedition_role <chr>, hired <lgl>, highpoint_metres <dbl>, success <lgl>,
## #   solo <lgl>, oxygen_used <lgl>, died <lgl>, death_cause <chr>,
## #   death_height_metres <dbl>, injured <lgl>, injury_type <chr>,
## #   injury_height_metres <dbl>

Evaluate Model

?h2o.performance
performance_h2o <- h2o.performance(best_model, newdata = test_h2o)
typeof(performance_h2o)
## [1] "S4"
slotNames(performance_h2o)
## [1] "algorithm" "on_train"  "on_valid"  "on_xval"   "metrics"
performance_h2o@metrics
## $model
## $model$`__meta`
## $model$`__meta`$schema_version
## [1] 3
## 
## $model$`__meta`$schema_name
## [1] "ModelKeyV3"
## 
## $model$`__meta`$schema_type
## [1] "Key<Model>"
## 
## 
## $model$name
## [1] "GBM_3_AutoML_7_20240508_190028"
## 
## $model$type
## [1] "Key<Model>"
## 
## $model$URL
## [1] "/3/Models/GBM_3_AutoML_7_20240508_190028"
## 
## 
## $model_checksum
## [1] "-9193747636028883112"
## 
## $frame
## $frame$name
## [1] "test_tbl_sid_bb07_3"
## 
## 
## $frame_checksum
## [1] "678340420273909232"
## 
## $description
## NULL
## 
## $scoring_time
## [1] 1.715209e+12
## 
## $predictions
## NULL
## 
## $MSE
## [1] 0.0004556918
## 
## $RMSE
## [1] 0.02134694
## 
## $nobs
## [1] 19130
## 
## $custom_metric_name
## NULL
## 
## $custom_metric_value
## [1] 0
## 
## $r2
## [1] 0.9672512
## 
## $logloss
## [1] 0.004680771
## 
## $AUC
## [1] 0.99758
## 
## $pr_auc
## [1] 0.9856455
## 
## $Gini
## [1] 0.99516
## 
## $mean_per_class_error
## [1] 0.009312282
## 
## $domain
## [1] "FALSE" "TRUE" 
## 
## $cm
## $cm$`__meta`
## $cm$`__meta`$schema_version
## [1] 3
## 
## $cm$`__meta`$schema_name
## [1] "ConfusionMatrixV3"
## 
## $cm$`__meta`$schema_type
## [1] "ConfusionMatrix"
## 
## 
## $cm$table
## Confusion Matrix: Row labels: Actual class; Column labels: Predicted class
##        FALSE TRUE  Error         Rate
## FALSE  18858    2 0.0001 = 2 / 18,860
## TRUE       5  265 0.0185 =    5 / 270
## Totals 18863  267 0.0004 = 7 / 19,130
## 
## 
## $thresholds_and_metric_scores
## Metrics for Thresholds: Binomial metrics as a function of classification thresholds
##   threshold       f1       f2 f0point5 accuracy precision   recall specificity
## 1  0.997889 0.007380 0.004625 0.018248 0.985938  1.000000 0.003704    1.000000
## 2  0.997068 0.021978 0.013850 0.053191 0.986043  1.000000 0.011111    1.000000
## 3  0.995201 0.036364 0.023041 0.086207 0.986147  1.000000 0.018519    1.000000
## 4  0.991214 0.050542 0.032199 0.117450 0.986252  1.000000 0.025926    1.000000
## 5  0.990583 0.057554 0.036765 0.132450 0.986304  1.000000 0.029630    1.000000
##   absolute_mcc min_per_class_accuracy mean_per_class_accuracy   tns fns fps tps
## 1     0.060429               0.003704                0.501852 18860 269   0   1
## 2     0.104671               0.011111                0.505556 18860 267   0   3
## 3     0.135137               0.018519                0.509259 18860 265   0   5
## 4     0.159904               0.025926                0.512963 18860 263   0   7
## 5     0.170949               0.029630                0.514815 18860 262   0   8
##        tnr      fnr      fpr      tpr idx
## 1 1.000000 0.996296 0.000000 0.003704   0
## 2 1.000000 0.988889 0.000000 0.011111   1
## 3 1.000000 0.981481 0.000000 0.018519   2
## 4 1.000000 0.974074 0.000000 0.025926   3
## 5 1.000000 0.970370 0.000000 0.029630   4
## 
## ---
##     threshold       f1       f2 f0point5 accuracy precision   recall
## 395  0.002059 0.028115 0.067443 0.017759 0.024203  0.014258 1.000000
## 396  0.002047 0.028081 0.067365 0.017737 0.023001  0.014241 1.000000
## 397  0.002028 0.028064 0.067325 0.017726 0.022373  0.014231 1.000000
## 398  0.002019 0.027943 0.067047 0.017649 0.018035  0.014170 1.000000
## 399  0.002015 0.027911 0.066974 0.017629 0.016884  0.014153 1.000000
## 400  0.002006 0.027835 0.066799 0.017580 0.014114  0.014114 1.000000
##     specificity absolute_mcc min_per_class_accuracy mean_per_class_accuracy tns
## 395    0.010233     0.012079               0.010233                0.505117 193
## 396    0.009014     0.011330               0.009014                0.504507 170
## 397    0.008378     0.010919               0.008378                0.504189 158
## 398    0.003977     0.007506               0.003977                0.501988  75
## 399    0.002810     0.006307               0.002810                0.501405  53
## 400    0.000000     0.000000               0.000000                0.500000   0
##     fns   fps tps      tnr      fnr      fpr      tpr idx
## 395   0 18667 270 0.010233 0.000000 0.989767 1.000000 394
## 396   0 18690 270 0.009014 0.000000 0.990986 1.000000 395
## 397   0 18702 270 0.008378 0.000000 0.991622 1.000000 396
## 398   0 18785 270 0.003977 0.000000 0.996023 1.000000 397
## 399   0 18807 270 0.002810 0.000000 0.997190 1.000000 398
## 400   0 18860 270 0.000000 0.000000 1.000000 1.000000 399
## 
## $max_criteria_and_metric_scores
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold        value idx
## 1                       max f1  0.063832     0.986965 142
## 2                       max f2  0.063832     0.983667 142
## 3                 max f0point5  0.974248     0.993151 140
## 4                 max accuracy  0.063832     0.999634 142
## 5                max precision  0.997889     1.000000   0
## 6                   max recall  0.002295     1.000000 329
## 7              max specificity  0.997889     1.000000   0
## 8             max absolute_mcc  0.063832     0.986795 142
## 9   max min_per_class_accuracy  0.004928     0.985185 194
## 10 max mean_per_class_accuracy  0.063832     0.990688 142
## 11                     max tns  0.997889 18860.000000   0
## 12                     max fns  0.997889   269.000000   0
## 13                     max fps  0.002006 18860.000000 399
## 14                     max tps  0.002295   270.000000 329
## 15                     max tnr  0.997889     1.000000   0
## 16                     max fnr  0.997889     0.996296   0
## 17                     max fpr  0.002006     1.000000 399
## 18                     max tpr  0.002295     1.000000 329
## 
## $gains_lift_table
## Gains/Lift Table: Avg response rate:  1.41 %, avg score:  1.57 %
##    group cumulative_data_fraction lower_threshold      lift cumulative_lift
## 1      1               0.01003659        0.976651 70.851852       70.851852
## 2      2               0.02002091        0.004817 27.450456       49.207814
## 3      3               0.03000523        0.003156  0.000000       32.833785
## 4      4               0.04004182        0.002911  0.000000       24.603907
## 5      5               0.05054888        0.002782  0.000000       19.489754
## 6      6               0.10000000        0.002564  0.074896        9.888889
## 7      7               0.15117616        0.002469  0.072372        6.565801
## 8      8               0.20057501        0.002401  0.074976        4.967200
## 9      9               0.30000000        0.002297  0.000000        3.320988
## 10    10               0.40454783        0.002238  0.035426        2.471896
## 11    11               0.50005227        0.002199  0.000000        1.999791
## 12    12               0.60010455        0.002168  0.000000        1.666376
## 13    13               0.70078411        0.002140  0.000000        1.426973
## 14    14               0.80684788        0.002112  0.000000        1.239391
## 15    15               0.90041819        0.002092  0.000000        1.110595
## 16    16               1.00000000        0.002001  0.000000        1.000000
##    response_rate    score cumulative_response_rate cumulative_score
## 1       1.000000 0.981018                 1.000000         0.981018
## 2       0.387435 0.360406                 0.694517         0.671522
## 3       0.000000 0.003763                 0.463415         0.449324
## 4       0.000000 0.003028                 0.347258         0.337458
## 5       0.000000 0.002825                 0.275078         0.267902
## 6       0.001057 0.002652                 0.139571         0.136732
## 7       0.001021 0.002511                 0.092669         0.091296
## 8       0.001058 0.002430                 0.070107         0.069410
## 9       0.000000 0.002348                 0.046872         0.047184
## 10      0.000500 0.002264                 0.034888         0.035575
## 11      0.000000 0.002218                 0.028225         0.029204
## 12      0.000000 0.002183                 0.023519         0.024699
## 13      0.000000 0.002154                 0.020140         0.021460
## 14      0.000000 0.002125                 0.017493         0.018918
## 15      0.000000 0.002104                 0.015675         0.017171
## 16      0.000000 0.002075                 0.014114         0.015668
##    capture_rate cumulative_capture_rate        gain cumulative_gain
## 1      0.711111                0.711111 6985.185185     6985.185185
## 2      0.274074                0.985185 2645.045569     4820.781356
## 3      0.000000                0.985185 -100.000000     3183.378500
## 4      0.000000                0.985185 -100.000000     2360.390678
## 5      0.000000                0.985185 -100.000000     1848.975449
## 6      0.003704                0.988889  -92.510375      888.888889
## 7      0.003704                0.992593  -92.762834      556.580093
## 8      0.003704                0.996296  -92.502450      396.720046
## 9      0.000000                0.996296 -100.000000      232.098765
## 10     0.003704                1.000000  -96.457407      147.189559
## 11     0.000000                1.000000 -100.000000       99.979093
## 12     0.000000                1.000000 -100.000000       66.637631
## 13     0.000000                1.000000 -100.000000       42.697300
## 14     0.000000                1.000000 -100.000000       23.939099
## 15     0.000000                1.000000 -100.000000       11.059507
## 16     0.000000                1.000000 -100.000000        0.000000
##    kolmogorov_smirnov
## 1            0.711111
## 2            0.978982
## 3            0.968854
## 4            0.958674
## 5            0.948017
## 6            0.901614
## 7            0.853462
## 8            0.807113
## 9            0.706264
## 10           0.603977
## 11           0.507105
## 12           0.405620
## 13           0.303499
## 14           0.195917
## 15           0.101007
## 16           0.000000
h2o.auc(best_model)
## [1] 0.9995247
h2o.confusionMatrix(performance_h2o)
## Confusion Matrix (vertical: actual; across: predicted)  for max f1 @ threshold = 0.0638320454487536:
##        FALSE TRUE    Error      Rate
## FALSE  18858    2 0.000106  =2/18860
## TRUE       5  265 0.018519    =5/270
## Totals 18863  267 0.000366  =7/19130
h2o.metric(performance_h2o) %>% as_tibble() %>% filter(threshold %>% between(0.98, 0.99))
## # A tibble: 48 × 20
##    threshold     f1     f2 f0point5 accuracy precision recall specificity
##        <dbl>  <dbl>  <dbl>    <dbl>    <dbl>     <dbl>  <dbl>       <dbl>
##  1     0.990 0.0783 0.0504    0.175    0.986         1 0.0407           1
##  2     0.989 0.0851 0.0549    0.189    0.987         1 0.0444           1
##  3     0.989 0.0919 0.0595    0.202    0.987         1 0.0481           1
##  4     0.989 0.0986 0.0640    0.215    0.987         1 0.0519           1
##  5     0.988 0.118  0.0775    0.251    0.987         1 0.0630           1
##  6     0.988 0.125  0.0820    0.263    0.987         1 0.0667           1
##  7     0.987 0.138  0.0909    0.286    0.987         1 0.0741           1
##  8     0.987 0.144  0.0954    0.297    0.987         1 0.0778           1
##  9     0.987 0.157  0.104     0.318    0.987         1 0.0852           1
## 10     0.987 0.169  0.113     0.338    0.987         1 0.0926           1
## # ℹ 38 more rows
## # ℹ 12 more variables: absolute_mcc <dbl>, min_per_class_accuracy <dbl>,
## #   mean_per_class_accuracy <dbl>, tns <dbl>, fns <dbl>, fps <dbl>, tps <dbl>,
## #   tnr <dbl>, fnr <dbl>, fpr <dbl>, tpr <dbl>, idx <int>