master <- master %>% mutate(race=case_when(
race==1~ "White",
race==2~ "Black",
race==3~ "Mixed",
race==4~ "Asian")) %>%
mutate(
BMI_cat=case_when( BMI<18.5 ~ "Underweight",
BMI>=18.5 & BMI< 24.9 ~ "Normal Range",
BMI>=24.9 & BMI<29.9 ~ "Overweight",
BMI>=29.9 ~"Obse")) %>%
mutate(CAD=case_when(
MI == 1 | coronary_insufficiance== 1 ~ 1,
TRUE ~ 0)) %>%
mutate(CVD=case_when(
stroke== 1|
stroke_sequel== 1 ~ 1,
TRUE~0)) %>%
mutate(
liver_disease=case_when(
liver_disease=="0"~ "no disease",
TRUE~ "disease")) %>% mutate(ckd_stage=case_when(
CKDEPIcrcys21>=60 ~ "stage 1 or 2 ",
CKDEPIcrcys21<60 & CKDEPIcrcys21>=30 ~ "stage 3" ,
CKDEPIcrcys21<30 ~ "stage 4 or 5
"
)) %>%
select(-ckd_stage) %>%
mutate(ckd_stage=case_when(mGFRadj>=60 ~ "stage 1 or 2",
mGFRadj>=30 & mGFRadj< 60~ "stage 3",
mGFRadj<30 ~"stage 4"
))%>%
mutate(age_65=ifelse(age>=65,1,0))
master$race <- factor(master$race,levels = c("White","Mixed","Black","Asian"))
master$BMI_cat <- factor(master$BMI_cat,levels = c("Underweight","Normal Range","Overweight","Obse"))
table1(~SMI|gender,data=master)
Female (N=235) |
Male (N=230) |
Overall (N=465) |
|
---|---|---|---|
SMI | |||
Mean (SD) | 46.6 (7.65) | 54.2 (8.48) | 50.4 (8.92) |
Median [Min, Max] | 45.5 [28.1, 69.5] | 54.1 [36.6, 75.6] | 49.8 [28.1, 75.6] |
t.test(SMI ~ gender, data = master)
##
## Welch Two Sample t-test
##
## data: SMI by gender
## t = -10.166, df = 455.95, p-value < 2.2e-16
## alternative hypothesis: true difference in means between group Female and group Male is not equal to 0
## 95 percent confidence interval:
## -9.092887 -6.146793
## sample estimates:
## mean in group Female mean in group Male
## 46.60850 54.22834
master_sarcopenia <- master %>% filter(sarcopenia_prado==1)
table1(~SMI|gender,data=master_sarcopenia)
Female (N=32) |
Male (N=125) |
Overall (N=157) |
|
---|---|---|---|
SMI | |||
Mean (SD) | 35.5 (2.81) | 47.9 (4.86) | 45.4 (6.74) |
Median [Min, Max] | 36.4 [28.1, 39.0] | 48.3 [36.6, 54.9] | 46.3 [28.1, 54.9] |
t.test(SMI ~ gender, data = master_sarcopenia)
##
## Welch Two Sample t-test
##
## data: SMI by gender
## t = -18.75, df = 84.277, p-value < 2.2e-16
## alternative hypothesis: true difference in means between group Female and group Male is not equal to 0
## 95 percent confidence interval:
## -13.69417 -11.06802
## sample estimates:
## mean in group Female mean in group Male
## 35.49953 47.88062
table1(~TAI|gender,data=master)
Female (N=235) |
Male (N=230) |
Overall (N=465) |
|
---|---|---|---|
TAI | |||
Mean (SD) | 148 (71.0) | 114 (58.0) | 131 (67.1) |
Median [Min, Max] | 135 [16.9, 374] | 110 [5.38, 309] | 125 [5.38, 374] |
t.test(TAI ~ gender, data = master)
##
## Welch Two Sample t-test
##
## data: TAI by gender
## t = 5.7054, df = 448.74, p-value = 2.11e-08
## alternative hypothesis: true difference in means between group Female and group Male is not equal to 0
## 95 percent confidence interval:
## 22.47459 46.09303
## sample estimates:
## mean in group Female mean in group Male
## 148.1098 113.8260