#Load all Libraries needed

library(readxl)
## Warning: package 'readxl' was built under R version 4.3.3
library(psych)
## Warning: package 'psych' was built under R version 4.3.3
library(corrplot )
## Warning: package 'corrplot' was built under R version 4.3.3
## corrplot 0.92 loaded
library (caret)
## Loading required package: ggplot2
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
## Loading required package: lattice
library (klaR)
## Warning: package 'klaR' was built under R version 4.3.3
## Loading required package: MASS
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ lubridate 1.9.3     ✔ tibble    3.2.1
## ✔ purrr     1.0.2     ✔ tidyr     1.3.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ ggplot2::%+%()   masks psych::%+%()
## ✖ ggplot2::alpha() masks psych::alpha()
## ✖ dplyr::filter()  masks stats::filter()
## ✖ dplyr::lag()     masks stats::lag()
## ✖ purrr::lift()    masks caret::lift()
## ✖ dplyr::select()  masks MASS::select()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)  # For data manipulation
library(ggplot2)  # For visualization
library(broom)  # For tidying model outputs
library(caret)
library(klaR)
library(randomForest)
## Warning: package 'randomForest' was built under R version 4.3.3
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## 
## The following object is masked from 'package:dplyr':
## 
##     combine
## 
## The following object is masked from 'package:ggplot2':
## 
##     margin
## 
## The following object is masked from 'package:psych':
## 
##     outlier
library(readr)
library(ggcorrplot)
## Warning: package 'ggcorrplot' was built under R version 4.3.3
library(rpart)
library(rpart.plot)
## Warning: package 'rpart.plot' was built under R version 4.3.3
library(caTools)
## Warning: package 'caTools' was built under R version 4.3.3
library(rattle)
## Warning: package 'rattle' was built under R version 4.3.3
## Loading required package: bitops
## Rattle: A free graphical interface for data science with R.
## Version 5.5.1 Copyright (c) 2006-2021 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
## 
## Attaching package: 'rattle'
## 
## The following object is masked from 'package:randomForest':
## 
##     importance
library(RColorBrewer)
library(GGally)
## Warning: package 'GGally' was built under R version 4.3.3
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2

#import your data and preserve original copy

data <- read_csv("C:/GGTUAN/DREAMS/Yankee/TSU/MSc_TSU/Spring_2024/CS-583 Data Minning/income.csv")
## Rows: 32561 Columns: 15
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (9): workclass, education, marital-status, occupation, relationship, rac...
## dbl (6): age, fnlwgt, education-num, capital-gain, capital-loss, hours-per-week
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
income <- data

#Getting to familiarize with your data

### Getting familiar with our data
str(income)
## spc_tbl_ [32,561 × 15] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ age           : num [1:32561] 39 50 38 53 28 37 49 52 31 42 ...
##  $ workclass     : chr [1:32561] "State-gov" "Self-emp-not-inc" "Private" "Private" ...
##  $ fnlwgt        : num [1:32561] 77516 83311 215646 234721 338409 ...
##  $ education     : chr [1:32561] "Bachelors" "Bachelors" "HS-grad" "11th" ...
##  $ education-num : num [1:32561] 13 13 9 7 13 14 5 9 14 13 ...
##  $ marital-status: chr [1:32561] "Never-married" "Married-civ-spouse" "Divorced" "Married-civ-spouse" ...
##  $ occupation    : chr [1:32561] "Adm-clerical" "Exec-managerial" "Handlers-cleaners" "Handlers-cleaners" ...
##  $ relationship  : chr [1:32561] "Not-in-family" "Husband" "Not-in-family" "Husband" ...
##  $ race          : chr [1:32561] "White" "White" "White" "Black" ...
##  $ sex           : chr [1:32561] "Male" "Male" "Male" "Male" ...
##  $ capital-gain  : num [1:32561] 2174 0 0 0 0 ...
##  $ capital-loss  : num [1:32561] 0 0 0 0 0 0 0 0 0 0 ...
##  $ hours-per-week: num [1:32561] 40 13 40 40 40 40 16 45 50 40 ...
##  $ native-country: chr [1:32561] "United-States" "United-States" "United-States" "United-States" ...
##  $ income        : chr [1:32561] "<=50K" "<=50K" "<=50K" "<=50K" ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   age = col_double(),
##   ..   workclass = col_character(),
##   ..   fnlwgt = col_double(),
##   ..   education = col_character(),
##   ..   `education-num` = col_double(),
##   ..   `marital-status` = col_character(),
##   ..   occupation = col_character(),
##   ..   relationship = col_character(),
##   ..   race = col_character(),
##   ..   sex = col_character(),
##   ..   `capital-gain` = col_double(),
##   ..   `capital-loss` = col_double(),
##   ..   `hours-per-week` = col_double(),
##   ..   `native-country` = col_character(),
##   ..   income = col_character()
##   .. )
##  - attr(*, "problems")=<externalptr>
summary(income)
##       age         workclass             fnlwgt         education        
##  Min.   :17.00   Length:32561       Min.   :  12285   Length:32561      
##  1st Qu.:28.00   Class :character   1st Qu.: 117827   Class :character  
##  Median :37.00   Mode  :character   Median : 178356   Mode  :character  
##  Mean   :38.58                      Mean   : 189778                     
##  3rd Qu.:48.00                      3rd Qu.: 237051                     
##  Max.   :90.00                      Max.   :1484705                     
##  education-num   marital-status      occupation        relationship      
##  Min.   : 1.00   Length:32561       Length:32561       Length:32561      
##  1st Qu.: 9.00   Class :character   Class :character   Class :character  
##  Median :10.00   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :10.08                                                           
##  3rd Qu.:12.00                                                           
##  Max.   :16.00                                                           
##      race               sex             capital-gain    capital-loss   
##  Length:32561       Length:32561       Min.   :    0   Min.   :   0.0  
##  Class :character   Class :character   1st Qu.:    0   1st Qu.:   0.0  
##  Mode  :character   Mode  :character   Median :    0   Median :   0.0  
##                                        Mean   : 1078   Mean   :  87.3  
##                                        3rd Qu.:    0   3rd Qu.:   0.0  
##                                        Max.   :99999   Max.   :4356.0  
##  hours-per-week  native-country        income         
##  Min.   : 1.00   Length:32561       Length:32561      
##  1st Qu.:40.00   Class :character   Class :character  
##  Median :40.00   Mode  :character   Mode  :character  
##  Mean   :40.44                                        
##  3rd Qu.:45.00                                        
##  Max.   :99.00
head(income)
## # A tibble: 6 × 15
##     age workclass   fnlwgt education `education-num` `marital-status` occupation
##   <dbl> <chr>        <dbl> <chr>               <dbl> <chr>            <chr>     
## 1    39 State-gov    77516 Bachelors              13 Never-married    Adm-cleri…
## 2    50 Self-emp-n…  83311 Bachelors              13 Married-civ-spo… Exec-mana…
## 3    38 Private     215646 HS-grad                 9 Divorced         Handlers-…
## 4    53 Private     234721 11th                    7 Married-civ-spo… Handlers-…
## 5    28 Private     338409 Bachelors              13 Married-civ-spo… Prof-spec…
## 6    37 Private     284582 Masters                14 Married-civ-spo… Exec-mana…
## # ℹ 8 more variables: relationship <chr>, race <chr>, sex <chr>,
## #   `capital-gain` <dbl>, `capital-loss` <dbl>, `hours-per-week` <dbl>,
## #   `native-country` <chr>, income <chr>
colnames(income)
##  [1] "age"            "workclass"      "fnlwgt"         "education"     
##  [5] "education-num"  "marital-status" "occupation"     "relationship"  
##  [9] "race"           "sex"            "capital-gain"   "capital-loss"  
## [13] "hours-per-week" "native-country" "income"
dim(income)   ### 32561
## [1] 32561    15
#rename the column to remove special character
colnames(income)
##  [1] "age"            "workclass"      "fnlwgt"         "education"     
##  [5] "education-num"  "marital-status" "occupation"     "relationship"  
##  [9] "race"           "sex"            "capital-gain"   "capital-loss"  
## [13] "hours-per-week" "native-country" "income"
colnames(income) <- c("age", "workclass", "fnlwgt", "education", "education.num","marital.status", "occupation", "relationship" , "race", "sex", "capital.gain", "capital.loss", "hours.per.week", "native.country", "income" )
names(income) <- names(income) %>%  make.names()
colnames(income)
##  [1] "age"            "workclass"      "fnlwgt"         "education"     
##  [5] "education.num"  "marital.status" "occupation"     "relationship"  
##  [9] "race"           "sex"            "capital.gain"   "capital.loss"  
## [13] "hours.per.week" "native.country" "income"
#### Check what distinct values types 


table(income$workclass)
## 
##                ?      Federal-gov        Local-gov     Never-worked 
##             1836              960             2093                7 
##          Private     Self-emp-inc Self-emp-not-inc        State-gov 
##            22696             1116             2541             1298 
##      Without-pay 
##               14
prop.table(table(income$workclass))
## 
##                ?      Federal-gov        Local-gov     Never-worked 
##     0.0563864746     0.0294831240     0.0642793526     0.0002149811 
##          Private     Self-emp-inc Self-emp-not-inc        State-gov 
##     0.6970301895     0.0342741316     0.0780381438     0.0398636406 
##      Without-pay 
##     0.0004299622
table(income$education)
## 
##         10th         11th         12th      1st-4th      5th-6th      7th-8th 
##          933         1175          433          168          333          646 
##          9th   Assoc-acdm    Assoc-voc    Bachelors    Doctorate      HS-grad 
##          514         1067         1382         5355          413        10501 
##      Masters    Preschool  Prof-school Some-college 
##         1723           51          576         7291
prop.table(table(income$education))
## 
##         10th         11th         12th      1st-4th      5th-6th      7th-8th 
##  0.028653911  0.036086115  0.013298117  0.005159547  0.010226959  0.019839686 
##          9th   Assoc-acdm    Assoc-voc    Bachelors    Doctorate      HS-grad 
##  0.015785756  0.032769264  0.042443414  0.164460551  0.012683886  0.322502380 
##      Masters    Preschool  Prof-school Some-college 
##  0.052916065  0.001566291  0.017689874  0.223918184
table(income$marital.status )
## 
##              Divorced     Married-AF-spouse    Married-civ-spouse 
##                  4443                    23                 14976 
## Married-spouse-absent         Never-married             Separated 
##                   418                 10683                  1025 
##               Widowed 
##                   993
prop.table(table(income$marital.status))
## 
##              Divorced     Married-AF-spouse    Married-civ-spouse 
##          0.1364515832          0.0007063665          0.4599367341 
## Married-spouse-absent         Never-married             Separated 
##          0.0128374436          0.3280918891          0.0314793772 
##               Widowed 
##          0.0304966064
table(income$occupation)
## 
##                 ?      Adm-clerical      Armed-Forces      Craft-repair 
##              1843              3770                 9              4099 
##   Exec-managerial   Farming-fishing Handlers-cleaners Machine-op-inspct 
##              4066               994              1370              2002 
##     Other-service   Priv-house-serv    Prof-specialty   Protective-serv 
##              3295               149              4140               649 
##             Sales      Tech-support  Transport-moving 
##              3650               928              1597
prop.table(table(income$occupation))
## 
##                 ?      Adm-clerical      Armed-Forces      Craft-repair 
##      0.0566014557      0.1157826848      0.0002764043      0.1258867971 
##   Exec-managerial   Farming-fishing Handlers-cleaners Machine-op-inspct 
##      0.1248733147      0.0305273180      0.0420748749      0.0614845981 
##     Other-service   Priv-house-serv    Prof-specialty   Protective-serv 
##      0.1011946808      0.0045760265      0.1271459722      0.0199318203 
##             Sales      Tech-support  Transport-moving 
##      0.1120972943      0.0285003532      0.0490464052
table(income$relationship)
## 
##        Husband  Not-in-family Other-relative      Own-child      Unmarried 
##          13193           8305            981           5068           3446 
##           Wife 
##           1568
prop.table(table(income$relationship))
## 
##        Husband  Not-in-family Other-relative      Own-child      Unmarried 
##     0.40517797     0.25505973     0.03012807     0.15564633     0.10583213 
##           Wife 
##     0.04815577
table(income$race)
## 
## Amer-Indian-Eskimo Asian-Pac-Islander              Black              Other 
##                311               1039               3124                271 
##              White 
##              27816
prop.table(table(income$race))
## 
## Amer-Indian-Eskimo Asian-Pac-Islander              Black              Other 
##        0.009551304        0.031909339        0.095942999        0.008322840 
##              White 
##        0.854273517
table(income$sex)
## 
## Female   Male 
##  10771  21790
prop.table(table(income$sex))
## 
##    Female      Male 
## 0.3307945 0.6692055
table(income$native.country)
## 
##                          ?                   Cambodia 
##                        583                         19 
##                     Canada                      China 
##                        121                         75 
##                   Columbia                       Cuba 
##                         59                         95 
##         Dominican-Republic                    Ecuador 
##                         70                         28 
##                El-Salvador                    England 
##                        106                         90 
##                     France                    Germany 
##                         29                        137 
##                     Greece                  Guatemala 
##                         29                         64 
##                      Haiti         Holand-Netherlands 
##                         44                          1 
##                   Honduras                       Hong 
##                         13                         20 
##                    Hungary                      India 
##                         13                        100 
##                       Iran                    Ireland 
##                         43                         24 
##                      Italy                    Jamaica 
##                         73                         81 
##                      Japan                       Laos 
##                         62                         18 
##                     Mexico                  Nicaragua 
##                        643                         34 
## Outlying-US(Guam-USVI-etc)                       Peru 
##                         14                         31 
##                Philippines                     Poland 
##                        198                         60 
##                   Portugal                Puerto-Rico 
##                         37                        114 
##                   Scotland                      South 
##                         12                         80 
##                     Taiwan                   Thailand 
##                         51                         18 
##            Trinadad&Tobago              United-States 
##                         19                      29170 
##                    Vietnam                 Yugoslavia 
##                         67                         16
prop.table(table(income$native.country))
## 
##                          ?                   Cambodia 
##               1.790486e-02               5.835202e-04 
##                     Canada                      China 
##               3.716102e-03               2.303369e-03 
##                   Columbia                       Cuba 
##               1.811984e-03               2.917601e-03 
##         Dominican-Republic                    Ecuador 
##               2.149811e-03               8.599244e-04 
##                El-Salvador                    England 
##               3.255428e-03               2.764043e-03 
##                     France                    Germany 
##               8.906360e-04               4.207487e-03 
##                     Greece                  Guatemala 
##               8.906360e-04               1.965542e-03 
##                      Haiti         Holand-Netherlands 
##               1.351310e-03               3.071159e-05 
##                   Honduras                       Hong 
##               3.992506e-04               6.142317e-04 
##                    Hungary                      India 
##               3.992506e-04               3.071159e-03 
##                       Iran                    Ireland 
##               1.320598e-03               7.370781e-04 
##                      Italy                    Jamaica 
##               2.241946e-03               2.487639e-03 
##                      Japan                       Laos 
##               1.904118e-03               5.528086e-04 
##                     Mexico                  Nicaragua 
##               1.974755e-02               1.044194e-03 
## Outlying-US(Guam-USVI-etc)                       Peru 
##               4.299622e-04               9.520592e-04 
##                Philippines                     Poland 
##               6.080894e-03               1.842695e-03 
##                   Portugal                Puerto-Rico 
##               1.136329e-03               3.501121e-03 
##                   Scotland                      South 
##               3.685390e-04               2.456927e-03 
##                     Taiwan                   Thailand 
##               1.566291e-03               5.528086e-04 
##            Trinadad&Tobago              United-States 
##               5.835202e-04               8.958570e-01 
##                    Vietnam                 Yugoslavia 
##               2.057676e-03               4.913854e-04
table(income$income)
## 
## <=50K  >50K 
## 24720  7841
prop.table(table(income$income))
## 
##     <=50K      >50K 
## 0.7591904 0.2408096
#Standard Deviation
summary(income)
##       age         workclass             fnlwgt         education        
##  Min.   :17.00   Length:32561       Min.   :  12285   Length:32561      
##  1st Qu.:28.00   Class :character   1st Qu.: 117827   Class :character  
##  Median :37.00   Mode  :character   Median : 178356   Mode  :character  
##  Mean   :38.58                      Mean   : 189778                     
##  3rd Qu.:48.00                      3rd Qu.: 237051                     
##  Max.   :90.00                      Max.   :1484705                     
##  education.num   marital.status      occupation        relationship      
##  Min.   : 1.00   Length:32561       Length:32561       Length:32561      
##  1st Qu.: 9.00   Class :character   Class :character   Class :character  
##  Median :10.00   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :10.08                                                           
##  3rd Qu.:12.00                                                           
##  Max.   :16.00                                                           
##      race               sex             capital.gain    capital.loss   
##  Length:32561       Length:32561       Min.   :    0   Min.   :   0.0  
##  Class :character   Class :character   1st Qu.:    0   1st Qu.:   0.0  
##  Mode  :character   Mode  :character   Median :    0   Median :   0.0  
##                                        Mean   : 1078   Mean   :  87.3  
##                                        3rd Qu.:    0   3rd Qu.:   0.0  
##                                        Max.   :99999   Max.   :4356.0  
##  hours.per.week  native.country        income         
##  Min.   : 1.00   Length:32561       Length:32561      
##  1st Qu.:40.00   Class :character   Class :character  
##  Median :40.00   Mode  :character   Mode  :character  
##  Mean   :40.44                                        
##  3rd Qu.:45.00                                        
##  Max.   :99.00
sapply(income, sd)
## Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
## na.rm): NAs introduced by coercion

## Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
## na.rm): NAs introduced by coercion

## Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
## na.rm): NAs introduced by coercion

## Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
## na.rm): NAs introduced by coercion

## Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
## na.rm): NAs introduced by coercion

## Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
## na.rm): NAs introduced by coercion

## Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
## na.rm): NAs introduced by coercion

## Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
## na.rm): NAs introduced by coercion

## Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
## na.rm): NAs introduced by coercion
##            age      workclass         fnlwgt      education  education.num 
##       13.64043             NA   105549.97770             NA        2.57272 
## marital.status     occupation   relationship           race            sex 
##             NA             NA             NA             NA             NA 
##   capital.gain   capital.loss hours.per.week native.country         income 
##     7385.29208      402.96022       12.34743             NA             NA
#Check NA , NULL and ?
sum(is.na(income))
## [1] 0
sum(is.null(income))
## [1] 0
sum(income=="?")  ### Total of 4262 "question marks ?"
## [1] 4262
colSums(income=="?")   #### ? found in columns - workclass -1836, occupation - 1843, native.country - 583  
##            age      workclass         fnlwgt      education  education.num 
##              0           1836              0              0              0 
## marital.status     occupation   relationship           race            sex 
##              0           1843              0              0              0 
##   capital.gain   capital.loss hours.per.week native.country         income 
##              0              0              0            583              0
#income_data <- income[!apply(income== '?', 1, any), ]



## Get unique values of affected columns
unique(income$workclass)
## [1] "State-gov"        "Self-emp-not-inc" "Private"          "Federal-gov"     
## [5] "Local-gov"        "?"                "Self-emp-inc"     "Without-pay"     
## [9] "Never-worked"
unique(income$sex)
## [1] "Male"   "Female"
unique(income$marital.status)
## [1] "Never-married"         "Married-civ-spouse"    "Divorced"             
## [4] "Married-spouse-absent" "Separated"             "Married-AF-spouse"    
## [7] "Widowed"
table(income$workclass)
## 
##                ?      Federal-gov        Local-gov     Never-worked 
##             1836              960             2093                7 
##          Private     Self-emp-inc Self-emp-not-inc        State-gov 
##            22696             1116             2541             1298 
##      Without-pay 
##               14
table(income$occupation)
## 
##                 ?      Adm-clerical      Armed-Forces      Craft-repair 
##              1843              3770                 9              4099 
##   Exec-managerial   Farming-fishing Handlers-cleaners Machine-op-inspct 
##              4066               994              1370              2002 
##     Other-service   Priv-house-serv    Prof-specialty   Protective-serv 
##              3295               149              4140               649 
##             Sales      Tech-support  Transport-moving 
##              3650               928              1597
table(income$native.country)
## 
##                          ?                   Cambodia 
##                        583                         19 
##                     Canada                      China 
##                        121                         75 
##                   Columbia                       Cuba 
##                         59                         95 
##         Dominican-Republic                    Ecuador 
##                         70                         28 
##                El-Salvador                    England 
##                        106                         90 
##                     France                    Germany 
##                         29                        137 
##                     Greece                  Guatemala 
##                         29                         64 
##                      Haiti         Holand-Netherlands 
##                         44                          1 
##                   Honduras                       Hong 
##                         13                         20 
##                    Hungary                      India 
##                         13                        100 
##                       Iran                    Ireland 
##                         43                         24 
##                      Italy                    Jamaica 
##                         73                         81 
##                      Japan                       Laos 
##                         62                         18 
##                     Mexico                  Nicaragua 
##                        643                         34 
## Outlying-US(Guam-USVI-etc)                       Peru 
##                         14                         31 
##                Philippines                     Poland 
##                        198                         60 
##                   Portugal                Puerto-Rico 
##                         37                        114 
##                   Scotland                      South 
##                         12                         80 
##                     Taiwan                   Thailand 
##                         51                         18 
##            Trinadad&Tobago              United-States 
##                         19                      29170 
##                    Vietnam                 Yugoslavia 
##                         67                         16

#Data Cleansing

#### update data  

income2 <- within(income, workclass[workclass == '?'] <- 'Unknown-workclass')
income2 <- within(income2, occupation[occupation == '?'] <- 'Unknown-occup')
income2 <- within(income2, native.country[native.country == '?'] <- 'Unknown-country')  ## stop here
table(income2$workclass)
## 
##       Federal-gov         Local-gov      Never-worked           Private 
##               960              2093                 7             22696 
##      Self-emp-inc  Self-emp-not-inc         State-gov Unknown-workclass 
##              1116              2541              1298              1836 
##       Without-pay 
##                14
table(income2$occupation)
## 
##      Adm-clerical      Armed-Forces      Craft-repair   Exec-managerial 
##              3770                 9              4099              4066 
##   Farming-fishing Handlers-cleaners Machine-op-inspct     Other-service 
##               994              1370              2002              3295 
##   Priv-house-serv    Prof-specialty   Protective-serv             Sales 
##               149              4140               649              3650 
##      Tech-support  Transport-moving     Unknown-occup 
##               928              1597              1843
table(income2$native.country)
## 
##                   Cambodia                     Canada 
##                         19                        121 
##                      China                   Columbia 
##                         75                         59 
##                       Cuba         Dominican-Republic 
##                         95                         70 
##                    Ecuador                El-Salvador 
##                         28                        106 
##                    England                     France 
##                         90                         29 
##                    Germany                     Greece 
##                        137                         29 
##                  Guatemala                      Haiti 
##                         64                         44 
##         Holand-Netherlands                   Honduras 
##                          1                         13 
##                       Hong                    Hungary 
##                         20                         13 
##                      India                       Iran 
##                        100                         43 
##                    Ireland                      Italy 
##                         24                         73 
##                    Jamaica                      Japan 
##                         81                         62 
##                       Laos                     Mexico 
##                         18                        643 
##                  Nicaragua Outlying-US(Guam-USVI-etc) 
##                         34                         14 
##                       Peru                Philippines 
##                         31                        198 
##                     Poland                   Portugal 
##                         60                         37 
##                Puerto-Rico                   Scotland 
##                        114                         12 
##                      South                     Taiwan 
##                         80                         51 
##                   Thailand            Trinadad&Tobago 
##                         18                         19 
##              United-States            Unknown-country 
##                      29170                        583 
##                    Vietnam                 Yugoslavia 
##                         67                         16
# income3 <- within(income, {
#   f <- workclass == '?' 
#   workclass[f] <- 'Unknown-job'
# })
# table(income3$workclass)

Exploratory Data Analysis and Visualization

sum(income2=="?")
## [1] 0
sum(is.na(income2))
## [1] 0
sum(is.null(income2))
## [1] 0
ggplot(data=income2, aes(age)) + geom_histogram(aes(fill=marital.status), binwidth = 1)

ggplot(data=income2, aes(age)) + geom_histogram(aes(fill=income), binwidth = 1)

ggplot(data=income2, aes(age)) + geom_histogram(aes(fill=education.num ), binwidth = 1)
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

hist(income2$education.num)

hist(income2$age)

#hist(income2$income)

##keep Income2 data into Income3
income3 <- income2

#### factor

income3$workclass <- factor(income3$workclass)
income3$education <- factor(income3$education)
income3$marital.status <- factor(income3$marital.status)
income3$occupation <- factor(income3$occupation)
income3$relationship <- factor(income3$relationship)
income3$race <- factor(income3$race)
income3$sex <- factor(income3$sex)
income3$native.country <- factor(income3$native.country)
#income$income <- as.integer(factor(income$income))
income3$income <- factor(income3$income)



###Correlation Plotting Visualization #########3
income4 <- income3

income4$workclass <- as.integer(factor(income4$workclass))
income4$education <- as.integer(factor(income4$education))
income4$marital.status <- as.integer(factor(income4$marital.status))
income4$occupation <- as.integer(factor(income4$occupation))
income4$relationship <- as.integer(factor(income4$relationship))
income4$race <- as.integer(factor(income4$race))
income4$sex <- as.integer(factor(income4$sex))
income4$native.country <- as.integer(factor(income4$native.country))
#income4$income <- as.integer(factor(income4$income))
income4$income <- factor(income3$income)

str(income4)
## spc_tbl_ [32,561 × 15] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ age           : num [1:32561] 39 50 38 53 28 37 49 52 31 42 ...
##  $ workclass     : int [1:32561] 7 6 4 4 4 4 4 6 4 4 ...
##  $ fnlwgt        : num [1:32561] 77516 83311 215646 234721 338409 ...
##  $ education     : int [1:32561] 10 10 12 2 10 13 7 12 13 10 ...
##  $ education.num : num [1:32561] 13 13 9 7 13 14 5 9 14 13 ...
##  $ marital.status: int [1:32561] 5 3 1 3 3 3 4 3 5 3 ...
##  $ occupation    : int [1:32561] 1 4 6 6 10 4 8 4 10 4 ...
##  $ relationship  : int [1:32561] 2 1 2 1 6 6 2 1 2 1 ...
##  $ race          : int [1:32561] 5 5 5 3 3 5 3 5 5 5 ...
##  $ sex           : int [1:32561] 2 2 2 2 1 1 1 2 1 2 ...
##  $ capital.gain  : num [1:32561] 2174 0 0 0 0 ...
##  $ capital.loss  : num [1:32561] 0 0 0 0 0 0 0 0 0 0 ...
##  $ hours.per.week: num [1:32561] 40 13 40 40 40 40 16 45 50 40 ...
##  $ native.country: int [1:32561] 39 39 39 39 5 39 23 39 39 39 ...
##  $ income        : Factor w/ 2 levels "<=50K",">50K": 1 1 1 1 1 1 1 2 2 2 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   age = col_double(),
##   ..   workclass = col_character(),
##   ..   fnlwgt = col_double(),
##   ..   education = col_character(),
##   ..   `education-num` = col_double(),
##   ..   `marital-status` = col_character(),
##   ..   occupation = col_character(),
##   ..   relationship = col_character(),
##   ..   race = col_character(),
##   ..   sex = col_character(),
##   ..   `capital-gain` = col_double(),
##   ..   `capital-loss` = col_double(),
##   ..   `hours-per-week` = col_double(),
##   ..   `native-country` = col_character(),
##   ..   income = col_character()
##   .. )
##  - attr(*, "problems")=<externalptr>
cor(x = income4[-15], y = as.numeric(income4$income))
##                        [,1]
## age             0.234037103
## workclass      -0.048619885
## fnlwgt         -0.009462557
## education       0.079316609
## education.num   0.335153953
## marital.status -0.199307009
## occupation      0.010801975
## relationship   -0.250918142
## race            0.071845611
## sex             0.215980151
## capital.gain    0.223328818
## capital.loss    0.150526312
## hours.per.week  0.229689066
## native.country  0.022989504
library(ggcorrplot)
model.matrix(~0+., data=income4) %>% 
  cor(use="pairwise.complete.obs") %>% 
  ggcorrplot(show.diag=FALSE, type="lower", lab=TRUE, lab_size=2)

#pairs.panels(income4)
# pairs.panels(income4[c(1,4,5,6,7,9,10,11,12,13)], bg=c("red","yellow","blue")[income4$income],
#                      pch=21+as.numeric(income4$income),main="income",hist.col="red")

#income.cor = cor(income2)
#corrplot(income.cor)
#income4.cor = cor(x = income4[-15], y = as.numeric(income4$income))

#Split Data to Test and Train

#### Splitting of data to Training and Test Dataset ####

trainIndex <- createDataPartition(income4$income, p=0.80, list=FALSE)
dataTrainIncome4 <- income4[ trainIndex,]
dataTestIncome4 <- income4[-trainIndex,]

dim(dataTrainIncome4)  ###26049    15
## [1] 26049    15
dim(dataTestIncome4)   ###6512   15
## [1] 6512   15
head(dataTrainIncome4)
## # A tibble: 6 × 15
##     age workclass fnlwgt education education.num marital.status occupation
##   <dbl>     <int>  <dbl>     <int>         <dbl>          <int>      <int>
## 1    39         7  77516        10            13              5          1
## 2    50         6  83311        10            13              3          4
## 3    38         4 215646        12             9              1          6
## 4    53         4 234721         2             7              3          6
## 5    37         4 284582        13            14              3          4
## 6    52         6 209642        12             9              3          4
## # ℹ 8 more variables: relationship <int>, race <int>, sex <int>,
## #   capital.gain <dbl>, capital.loss <dbl>, hours.per.week <dbl>,
## #   native.country <int>, income <fct>
View(dataTrainIncome4)
income_Tree <- income3
str(income_Tree)
## spc_tbl_ [32,561 × 15] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ age           : num [1:32561] 39 50 38 53 28 37 49 52 31 42 ...
##  $ workclass     : Factor w/ 9 levels "Federal-gov",..: 7 6 4 4 4 4 4 6 4 4 ...
##  $ fnlwgt        : num [1:32561] 77516 83311 215646 234721 338409 ...
##  $ education     : Factor w/ 16 levels "10th","11th",..: 10 10 12 2 10 13 7 12 13 10 ...
##  $ education.num : num [1:32561] 13 13 9 7 13 14 5 9 14 13 ...
##  $ marital.status: Factor w/ 7 levels "Divorced","Married-AF-spouse",..: 5 3 1 3 3 3 4 3 5 3 ...
##  $ occupation    : Factor w/ 15 levels "Adm-clerical",..: 1 4 6 6 10 4 8 4 10 4 ...
##  $ relationship  : Factor w/ 6 levels "Husband","Not-in-family",..: 2 1 2 1 6 6 2 1 2 1 ...
##  $ race          : Factor w/ 5 levels "Amer-Indian-Eskimo",..: 5 5 5 3 3 5 3 5 5 5 ...
##  $ sex           : Factor w/ 2 levels "Female","Male": 2 2 2 2 1 1 1 2 1 2 ...
##  $ capital.gain  : num [1:32561] 2174 0 0 0 0 ...
##  $ capital.loss  : num [1:32561] 0 0 0 0 0 0 0 0 0 0 ...
##  $ hours.per.week: num [1:32561] 40 13 40 40 40 40 16 45 50 40 ...
##  $ native.country: Factor w/ 42 levels "Cambodia","Canada",..: 39 39 39 39 5 39 23 39 39 39 ...
##  $ income        : Factor w/ 2 levels "<=50K",">50K": 1 1 1 1 1 1 1 2 2 2 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   age = col_double(),
##   ..   workclass = col_character(),
##   ..   fnlwgt = col_double(),
##   ..   education = col_character(),
##   ..   `education-num` = col_double(),
##   ..   `marital-status` = col_character(),
##   ..   occupation = col_character(),
##   ..   relationship = col_character(),
##   ..   race = col_character(),
##   ..   sex = col_character(),
##   ..   `capital-gain` = col_double(),
##   ..   `capital-loss` = col_double(),
##   ..   `hours-per-week` = col_double(),
##   ..   `native-country` = col_character(),
##   ..   income = col_character()
##   .. )
##  - attr(*, "problems")=<externalptr>
############################### Decision Tree Charting #####
income_Tree <- income3

trainTreeIndex <- createDataPartition(income_Tree$income, p=0.80, list=FALSE)
dataTrainIncomeTree <- income_Tree[ trainTreeIndex,]
dataTestIncomeTree <- income_Tree[-trainTreeIndex,]

dim(dataTrainIncomeTree)  ###24131    15
## [1] 26049    15
dim(dataTestIncomeTree)   ###6031   15
## [1] 6512   15
head(dataTrainIncomeTree)
## # A tibble: 6 × 15
##     age workclass       fnlwgt education education.num marital.status occupation
##   <dbl> <fct>            <dbl> <fct>             <dbl> <fct>          <fct>     
## 1    39 State-gov        77516 Bachelors            13 Never-married  Adm-cleri…
## 2    38 Private         215646 HS-grad               9 Divorced       Handlers-…
## 3    28 Private         338409 Bachelors            13 Married-civ-s… Prof-spec…
## 4    37 Private         284582 Masters              14 Married-civ-s… Exec-mana…
## 5    52 Self-emp-not-i… 209642 HS-grad               9 Married-civ-s… Exec-mana…
## 6    31 Private          45781 Masters              14 Never-married  Prof-spec…
## # ℹ 8 more variables: relationship <fct>, race <fct>, sex <fct>,
## #   capital.gain <dbl>, capital.loss <dbl>, hours.per.week <dbl>,
## #   native.country <fct>, income <fct>
#View(dataTestIncomeTree)


fit.rpart <- rpart(income ~ ., data=dataTrainIncomeTree, method="class"  )

#fit <- rpart(T5.survived ~ T5.sex + T5.age + T5.sibsp + T5.parch + T5.fare + T5.embarked, data=training_dataset2, method="class")
fit.rpart
## n= 26049 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 26049 6273 <=50K (0.75918461 0.24081539)  
##    2) relationship=Not-in-family,Other-relative,Own-child,Unmarried 14230  948 <=50K (0.93338018 0.06661982)  
##      4) capital.gain< 7073.5 13964  691 <=50K (0.95051561 0.04948439) *
##      5) capital.gain>=7073.5 266    9 >50K (0.03383459 0.96616541) *
##    3) relationship=Husband,Wife 11819 5325 <=50K (0.54945427 0.45054573)  
##      6) education=10th,11th,12th,1st-4th,5th-6th,7th-8th,9th,Assoc-acdm,Assoc-voc,HS-grad,Preschool,Some-college 8289 2763 <=50K (0.66666667 0.33333333)  
##       12) capital.gain< 5095.5 7863 2344 <=50K (0.70189495 0.29810505) *
##       13) capital.gain>=5095.5 426    7 >50K (0.01643192 0.98356808) *
##      7) education=Bachelors,Doctorate,Masters,Prof-school 3530  968 >50K (0.27422096 0.72577904) *
####Ploting the fit treee

#png("C:/GGTUAN/DREAMS/Yankee/TSU/MSc_TSU/Spring_2024/CS-583 Data Minning/income_rpart2.png")
rpart.plot(fit.rpart, extra = 106)

#png("C:/GGTUAN/DREAMS/Yankee/TSU/MSc_TSU/Spring_2024/CS-583 Data Minning/fancy_rpart_tree.png")
fancyRpartPlot(fit.rpart, caption=NULL)

#dev.off() 

fit.rpart$variable.importance
##   relationship marital.status   capital.gain      education  education.num 
##     1903.35338     1873.39960      858.82907      762.57974      762.57974 
##            sex     occupation            age hours.per.week native.country 
##      594.40539      533.48871      435.77919      251.86942       16.85020 
##   capital.loss 
##       13.82581
names(fit.rpart)
##  [1] "frame"               "where"               "call"               
##  [4] "terms"               "cptable"             "method"             
##  [7] "parms"               "control"             "functions"          
## [10] "numresp"             "splits"              "csplit"             
## [13] "variable.importance" "y"                   "ordered"
printcp(fit.rpart)
## 
## Classification tree:
## rpart(formula = income ~ ., data = dataTrainIncomeTree, method = "class")
## 
## Variables actually used in tree construction:
## [1] capital.gain education    relationship
## 
## Root node error: 6273/26049 = 0.24082
## 
## n= 26049 
## 
##         CP nsplit rel error  xerror      xstd
## 1 0.127052      0   1.00000 1.00000 0.0110011
## 2 0.065678      2   0.74590 0.74590 0.0098766
## 3 0.039535      3   0.68022 0.68022 0.0095222
## 4 0.010000      4   0.64068 0.64068 0.0092938
### Sex and age were dominant factors... Yes the slogan was true 

###18 Prediction

PredictionTree <- predict(fit.rpart, dataTestIncomeTree, type = "class")
PredictionTree
##     1     2     3     4     5     6     7     8     9    10    11    12    13 
##  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##    14    15    16    17    18    19    20    21    22    23    24    25    26 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##    27    28    29    30    31    32    33    34    35    36    37    38    39 
## <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K 
##    40    41    42    43    44    45    46    47    48    49    50    51    52 
##  >50K <=50K  >50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K 
##    53    54    55    56    57    58    59    60    61    62    63    64    65 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##    66    67    68    69    70    71    72    73    74    75    76    77    78 
## <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##    79    80    81    82    83    84    85    86    87    88    89    90    91 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##    92    93    94    95    96    97    98    99   100   101   102   103   104 
## <=50K  >50K  >50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   105   106   107   108   109   110   111   112   113   114   115   116   117 
## <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##   118   119   120   121   122   123   124   125   126   127   128   129   130 
## <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K 
##   131   132   133   134   135   136   137   138   139   140   141   142   143 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K 
##   144   145   146   147   148   149   150   151   152   153   154   155   156 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##   157   158   159   160   161   162   163   164   165   166   167   168   169 
## <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   170   171   172   173   174   175   176   177   178   179   180   181   182 
## <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   183   184   185   186   187   188   189   190   191   192   193   194   195 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##   196   197   198   199   200   201   202   203   204   205   206   207   208 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   209   210   211   212   213   214   215   216   217   218   219   220   221 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   222   223   224   225   226   227   228   229   230   231   232   233   234 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##   235   236   237   238   239   240   241   242   243   244   245   246   247 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K 
##   248   249   250   251   252   253   254   255   256   257   258   259   260 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   261   262   263   264   265   266   267   268   269   270   271   272   273 
## <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   274   275   276   277   278   279   280   281   282   283   284   285   286 
## <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   287   288   289   290   291   292   293   294   295   296   297   298   299 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##   300   301   302   303   304   305   306   307   308   309   310   311   312 
## <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K  >50K 
##   313   314   315   316   317   318   319   320   321   322   323   324   325 
## <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   326   327   328   329   330   331   332   333   334   335   336   337   338 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K  >50K <=50K <=50K <=50K 
##   339   340   341   342   343   344   345   346   347   348   349   350   351 
## <=50K  >50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   352   353   354   355   356   357   358   359   360   361   362   363   364 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K 
##   365   366   367   368   369   370   371   372   373   374   375   376   377 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   378   379   380   381   382   383   384   385   386   387   388   389   390 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##   391   392   393   394   395   396   397   398   399   400   401   402   403 
## <=50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   404   405   406   407   408   409   410   411   412   413   414   415   416 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##   417   418   419   420   421   422   423   424   425   426   427   428   429 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K 
##   430   431   432   433   434   435   436   437   438   439   440   441   442 
##  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   443   444   445   446   447   448   449   450   451   452   453   454   455 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##   456   457   458   459   460   461   462   463   464   465   466   467   468 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K  >50K  >50K 
##   469   470   471   472   473   474   475   476   477   478   479   480   481 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K 
##   482   483   484   485   486   487   488   489   490   491   492   493   494 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K 
##   495   496   497   498   499   500   501   502   503   504   505   506   507 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   508   509   510   511   512   513   514   515   516   517   518   519   520 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K 
##   521   522   523   524   525   526   527   528   529   530   531   532   533 
## <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K 
##   534   535   536   537   538   539   540   541   542   543   544   545   546 
## <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K 
##   547   548   549   550   551   552   553   554   555   556   557   558   559 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   560   561   562   563   564   565   566   567   568   569   570   571   572 
##  >50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K  >50K 
##   573   574   575   576   577   578   579   580   581   582   583   584   585 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##   586   587   588   589   590   591   592   593   594   595   596   597   598 
## <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##   599   600   601   602   603   604   605   606   607   608   609   610   611 
## <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   612   613   614   615   616   617   618   619   620   621   622   623   624 
## <=50K <=50K <=50K <=50K  >50K  >50K <=50K  >50K <=50K <=50K  >50K  >50K  >50K 
##   625   626   627   628   629   630   631   632   633   634   635   636   637 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K  >50K 
##   638   639   640   641   642   643   644   645   646   647   648   649   650 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##   651   652   653   654   655   656   657   658   659   660   661   662   663 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K 
##   664   665   666   667   668   669   670   671   672   673   674   675   676 
## <=50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K 
##   677   678   679   680   681   682   683   684   685   686   687   688   689 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K 
##   690   691   692   693   694   695   696   697   698   699   700   701   702 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##   703   704   705   706   707   708   709   710   711   712   713   714   715 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   716   717   718   719   720   721   722   723   724   725   726   727   728 
##  >50K  >50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K  >50K 
##   729   730   731   732   733   734   735   736   737   738   739   740   741 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##   742   743   744   745   746   747   748   749   750   751   752   753   754 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K  >50K  >50K <=50K  >50K <=50K 
##   755   756   757   758   759   760   761   762   763   764   765   766   767 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##   768   769   770   771   772   773   774   775   776   777   778   779   780 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   781   782   783   784   785   786   787   788   789   790   791   792   793 
##  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K 
##   794   795   796   797   798   799   800   801   802   803   804   805   806 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##   807   808   809   810   811   812   813   814   815   816   817   818   819 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K  >50K <=50K <=50K <=50K 
##   820   821   822   823   824   825   826   827   828   829   830   831   832 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##   833   834   835   836   837   838   839   840   841   842   843   844   845 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   846   847   848   849   850   851   852   853   854   855   856   857   858 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   859   860   861   862   863   864   865   866   867   868   869   870   871 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   872   873   874   875   876   877   878   879   880   881   882   883   884 
## <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##   885   886   887   888   889   890   891   892   893   894   895   896   897 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   898   899   900   901   902   903   904   905   906   907   908   909   910 
##  >50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##   911   912   913   914   915   916   917   918   919   920   921   922   923 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K 
##   924   925   926   927   928   929   930   931   932   933   934   935   936 
##  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   937   938   939   940   941   942   943   944   945   946   947   948   949 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K 
##   950   951   952   953   954   955   956   957   958   959   960   961   962 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   963   964   965   966   967   968   969   970   971   972   973   974   975 
## <=50K <=50K  >50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   976   977   978   979   980   981   982   983   984   985   986   987   988 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##   989   990   991   992   993   994   995   996   997   998   999  1000  1001 
## <=50K <=50K  >50K <=50K  >50K  >50K  >50K  >50K <=50K  >50K <=50K <=50K <=50K 
##  1002  1003  1004  1005  1006  1007  1008  1009  1010  1011  1012  1013  1014 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  1015  1016  1017  1018  1019  1020  1021  1022  1023  1024  1025  1026  1027 
## <=50K <=50K  >50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1028  1029  1030  1031  1032  1033  1034  1035  1036  1037  1038  1039  1040 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  1041  1042  1043  1044  1045  1046  1047  1048  1049  1050  1051  1052  1053 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  1054  1055  1056  1057  1058  1059  1060  1061  1062  1063  1064  1065  1066 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K 
##  1067  1068  1069  1070  1071  1072  1073  1074  1075  1076  1077  1078  1079 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  1080  1081  1082  1083  1084  1085  1086  1087  1088  1089  1090  1091  1092 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1093  1094  1095  1096  1097  1098  1099  1100  1101  1102  1103  1104  1105 
## <=50K <=50K <=50K  >50K  >50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  1106  1107  1108  1109  1110  1111  1112  1113  1114  1115  1116  1117  1118 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  1119  1120  1121  1122  1123  1124  1125  1126  1127  1128  1129  1130  1131 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1132  1133  1134  1135  1136  1137  1138  1139  1140  1141  1142  1143  1144 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  1145  1146  1147  1148  1149  1150  1151  1152  1153  1154  1155  1156  1157 
## <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1158  1159  1160  1161  1162  1163  1164  1165  1166  1167  1168  1169  1170 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1171  1172  1173  1174  1175  1176  1177  1178  1179  1180  1181  1182  1183 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1184  1185  1186  1187  1188  1189  1190  1191  1192  1193  1194  1195  1196 
## <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1197  1198  1199  1200  1201  1202  1203  1204  1205  1206  1207  1208  1209 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  1210  1211  1212  1213  1214  1215  1216  1217  1218  1219  1220  1221  1222 
## <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  1223  1224  1225  1226  1227  1228  1229  1230  1231  1232  1233  1234  1235 
## <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  1236  1237  1238  1239  1240  1241  1242  1243  1244  1245  1246  1247  1248 
## <=50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1249  1250  1251  1252  1253  1254  1255  1256  1257  1258  1259  1260  1261 
## <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  1262  1263  1264  1265  1266  1267  1268  1269  1270  1271  1272  1273  1274 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K 
##  1275  1276  1277  1278  1279  1280  1281  1282  1283  1284  1285  1286  1287 
## <=50K  >50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1288  1289  1290  1291  1292  1293  1294  1295  1296  1297  1298  1299  1300 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1301  1302  1303  1304  1305  1306  1307  1308  1309  1310  1311  1312  1313 
##  >50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  1314  1315  1316  1317  1318  1319  1320  1321  1322  1323  1324  1325  1326 
##  >50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K 
##  1327  1328  1329  1330  1331  1332  1333  1334  1335  1336  1337  1338  1339 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1340  1341  1342  1343  1344  1345  1346  1347  1348  1349  1350  1351  1352 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  1353  1354  1355  1356  1357  1358  1359  1360  1361  1362  1363  1364  1365 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  1366  1367  1368  1369  1370  1371  1372  1373  1374  1375  1376  1377  1378 
##  >50K <=50K <=50K <=50K  >50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1379  1380  1381  1382  1383  1384  1385  1386  1387  1388  1389  1390  1391 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  1392  1393  1394  1395  1396  1397  1398  1399  1400  1401  1402  1403  1404 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  1405  1406  1407  1408  1409  1410  1411  1412  1413  1414  1415  1416  1417 
##  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  1418  1419  1420  1421  1422  1423  1424  1425  1426  1427  1428  1429  1430 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  1431  1432  1433  1434  1435  1436  1437  1438  1439  1440  1441  1442  1443 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1444  1445  1446  1447  1448  1449  1450  1451  1452  1453  1454  1455  1456 
## <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  1457  1458  1459  1460  1461  1462  1463  1464  1465  1466  1467  1468  1469 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1470  1471  1472  1473  1474  1475  1476  1477  1478  1479  1480  1481  1482 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1483  1484  1485  1486  1487  1488  1489  1490  1491  1492  1493  1494  1495 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K 
##  1496  1497  1498  1499  1500  1501  1502  1503  1504  1505  1506  1507  1508 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1509  1510  1511  1512  1513  1514  1515  1516  1517  1518  1519  1520  1521 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  1522  1523  1524  1525  1526  1527  1528  1529  1530  1531  1532  1533  1534 
## <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1535  1536  1537  1538  1539  1540  1541  1542  1543  1544  1545  1546  1547 
## <=50K  >50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1548  1549  1550  1551  1552  1553  1554  1555  1556  1557  1558  1559  1560 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  1561  1562  1563  1564  1565  1566  1567  1568  1569  1570  1571  1572  1573 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  1574  1575  1576  1577  1578  1579  1580  1581  1582  1583  1584  1585  1586 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  1587  1588  1589  1590  1591  1592  1593  1594  1595  1596  1597  1598  1599 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1600  1601  1602  1603  1604  1605  1606  1607  1608  1609  1610  1611  1612 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  1613  1614  1615  1616  1617  1618  1619  1620  1621  1622  1623  1624  1625 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1626  1627  1628  1629  1630  1631  1632  1633  1634  1635  1636  1637  1638 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1639  1640  1641  1642  1643  1644  1645  1646  1647  1648  1649  1650  1651 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  1652  1653  1654  1655  1656  1657  1658  1659  1660  1661  1662  1663  1664 
## <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  1665  1666  1667  1668  1669  1670  1671  1672  1673  1674  1675  1676  1677 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  1678  1679  1680  1681  1682  1683  1684  1685  1686  1687  1688  1689  1690 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K 
##  1691  1692  1693  1694  1695  1696  1697  1698  1699  1700  1701  1702  1703 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  1704  1705  1706  1707  1708  1709  1710  1711  1712  1713  1714  1715  1716 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K 
##  1717  1718  1719  1720  1721  1722  1723  1724  1725  1726  1727  1728  1729 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1730  1731  1732  1733  1734  1735  1736  1737  1738  1739  1740  1741  1742 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K  >50K 
##  1743  1744  1745  1746  1747  1748  1749  1750  1751  1752  1753  1754  1755 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1756  1757  1758  1759  1760  1761  1762  1763  1764  1765  1766  1767  1768 
## <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1769  1770  1771  1772  1773  1774  1775  1776  1777  1778  1779  1780  1781 
##  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1782  1783  1784  1785  1786  1787  1788  1789  1790  1791  1792  1793  1794 
## <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1795  1796  1797  1798  1799  1800  1801  1802  1803  1804  1805  1806  1807 
## <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  1808  1809  1810  1811  1812  1813  1814  1815  1816  1817  1818  1819  1820 
## <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1821  1822  1823  1824  1825  1826  1827  1828  1829  1830  1831  1832  1833 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1834  1835  1836  1837  1838  1839  1840  1841  1842  1843  1844  1845  1846 
##  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1847  1848  1849  1850  1851  1852  1853  1854  1855  1856  1857  1858  1859 
## <=50K  >50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1860  1861  1862  1863  1864  1865  1866  1867  1868  1869  1870  1871  1872 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K 
##  1873  1874  1875  1876  1877  1878  1879  1880  1881  1882  1883  1884  1885 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  1886  1887  1888  1889  1890  1891  1892  1893  1894  1895  1896  1897  1898 
## <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1899  1900  1901  1902  1903  1904  1905  1906  1907  1908  1909  1910  1911 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1912  1913  1914  1915  1916  1917  1918  1919  1920  1921  1922  1923  1924 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  1925  1926  1927  1928  1929  1930  1931  1932  1933  1934  1935  1936  1937 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  1938  1939  1940  1941  1942  1943  1944  1945  1946  1947  1948  1949  1950 
## <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  1951  1952  1953  1954  1955  1956  1957  1958  1959  1960  1961  1962  1963 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K 
##  1964  1965  1966  1967  1968  1969  1970  1971  1972  1973  1974  1975  1976 
## <=50K <=50K  >50K  >50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K 
##  1977  1978  1979  1980  1981  1982  1983  1984  1985  1986  1987  1988  1989 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  1990  1991  1992  1993  1994  1995  1996  1997  1998  1999  2000  2001  2002 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K 
##  2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  2013  2014  2015 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  2016  2017  2018  2019  2020  2021  2022  2023  2024  2025  2026  2027  2028 
##  >50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K 
##  2029  2030  2031  2032  2033  2034  2035  2036  2037  2038  2039  2040  2041 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  2042  2043  2044  2045  2046  2047  2048  2049  2050  2051  2052  2053  2054 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  2055  2056  2057  2058  2059  2060  2061  2062  2063  2064  2065  2066  2067 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  2068  2069  2070  2071  2072  2073  2074  2075  2076  2077  2078  2079  2080 
##  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  2081  2082  2083  2084  2085  2086  2087  2088  2089  2090  2091  2092  2093 
## <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  2094  2095  2096  2097  2098  2099  2100  2101  2102  2103  2104  2105  2106 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  2107  2108  2109  2110  2111  2112  2113  2114  2115  2116  2117  2118  2119 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K 
##  2120  2121  2122  2123  2124  2125  2126  2127  2128  2129  2130  2131  2132 
## <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  2133  2134  2135  2136  2137  2138  2139  2140  2141  2142  2143  2144  2145 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K  >50K <=50K 
##  2146  2147  2148  2149  2150  2151  2152  2153  2154  2155  2156  2157  2158 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  2159  2160  2161  2162  2163  2164  2165  2166  2167  2168  2169  2170  2171 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K  >50K  >50K 
##  2172  2173  2174  2175  2176  2177  2178  2179  2180  2181  2182  2183  2184 
##  >50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  2185  2186  2187  2188  2189  2190  2191  2192  2193  2194  2195  2196  2197 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K  >50K <=50K <=50K <=50K 
##  2198  2199  2200  2201  2202  2203  2204  2205  2206  2207  2208  2209  2210 
## <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K 
##  2211  2212  2213  2214  2215  2216  2217  2218  2219  2220  2221  2222  2223 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  2224  2225  2226  2227  2228  2229  2230  2231  2232  2233  2234  2235  2236 
##  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K  >50K 
##  2237  2238  2239  2240  2241  2242  2243  2244  2245  2246  2247  2248  2249 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  2250  2251  2252  2253  2254  2255  2256  2257  2258  2259  2260  2261  2262 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  2263  2264  2265  2266  2267  2268  2269  2270  2271  2272  2273  2274  2275 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  2276  2277  2278  2279  2280  2281  2282  2283  2284  2285  2286  2287  2288 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K 
##  2289  2290  2291  2292  2293  2294  2295  2296  2297  2298  2299  2300  2301 
##  >50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K  >50K <=50K 
##  2302  2303  2304  2305  2306  2307  2308  2309  2310  2311  2312  2313  2314 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  2315  2316  2317  2318  2319  2320  2321  2322  2323  2324  2325  2326  2327 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  2328  2329  2330  2331  2332  2333  2334  2335  2336  2337  2338  2339  2340 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K  >50K 
##  2341  2342  2343  2344  2345  2346  2347  2348  2349  2350  2351  2352  2353 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  2354  2355  2356  2357  2358  2359  2360  2361  2362  2363  2364  2365  2366 
## <=50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  2367  2368  2369  2370  2371  2372  2373  2374  2375  2376  2377  2378  2379 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  2380  2381  2382  2383  2384  2385  2386  2387  2388  2389  2390  2391  2392 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K 
##  2393  2394  2395  2396  2397  2398  2399  2400  2401  2402  2403  2404  2405 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  2406  2407  2408  2409  2410  2411  2412  2413  2414  2415  2416  2417  2418 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K 
##  2419  2420  2421  2422  2423  2424  2425  2426  2427  2428  2429  2430  2431 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  2432  2433  2434  2435  2436  2437  2438  2439  2440  2441  2442  2443  2444 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K 
##  2445  2446  2447  2448  2449  2450  2451  2452  2453  2454  2455  2456  2457 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  2458  2459  2460  2461  2462  2463  2464  2465  2466  2467  2468  2469  2470 
## <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  2471  2472  2473  2474  2475  2476  2477  2478  2479  2480  2481  2482  2483 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  2484  2485  2486  2487  2488  2489  2490  2491  2492  2493  2494  2495  2496 
## <=50K <=50K  >50K  >50K <=50K  >50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K 
##  2497  2498  2499  2500  2501  2502  2503  2504  2505  2506  2507  2508  2509 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K  >50K 
##  2510  2511  2512  2513  2514  2515  2516  2517  2518  2519  2520  2521  2522 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  2523  2524  2525  2526  2527  2528  2529  2530  2531  2532  2533  2534  2535 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K 
##  2536  2537  2538  2539  2540  2541  2542  2543  2544  2545  2546  2547  2548 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  2549  2550  2551  2552  2553  2554  2555  2556  2557  2558  2559  2560  2561 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  2562  2563  2564  2565  2566  2567  2568  2569  2570  2571  2572  2573  2574 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  2575  2576  2577  2578  2579  2580  2581  2582  2583  2584  2585  2586  2587 
## <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  2588  2589  2590  2591  2592  2593  2594  2595  2596  2597  2598  2599  2600 
##  >50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  2601  2602  2603  2604  2605  2606  2607  2608  2609  2610  2611  2612  2613 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  2614  2615  2616  2617  2618  2619  2620  2621  2622  2623  2624  2625  2626 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K  >50K 
##  2627  2628  2629  2630  2631  2632  2633  2634  2635  2636  2637  2638  2639 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K 
##  2640  2641  2642  2643  2644  2645  2646  2647  2648  2649  2650  2651  2652 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K  >50K <=50K 
##  2653  2654  2655  2656  2657  2658  2659  2660  2661  2662  2663  2664  2665 
##  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  2666  2667  2668  2669  2670  2671  2672  2673  2674  2675  2676  2677  2678 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  2679  2680  2681  2682  2683  2684  2685  2686  2687  2688  2689  2690  2691 
## <=50K  >50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  2692  2693  2694  2695  2696  2697  2698  2699  2700  2701  2702  2703  2704 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K 
##  2705  2706  2707  2708  2709  2710  2711  2712  2713  2714  2715  2716  2717 
## <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  2718  2719  2720  2721  2722  2723  2724  2725  2726  2727  2728  2729  2730 
##  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  2731  2732  2733  2734  2735  2736  2737  2738  2739  2740  2741  2742  2743 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  2744  2745  2746  2747  2748  2749  2750  2751  2752  2753  2754  2755  2756 
## <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  2757  2758  2759  2760  2761  2762  2763  2764  2765  2766  2767  2768  2769 
## <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  2770  2771  2772  2773  2774  2775  2776  2777  2778  2779  2780  2781  2782 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  2783  2784  2785  2786  2787  2788  2789  2790  2791  2792  2793  2794  2795 
##  >50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K 
##  2796  2797  2798  2799  2800  2801  2802  2803  2804  2805  2806  2807  2808 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  2809  2810  2811  2812  2813  2814  2815  2816  2817  2818  2819  2820  2821 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  2822  2823  2824  2825  2826  2827  2828  2829  2830  2831  2832  2833  2834 
## <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  2835  2836  2837  2838  2839  2840  2841  2842  2843  2844  2845  2846  2847 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K 
##  2848  2849  2850  2851  2852  2853  2854  2855  2856  2857  2858  2859  2860 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K 
##  2861  2862  2863  2864  2865  2866  2867  2868  2869  2870  2871  2872  2873 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  2874  2875  2876  2877  2878  2879  2880  2881  2882  2883  2884  2885  2886 
## <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  2887  2888  2889  2890  2891  2892  2893  2894  2895  2896  2897  2898  2899 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K 
##  2900  2901  2902  2903  2904  2905  2906  2907  2908  2909  2910  2911  2912 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  2913  2914  2915  2916  2917  2918  2919  2920  2921  2922  2923  2924  2925 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  2926  2927  2928  2929  2930  2931  2932  2933  2934  2935  2936  2937  2938 
##  >50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  2939  2940  2941  2942  2943  2944  2945  2946  2947  2948  2949  2950  2951 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  2952  2953  2954  2955  2956  2957  2958  2959  2960  2961  2962  2963  2964 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  2965  2966  2967  2968  2969  2970  2971  2972  2973  2974  2975  2976  2977 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K 
##  2978  2979  2980  2981  2982  2983  2984  2985  2986  2987  2988  2989  2990 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  2991  2992  2993  2994  2995  2996  2997  2998  2999  3000  3001  3002  3003 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  3004  3005  3006  3007  3008  3009  3010  3011  3012  3013  3014  3015  3016 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3017  3018  3019  3020  3021  3022  3023  3024  3025  3026  3027  3028  3029 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K 
##  3030  3031  3032  3033  3034  3035  3036  3037  3038  3039  3040  3041  3042 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3043  3044  3045  3046  3047  3048  3049  3050  3051  3052  3053  3054  3055 
## <=50K  >50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K 
##  3056  3057  3058  3059  3060  3061  3062  3063  3064  3065  3066  3067  3068 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  3069  3070  3071  3072  3073  3074  3075  3076  3077  3078  3079  3080  3081 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  3082  3083  3084  3085  3086  3087  3088  3089  3090  3091  3092  3093  3094 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3095  3096  3097  3098  3099  3100  3101  3102  3103  3104  3105  3106  3107 
## <=50K <=50K <=50K <=50K <=50K  >50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  3108  3109  3110  3111  3112  3113  3114  3115  3116  3117  3118  3119  3120 
##  >50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  3121  3122  3123  3124  3125  3126  3127  3128  3129  3130  3131  3132  3133 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K 
##  3134  3135  3136  3137  3138  3139  3140  3141  3142  3143  3144  3145  3146 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K  >50K  >50K <=50K 
##  3147  3148  3149  3150  3151  3152  3153  3154  3155  3156  3157  3158  3159 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K 
##  3160  3161  3162  3163  3164  3165  3166  3167  3168  3169  3170  3171  3172 
##  >50K  >50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  3173  3174  3175  3176  3177  3178  3179  3180  3181  3182  3183  3184  3185 
## <=50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3186  3187  3188  3189  3190  3191  3192  3193  3194  3195  3196  3197  3198 
##  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  3199  3200  3201  3202  3203  3204  3205  3206  3207  3208  3209  3210  3211 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K  >50K <=50K 
##  3212  3213  3214  3215  3216  3217  3218  3219  3220  3221  3222  3223  3224 
## <=50K <=50K <=50K  >50K <=50K <=50K  >50K  >50K <=50K <=50K  >50K <=50K <=50K 
##  3225  3226  3227  3228  3229  3230  3231  3232  3233  3234  3235  3236  3237 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  3238  3239  3240  3241  3242  3243  3244  3245  3246  3247  3248  3249  3250 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  3251  3252  3253  3254  3255  3256  3257  3258  3259  3260  3261  3262  3263 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3264  3265  3266  3267  3268  3269  3270  3271  3272  3273  3274  3275  3276 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3277  3278  3279  3280  3281  3282  3283  3284  3285  3286  3287  3288  3289 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3290  3291  3292  3293  3294  3295  3296  3297  3298  3299  3300  3301  3302 
## <=50K  >50K <=50K <=50K <=50K  >50K  >50K  >50K <=50K <=50K  >50K  >50K <=50K 
##  3303  3304  3305  3306  3307  3308  3309  3310  3311  3312  3313  3314  3315 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  3316  3317  3318  3319  3320  3321  3322  3323  3324  3325  3326  3327  3328 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K 
##  3329  3330  3331  3332  3333  3334  3335  3336  3337  3338  3339  3340  3341 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  3342  3343  3344  3345  3346  3347  3348  3349  3350  3351  3352  3353  3354 
## <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3355  3356  3357  3358  3359  3360  3361  3362  3363  3364  3365  3366  3367 
## <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3368  3369  3370  3371  3372  3373  3374  3375  3376  3377  3378  3379  3380 
## <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  3381  3382  3383  3384  3385  3386  3387  3388  3389  3390  3391  3392  3393 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K 
##  3394  3395  3396  3397  3398  3399  3400  3401  3402  3403  3404  3405  3406 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  3407  3408  3409  3410  3411  3412  3413  3414  3415  3416  3417  3418  3419 
##  >50K  >50K  >50K  >50K  >50K <=50K  >50K <=50K <=50K  >50K  >50K <=50K <=50K 
##  3420  3421  3422  3423  3424  3425  3426  3427  3428  3429  3430  3431  3432 
## <=50K <=50K <=50K  >50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3433  3434  3435  3436  3437  3438  3439  3440  3441  3442  3443  3444  3445 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3446  3447  3448  3449  3450  3451  3452  3453  3454  3455  3456  3457  3458 
##  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3459  3460  3461  3462  3463  3464  3465  3466  3467  3468  3469  3470  3471 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K 
##  3472  3473  3474  3475  3476  3477  3478  3479  3480  3481  3482  3483  3484 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K 
##  3485  3486  3487  3488  3489  3490  3491  3492  3493  3494  3495  3496  3497 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  3498  3499  3500  3501  3502  3503  3504  3505  3506  3507  3508  3509  3510 
## <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K 
##  3511  3512  3513  3514  3515  3516  3517  3518  3519  3520  3521  3522  3523 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  3524  3525  3526  3527  3528  3529  3530  3531  3532  3533  3534  3535  3536 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  3537  3538  3539  3540  3541  3542  3543  3544  3545  3546  3547  3548  3549 
##  >50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3550  3551  3552  3553  3554  3555  3556  3557  3558  3559  3560  3561  3562 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  3563  3564  3565  3566  3567  3568  3569  3570  3571  3572  3573  3574  3575 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  3576  3577  3578  3579  3580  3581  3582  3583  3584  3585  3586  3587  3588 
## <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  3589  3590  3591  3592  3593  3594  3595  3596  3597  3598  3599  3600  3601 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  3602  3603  3604  3605  3606  3607  3608  3609  3610  3611  3612  3613  3614 
## <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  3615  3616  3617  3618  3619  3620  3621  3622  3623  3624  3625  3626  3627 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  3628  3629  3630  3631  3632  3633  3634  3635  3636  3637  3638  3639  3640 
##  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3641  3642  3643  3644  3645  3646  3647  3648  3649  3650  3651  3652  3653 
## <=50K  >50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3654  3655  3656  3657  3658  3659  3660  3661  3662  3663  3664  3665  3666 
##  >50K <=50K <=50K <=50K  >50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3667  3668  3669  3670  3671  3672  3673  3674  3675  3676  3677  3678  3679 
##  >50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  3680  3681  3682  3683  3684  3685  3686  3687  3688  3689  3690  3691  3692 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  3693  3694  3695  3696  3697  3698  3699  3700  3701  3702  3703  3704  3705 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  3706  3707  3708  3709  3710  3711  3712  3713  3714  3715  3716  3717  3718 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3719  3720  3721  3722  3723  3724  3725  3726  3727  3728  3729  3730  3731 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3732  3733  3734  3735  3736  3737  3738  3739  3740  3741  3742  3743  3744 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  3745  3746  3747  3748  3749  3750  3751  3752  3753  3754  3755  3756  3757 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K 
##  3758  3759  3760  3761  3762  3763  3764  3765  3766  3767  3768  3769  3770 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  3771  3772  3773  3774  3775  3776  3777  3778  3779  3780  3781  3782  3783 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  3784  3785  3786  3787  3788  3789  3790  3791  3792  3793  3794  3795  3796 
## <=50K <=50K  >50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3797  3798  3799  3800  3801  3802  3803  3804  3805  3806  3807  3808  3809 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3810  3811  3812  3813  3814  3815  3816  3817  3818  3819  3820  3821  3822 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  3823  3824  3825  3826  3827  3828  3829  3830  3831  3832  3833  3834  3835 
## <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3836  3837  3838  3839  3840  3841  3842  3843  3844  3845  3846  3847  3848 
##  >50K <=50K <=50K  >50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  3849  3850  3851  3852  3853  3854  3855  3856  3857  3858  3859  3860  3861 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3862  3863  3864  3865  3866  3867  3868  3869  3870  3871  3872  3873  3874 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3875  3876  3877  3878  3879  3880  3881  3882  3883  3884  3885  3886  3887 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  3888  3889  3890  3891  3892  3893  3894  3895  3896  3897  3898  3899  3900 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3901  3902  3903  3904  3905  3906  3907  3908  3909  3910  3911  3912  3913 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3914  3915  3916  3917  3918  3919  3920  3921  3922  3923  3924  3925  3926 
##  >50K <=50K <=50K  >50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3927  3928  3929  3930  3931  3932  3933  3934  3935  3936  3937  3938  3939 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3940  3941  3942  3943  3944  3945  3946  3947  3948  3949  3950  3951  3952 
## <=50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3953  3954  3955  3956  3957  3958  3959  3960  3961  3962  3963  3964  3965 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  3966  3967  3968  3969  3970  3971  3972  3973  3974  3975  3976  3977  3978 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3979  3980  3981  3982  3983  3984  3985  3986  3987  3988  3989  3990  3991 
## <=50K <=50K  >50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  3992  3993  3994  3995  3996  3997  3998  3999  4000  4001  4002  4003  4004 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4005  4006  4007  4008  4009  4010  4011  4012  4013  4014  4015  4016  4017 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4018  4019  4020  4021  4022  4023  4024  4025  4026  4027  4028  4029  4030 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K 
##  4031  4032  4033  4034  4035  4036  4037  4038  4039  4040  4041  4042  4043 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4044  4045  4046  4047  4048  4049  4050  4051  4052  4053  4054  4055  4056 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  4057  4058  4059  4060  4061  4062  4063  4064  4065  4066  4067  4068  4069 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4070  4071  4072  4073  4074  4075  4076  4077  4078  4079  4080  4081  4082 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  4083  4084  4085  4086  4087  4088  4089  4090  4091  4092  4093  4094  4095 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  4096  4097  4098  4099  4100  4101  4102  4103  4104  4105  4106  4107  4108 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4109  4110  4111  4112  4113  4114  4115  4116  4117  4118  4119  4120  4121 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K 
##  4122  4123  4124  4125  4126  4127  4128  4129  4130  4131  4132  4133  4134 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K 
##  4135  4136  4137  4138  4139  4140  4141  4142  4143  4144  4145  4146  4147 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4148  4149  4150  4151  4152  4153  4154  4155  4156  4157  4158  4159  4160 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  4161  4162  4163  4164  4165  4166  4167  4168  4169  4170  4171  4172  4173 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  4174  4175  4176  4177  4178  4179  4180  4181  4182  4183  4184  4185  4186 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4187  4188  4189  4190  4191  4192  4193  4194  4195  4196  4197  4198  4199 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  4200  4201  4202  4203  4204  4205  4206  4207  4208  4209  4210  4211  4212 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  4213  4214  4215  4216  4217  4218  4219  4220  4221  4222  4223  4224  4225 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4226  4227  4228  4229  4230  4231  4232  4233  4234  4235  4236  4237  4238 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  4239  4240  4241  4242  4243  4244  4245  4246  4247  4248  4249  4250  4251 
## <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4252  4253  4254  4255  4256  4257  4258  4259  4260  4261  4262  4263  4264 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  4265  4266  4267  4268  4269  4270  4271  4272  4273  4274  4275  4276  4277 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K 
##  4278  4279  4280  4281  4282  4283  4284  4285  4286  4287  4288  4289  4290 
##  >50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  4291  4292  4293  4294  4295  4296  4297  4298  4299  4300  4301  4302  4303 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4304  4305  4306  4307  4308  4309  4310  4311  4312  4313  4314  4315  4316 
##  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4317  4318  4319  4320  4321  4322  4323  4324  4325  4326  4327  4328  4329 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K  >50K 
##  4330  4331  4332  4333  4334  4335  4336  4337  4338  4339  4340  4341  4342 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K 
##  4343  4344  4345  4346  4347  4348  4349  4350  4351  4352  4353  4354  4355 
##  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  4356  4357  4358  4359  4360  4361  4362  4363  4364  4365  4366  4367  4368 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  4369  4370  4371  4372  4373  4374  4375  4376  4377  4378  4379  4380  4381 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4382  4383  4384  4385  4386  4387  4388  4389  4390  4391  4392  4393  4394 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  4395  4396  4397  4398  4399  4400  4401  4402  4403  4404  4405  4406  4407 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4408  4409  4410  4411  4412  4413  4414  4415  4416  4417  4418  4419  4420 
##  >50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K 
##  4421  4422  4423  4424  4425  4426  4427  4428  4429  4430  4431  4432  4433 
## <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4434  4435  4436  4437  4438  4439  4440  4441  4442  4443  4444  4445  4446 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  4447  4448  4449  4450  4451  4452  4453  4454  4455  4456  4457  4458  4459 
##  >50K <=50K  >50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K  >50K <=50K <=50K 
##  4460  4461  4462  4463  4464  4465  4466  4467  4468  4469  4470  4471  4472 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  4473  4474  4475  4476  4477  4478  4479  4480  4481  4482  4483  4484  4485 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4486  4487  4488  4489  4490  4491  4492  4493  4494  4495  4496  4497  4498 
##  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  4499  4500  4501  4502  4503  4504  4505  4506  4507  4508  4509  4510  4511 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  4512  4513  4514  4515  4516  4517  4518  4519  4520  4521  4522  4523  4524 
## <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  4525  4526  4527  4528  4529  4530  4531  4532  4533  4534  4535  4536  4537 
## <=50K <=50K  >50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4538  4539  4540  4541  4542  4543  4544  4545  4546  4547  4548  4549  4550 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  4551  4552  4553  4554  4555  4556  4557  4558  4559  4560  4561  4562  4563 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  4564  4565  4566  4567  4568  4569  4570  4571  4572  4573  4574  4575  4576 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  4577  4578  4579  4580  4581  4582  4583  4584  4585  4586  4587  4588  4589 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  4590  4591  4592  4593  4594  4595  4596  4597  4598  4599  4600  4601  4602 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K 
##  4603  4604  4605  4606  4607  4608  4609  4610  4611  4612  4613  4614  4615 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4616  4617  4618  4619  4620  4621  4622  4623  4624  4625  4626  4627  4628 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4629  4630  4631  4632  4633  4634  4635  4636  4637  4638  4639  4640  4641 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4642  4643  4644  4645  4646  4647  4648  4649  4650  4651  4652  4653  4654 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  4655  4656  4657  4658  4659  4660  4661  4662  4663  4664  4665  4666  4667 
## <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  4668  4669  4670  4671  4672  4673  4674  4675  4676  4677  4678  4679  4680 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4681  4682  4683  4684  4685  4686  4687  4688  4689  4690  4691  4692  4693 
##  >50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  4694  4695  4696  4697  4698  4699  4700  4701  4702  4703  4704  4705  4706 
##  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4707  4708  4709  4710  4711  4712  4713  4714  4715  4716  4717  4718  4719 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4720  4721  4722  4723  4724  4725  4726  4727  4728  4729  4730  4731  4732 
## <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4733  4734  4735  4736  4737  4738  4739  4740  4741  4742  4743  4744  4745 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  4746  4747  4748  4749  4750  4751  4752  4753  4754  4755  4756  4757  4758 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4759  4760  4761  4762  4763  4764  4765  4766  4767  4768  4769  4770  4771 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  4772  4773  4774  4775  4776  4777  4778  4779  4780  4781  4782  4783  4784 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  4785  4786  4787  4788  4789  4790  4791  4792  4793  4794  4795  4796  4797 
## <=50K <=50K  >50K <=50K <=50K  >50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  4798  4799  4800  4801  4802  4803  4804  4805  4806  4807  4808  4809  4810 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  4811  4812  4813  4814  4815  4816  4817  4818  4819  4820  4821  4822  4823 
## <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4824  4825  4826  4827  4828  4829  4830  4831  4832  4833  4834  4835  4836 
## <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4837  4838  4839  4840  4841  4842  4843  4844  4845  4846  4847  4848  4849 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K 
##  4850  4851  4852  4853  4854  4855  4856  4857  4858  4859  4860  4861  4862 
##  >50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  4863  4864  4865  4866  4867  4868  4869  4870  4871  4872  4873  4874  4875 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  4876  4877  4878  4879  4880  4881  4882  4883  4884  4885  4886  4887  4888 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4889  4890  4891  4892  4893  4894  4895  4896  4897  4898  4899  4900  4901 
##  >50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4902  4903  4904  4905  4906  4907  4908  4909  4910  4911  4912  4913  4914 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4915  4916  4917  4918  4919  4920  4921  4922  4923  4924  4925  4926  4927 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  4928  4929  4930  4931  4932  4933  4934  4935  4936  4937  4938  4939  4940 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  4941  4942  4943  4944  4945  4946  4947  4948  4949  4950  4951  4952  4953 
## <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4954  4955  4956  4957  4958  4959  4960  4961  4962  4963  4964  4965  4966 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  4967  4968  4969  4970  4971  4972  4973  4974  4975  4976  4977  4978  4979 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  4980  4981  4982  4983  4984  4985  4986  4987  4988  4989  4990  4991  4992 
## <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K  >50K  >50K  >50K <=50K 
##  4993  4994  4995  4996  4997  4998  4999  5000  5001  5002  5003  5004  5005 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  5006  5007  5008  5009  5010  5011  5012  5013  5014  5015  5016  5017  5018 
## <=50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  5019  5020  5021  5022  5023  5024  5025  5026  5027  5028  5029  5030  5031 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  5032  5033  5034  5035  5036  5037  5038  5039  5040  5041  5042  5043  5044 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  5045  5046  5047  5048  5049  5050  5051  5052  5053  5054  5055  5056  5057 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  5058  5059  5060  5061  5062  5063  5064  5065  5066  5067  5068  5069  5070 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  5071  5072  5073  5074  5075  5076  5077  5078  5079  5080  5081  5082  5083 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K 
##  5084  5085  5086  5087  5088  5089  5090  5091  5092  5093  5094  5095  5096 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K 
##  5097  5098  5099  5100  5101  5102  5103  5104  5105  5106  5107  5108  5109 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  5110  5111  5112  5113  5114  5115  5116  5117  5118  5119  5120  5121  5122 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  5123  5124  5125  5126  5127  5128  5129  5130  5131  5132  5133  5134  5135 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  5136  5137  5138  5139  5140  5141  5142  5143  5144  5145  5146  5147  5148 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  5149  5150  5151  5152  5153  5154  5155  5156  5157  5158  5159  5160  5161 
## <=50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K  >50K <=50K <=50K  >50K 
##  5162  5163  5164  5165  5166  5167  5168  5169  5170  5171  5172  5173  5174 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  5175  5176  5177  5178  5179  5180  5181  5182  5183  5184  5185  5186  5187 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  5188  5189  5190  5191  5192  5193  5194  5195  5196  5197  5198  5199  5200 
## <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  5201  5202  5203  5204  5205  5206  5207  5208  5209  5210  5211  5212  5213 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  5214  5215  5216  5217  5218  5219  5220  5221  5222  5223  5224  5225  5226 
## <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K  >50K  >50K <=50K <=50K 
##  5227  5228  5229  5230  5231  5232  5233  5234  5235  5236  5237  5238  5239 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  5240  5241  5242  5243  5244  5245  5246  5247  5248  5249  5250  5251  5252 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  5253  5254  5255  5256  5257  5258  5259  5260  5261  5262  5263  5264  5265 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  5266  5267  5268  5269  5270  5271  5272  5273  5274  5275  5276  5277  5278 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  5279  5280  5281  5282  5283  5284  5285  5286  5287  5288  5289  5290  5291 
## <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  5292  5293  5294  5295  5296  5297  5298  5299  5300  5301  5302  5303  5304 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  5305  5306  5307  5308  5309  5310  5311  5312  5313  5314  5315  5316  5317 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  5318  5319  5320  5321  5322  5323  5324  5325  5326  5327  5328  5329  5330 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  5331  5332  5333  5334  5335  5336  5337  5338  5339  5340  5341  5342  5343 
## <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  5344  5345  5346  5347  5348  5349  5350  5351  5352  5353  5354  5355  5356 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  5357  5358  5359  5360  5361  5362  5363  5364  5365  5366  5367  5368  5369 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  5370  5371  5372  5373  5374  5375  5376  5377  5378  5379  5380  5381  5382 
## <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  5383  5384  5385  5386  5387  5388  5389  5390  5391  5392  5393  5394  5395 
## <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  5396  5397  5398  5399  5400  5401  5402  5403  5404  5405  5406  5407  5408 
##  >50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  5409  5410  5411  5412  5413  5414  5415  5416  5417  5418  5419  5420  5421 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K  >50K 
##  5422  5423  5424  5425  5426  5427  5428  5429  5430  5431  5432  5433  5434 
##  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  5435  5436  5437  5438  5439  5440  5441  5442  5443  5444  5445  5446  5447 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  5448  5449  5450  5451  5452  5453  5454  5455  5456  5457  5458  5459  5460 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  5461  5462  5463  5464  5465  5466  5467  5468  5469  5470  5471  5472  5473 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K 
##  5474  5475  5476  5477  5478  5479  5480  5481  5482  5483  5484  5485  5486 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  5487  5488  5489  5490  5491  5492  5493  5494  5495  5496  5497  5498  5499 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  5500  5501  5502  5503  5504  5505  5506  5507  5508  5509  5510  5511  5512 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  5513  5514  5515  5516  5517  5518  5519  5520  5521  5522  5523  5524  5525 
##  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K  >50K <=50K <=50K <=50K 
##  5526  5527  5528  5529  5530  5531  5532  5533  5534  5535  5536  5537  5538 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  5539  5540  5541  5542  5543  5544  5545  5546  5547  5548  5549  5550  5551 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  5552  5553  5554  5555  5556  5557  5558  5559  5560  5561  5562  5563  5564 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  5565  5566  5567  5568  5569  5570  5571  5572  5573  5574  5575  5576  5577 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K 
##  5578  5579  5580  5581  5582  5583  5584  5585  5586  5587  5588  5589  5590 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  5591  5592  5593  5594  5595  5596  5597  5598  5599  5600  5601  5602  5603 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  5604  5605  5606  5607  5608  5609  5610  5611  5612  5613  5614  5615  5616 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  5617  5618  5619  5620  5621  5622  5623  5624  5625  5626  5627  5628  5629 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K 
##  5630  5631  5632  5633  5634  5635  5636  5637  5638  5639  5640  5641  5642 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K 
##  5643  5644  5645  5646  5647  5648  5649  5650  5651  5652  5653  5654  5655 
##  >50K  >50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  5656  5657  5658  5659  5660  5661  5662  5663  5664  5665  5666  5667  5668 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  5669  5670  5671  5672  5673  5674  5675  5676  5677  5678  5679  5680  5681 
## <=50K  >50K <=50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  5682  5683  5684  5685  5686  5687  5688  5689  5690  5691  5692  5693  5694 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  5695  5696  5697  5698  5699  5700  5701  5702  5703  5704  5705  5706  5707 
##  >50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  5708  5709  5710  5711  5712  5713  5714  5715  5716  5717  5718  5719  5720 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  5721  5722  5723  5724  5725  5726  5727  5728  5729  5730  5731  5732  5733 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  5734  5735  5736  5737  5738  5739  5740  5741  5742  5743  5744  5745  5746 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  5747  5748  5749  5750  5751  5752  5753  5754  5755  5756  5757  5758  5759 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  5760  5761  5762  5763  5764  5765  5766  5767  5768  5769  5770  5771  5772 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  5773  5774  5775  5776  5777  5778  5779  5780  5781  5782  5783  5784  5785 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  5786  5787  5788  5789  5790  5791  5792  5793  5794  5795  5796  5797  5798 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  5799  5800  5801  5802  5803  5804  5805  5806  5807  5808  5809  5810  5811 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K 
##  5812  5813  5814  5815  5816  5817  5818  5819  5820  5821  5822  5823  5824 
##  >50K <=50K  >50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  5825  5826  5827  5828  5829  5830  5831  5832  5833  5834  5835  5836  5837 
##  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K 
##  5838  5839  5840  5841  5842  5843  5844  5845  5846  5847  5848  5849  5850 
## <=50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  5851  5852  5853  5854  5855  5856  5857  5858  5859  5860  5861  5862  5863 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  5864  5865  5866  5867  5868  5869  5870  5871  5872  5873  5874  5875  5876 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K 
##  5877  5878  5879  5880  5881  5882  5883  5884  5885  5886  5887  5888  5889 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  5890  5891  5892  5893  5894  5895  5896  5897  5898  5899  5900  5901  5902 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  5903  5904  5905  5906  5907  5908  5909  5910  5911  5912  5913  5914  5915 
## <=50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  5916  5917  5918  5919  5920  5921  5922  5923  5924  5925  5926  5927  5928 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  5929  5930  5931  5932  5933  5934  5935  5936  5937  5938  5939  5940  5941 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K  >50K 
##  5942  5943  5944  5945  5946  5947  5948  5949  5950  5951  5952  5953  5954 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  5955  5956  5957  5958  5959  5960  5961  5962  5963  5964  5965  5966  5967 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  5968  5969  5970  5971  5972  5973  5974  5975  5976  5977  5978  5979  5980 
## <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K 
##  5981  5982  5983  5984  5985  5986  5987  5988  5989  5990  5991  5992  5993 
## <=50K <=50K  >50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K 
##  5994  5995  5996  5997  5998  5999  6000  6001  6002  6003  6004  6005  6006 
##  >50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K  >50K 
##  6007  6008  6009  6010  6011  6012  6013  6014  6015  6016  6017  6018  6019 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  6020  6021  6022  6023  6024  6025  6026  6027  6028  6029  6030  6031  6032 
## <=50K  >50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  6033  6034  6035  6036  6037  6038  6039  6040  6041  6042  6043  6044  6045 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K 
##  6046  6047  6048  6049  6050  6051  6052  6053  6054  6055  6056  6057  6058 
##  >50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  6059  6060  6061  6062  6063  6064  6065  6066  6067  6068  6069  6070  6071 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K  >50K 
##  6072  6073  6074  6075  6076  6077  6078  6079  6080  6081  6082  6083  6084 
##  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  6085  6086  6087  6088  6089  6090  6091  6092  6093  6094  6095  6096  6097 
##  >50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K  >50K 
##  6098  6099  6100  6101  6102  6103  6104  6105  6106  6107  6108  6109  6110 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  6111  6112  6113  6114  6115  6116  6117  6118  6119  6120  6121  6122  6123 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  6124  6125  6126  6127  6128  6129  6130  6131  6132  6133  6134  6135  6136 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  6137  6138  6139  6140  6141  6142  6143  6144  6145  6146  6147  6148  6149 
## <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  6150  6151  6152  6153  6154  6155  6156  6157  6158  6159  6160  6161  6162 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K 
##  6163  6164  6165  6166  6167  6168  6169  6170  6171  6172  6173  6174  6175 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  6176  6177  6178  6179  6180  6181  6182  6183  6184  6185  6186  6187  6188 
## <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  6189  6190  6191  6192  6193  6194  6195  6196  6197  6198  6199  6200  6201 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K  >50K <=50K 
##  6202  6203  6204  6205  6206  6207  6208  6209  6210  6211  6212  6213  6214 
## <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  6215  6216  6217  6218  6219  6220  6221  6222  6223  6224  6225  6226  6227 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K 
##  6228  6229  6230  6231  6232  6233  6234  6235  6236  6237  6238  6239  6240 
## <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  6241  6242  6243  6244  6245  6246  6247  6248  6249  6250  6251  6252  6253 
## <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K  >50K  >50K <=50K <=50K 
##  6254  6255  6256  6257  6258  6259  6260  6261  6262  6263  6264  6265  6266 
## <=50K <=50K  >50K <=50K <=50K  >50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K 
##  6267  6268  6269  6270  6271  6272  6273  6274  6275  6276  6277  6278  6279 
## <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  6280  6281  6282  6283  6284  6285  6286  6287  6288  6289  6290  6291  6292 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  6293  6294  6295  6296  6297  6298  6299  6300  6301  6302  6303  6304  6305 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K 
##  6306  6307  6308  6309  6310  6311  6312  6313  6314  6315  6316  6317  6318 
##  >50K <=50K <=50K <=50K <=50K  >50K  >50K  >50K <=50K  >50K <=50K <=50K <=50K 
##  6319  6320  6321  6322  6323  6324  6325  6326  6327  6328  6329  6330  6331 
## <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  6332  6333  6334  6335  6336  6337  6338  6339  6340  6341  6342  6343  6344 
## <=50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K 
##  6345  6346  6347  6348  6349  6350  6351  6352  6353  6354  6355  6356  6357 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  6358  6359  6360  6361  6362  6363  6364  6365  6366  6367  6368  6369  6370 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  6371  6372  6373  6374  6375  6376  6377  6378  6379  6380  6381  6382  6383 
## <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K <=50K <=50K 
##  6384  6385  6386  6387  6388  6389  6390  6391  6392  6393  6394  6395  6396 
## <=50K <=50K  >50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  6397  6398  6399  6400  6401  6402  6403  6404  6405  6406  6407  6408  6409 
## <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  6410  6411  6412  6413  6414  6415  6416  6417  6418  6419  6420  6421  6422 
## <=50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K  >50K 
##  6423  6424  6425  6426  6427  6428  6429  6430  6431  6432  6433  6434  6435 
## <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K  >50K <=50K  >50K <=50K <=50K 
##  6436  6437  6438  6439  6440  6441  6442  6443  6444  6445  6446  6447  6448 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K  >50K <=50K 
##  6449  6450  6451  6452  6453  6454  6455  6456  6457  6458  6459  6460  6461 
## <=50K  >50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K 
##  6462  6463  6464  6465  6466  6467  6468  6469  6470  6471  6472  6473  6474 
## <=50K <=50K <=50K  >50K <=50K  >50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K 
##  6475  6476  6477  6478  6479  6480  6481  6482  6483  6484  6485  6486  6487 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K 
##  6488  6489  6490  6491  6492  6493  6494  6495  6496  6497  6498  6499  6500 
## <=50K <=50K <=50K <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K 
##  6501  6502  6503  6504  6505  6506  6507  6508  6509  6510  6511  6512 
## <=50K <=50K <=50K <=50K <=50K  >50K <=50K <=50K <=50K <=50K  >50K <=50K 
## Levels: <=50K >50K
summary(PredictionTree)
## <=50K  >50K 
##  5462  1050
# Confusion Matrix
cf_DecisionTree <- confusionMatrix(PredictionTree, dataTestIncomeTree$income)
cf_DecisionTree
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction <=50K >50K
##      <=50K  4681  781
##      >50K    263  787
##                                           
##                Accuracy : 0.8397          
##                  95% CI : (0.8305, 0.8485)
##     No Information Rate : 0.7592          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.5058          
##                                           
##  Mcnemar's Test P-Value : < 2.2e-16       
##                                           
##             Sensitivity : 0.9468          
##             Specificity : 0.5019          
##          Pos Pred Value : 0.8570          
##          Neg Pred Value : 0.7495          
##              Prevalence : 0.7592          
##          Detection Rate : 0.7188          
##    Detection Prevalence : 0.8388          
##       Balanced Accuracy : 0.7244          
##                                           
##        'Positive' Class : <=50K           
## 
#################################End of DecisionTree ##########

{r} # saveRDS(fit.c50, file = "C:/GGTUAN/DREAMS/Yankee/TSU/MSc_TSU/Spring_2024/CS-583 Data Minning/C50=fit.c50.rda") # saveRDS(fit.rf, file = "C:/GGTUAN/DREAMS/Yankee/TSU/MSc_TSU/Spring_2024/CS-583 Data Minning/C50=fit.rf.rda") # saveRDS(fit.svm, file = "C:/GGTUAN/DREAMS/Yankee/TSU/MSc_TSU/Spring_2024/CS-583 Data Minning/C50=fit.svm.rda")

Resample to compare results of different Models and pick best Models