Exercise 23
For the function \(f(x, y, z) = \frac{x}{x
+ 2y - 4z}\), the domain and range are as follows:
Domain:
The function is defined for all real numbers \(x\), \(y\), and \(z\) such that the denominator \(x + 2y - 4z\) is not equal to zero. Thus,
the domain can be expressed as:
\[ \text{Domain} = \{(x, y, z) \in
\mathbb{R}^3 \mid x + 2y - 4z \neq 0\} \]
Range:
To find the range, we need to examine the behavior of the function as
the denominator approaches zero. However, the range is not immediately
evident without further analysis, as it depends on the specific values
of \(x\), \(y\), and \(z\). Therefore, the range is not explicitly
stated without additional context.
Exercise 24
For the function \(f(x, y, z) = \frac{1}{1
- x^2 - y^2 - z^2}\), the domain and range are as follows:
Domain:
Similar to the previous function, the function is defined for all real
numbers \(x\), \(y\), and \(z\) such that the denominator \(1 - x^2 - y^2 - z^2\) is not equal to zero.
Hence, the domain can be expressed as:
\[ \text{Domain} = \{(x, y, z) \in
\mathbb{R}^3 \mid 1 - x^2 - y^2 - z^2 \neq 0\} \]
Range:
As the denominator approaches zero, the function tends towards infinity
or negative infinity. Therefore, the range is all real numbers except
zero, which can be expressed as:
\[ \text{Range} = \mathbb{R} \setminus
\{0\} \]
Exercise 25
For the function \(f(x, y, z) = \sqrt{z -
x^2 + y^2}\), the domain and range are as follows:
Domain:
The function is defined for all real numbers \(x\), \(y\), and \(z\) such that the expression inside the
square root \(z - x^2 + y^2\) is
non-negative. Thus, the domain can be expressed as:
\[ \text{Domain} = \{(x, y, z) \in
\mathbb{R}^3 \mid z - x^2 + y^2 \geq 0\} \]
Range:
Since the square root function outputs non-negative values, the range of
the function will be all non-negative real numbers, including zero.
Therefore, the range can be expressed as:
\[ \text{Range} = [0, \infty)
\]
Exercise 26
For the function \(f(x, y, z) = z^2 \sin{x}
\cos{y}\), the domain and range are as follows:
Domain:
The function is defined for all real numbers \(x\), \(y\), and \(z\) without any restrictions on their
values. Hence, the domain is the set of all real numbers:
\[ \text{Domain} = \mathbb{R}^3
\]
Range:
The range of the function is determined by the behavior of \(\sin{x}\) and \(\cos{y}\), which oscillate between -1 and 1
for all real inputs. Since \(z^2\) can
take any non-negative value, the range of the function will be all real
numbers between \(-z^2\) and \(z^2\). Therefore, the range can be
expressed as:
\[ \text{Range} = [-z^2, z^2]
\]
LS0tDQp0aXRsZTogIkRhdGEgNjA1IERpc2N1c3Npb24gMTUiDQphdXRob3I6ICJMYXVyYSBCIg0KZGF0ZTogImByIFN5cy5EYXRlKClgIg0Kb3V0cHV0OiBvcGVuaW50cm86OmxhYl9yZXBvcnQNCi0tLQ0KDQoNCg0KIyMgRXhlcmNpc2UgMjMNCg0KRm9yIHRoZSBmdW5jdGlvbiBcKCBmKHgsIHksIHopID0gXGZyYWN7eH17eCArIDJ5IC0gNHp9IFwpLCB0aGUgZG9tYWluIGFuZCByYW5nZSBhcmUgYXMgZm9sbG93czoNCg0KKipEb21haW46KiogIA0KVGhlIGZ1bmN0aW9uIGlzIGRlZmluZWQgZm9yIGFsbCByZWFsIG51bWJlcnMgXCggeCBcKSwgXCggeSBcKSwgYW5kIFwoIHogXCkgc3VjaCB0aGF0IHRoZSBkZW5vbWluYXRvciBcKCB4ICsgMnkgLSA0eiBcKSBpcyBub3QgZXF1YWwgdG8gemVyby4gVGh1cywgdGhlIGRvbWFpbiBjYW4gYmUgZXhwcmVzc2VkIGFzOg0KDQpcWyBcdGV4dHtEb21haW59ID0gXHsoeCwgeSwgeikgXGluIFxtYXRoYmJ7Un1eMyBcbWlkIHggKyAyeSAtIDR6IFxuZXEgMFx9IFxdDQoNCioqUmFuZ2U6KiogIA0KVG8gZmluZCB0aGUgcmFuZ2UsIHdlIG5lZWQgdG8gZXhhbWluZSB0aGUgYmVoYXZpb3Igb2YgdGhlIGZ1bmN0aW9uIGFzIHRoZSBkZW5vbWluYXRvciBhcHByb2FjaGVzIHplcm8uIEhvd2V2ZXIsIHRoZSByYW5nZSBpcyBub3QgaW1tZWRpYXRlbHkgZXZpZGVudCB3aXRob3V0IGZ1cnRoZXIgYW5hbHlzaXMsIGFzIGl0IGRlcGVuZHMgb24gdGhlIHNwZWNpZmljIHZhbHVlcyBvZiBcKCB4IFwpLCBcKCB5IFwpLCBhbmQgXCggeiBcKS4gVGhlcmVmb3JlLCB0aGUgcmFuZ2UgaXMgbm90IGV4cGxpY2l0bHkgc3RhdGVkIHdpdGhvdXQgYWRkaXRpb25hbCBjb250ZXh0Lg0KDQojIyBFeGVyY2lzZSAyNA0KDQpGb3IgdGhlIGZ1bmN0aW9uIFwoIGYoeCwgeSwgeikgPSBcZnJhY3sxfXsxIC0geF4yIC0geV4yIC0gel4yfSBcKSwgdGhlIGRvbWFpbiBhbmQgcmFuZ2UgYXJlIGFzIGZvbGxvd3M6DQoNCioqRG9tYWluOioqICANClNpbWlsYXIgdG8gdGhlIHByZXZpb3VzIGZ1bmN0aW9uLCB0aGUgZnVuY3Rpb24gaXMgZGVmaW5lZCBmb3IgYWxsIHJlYWwgbnVtYmVycyBcKCB4IFwpLCBcKCB5IFwpLCBhbmQgXCggeiBcKSBzdWNoIHRoYXQgdGhlIGRlbm9taW5hdG9yIFwoIDEgLSB4XjIgLSB5XjIgLSB6XjIgXCkgaXMgbm90IGVxdWFsIHRvIHplcm8uIEhlbmNlLCB0aGUgZG9tYWluIGNhbiBiZSBleHByZXNzZWQgYXM6DQoNClxbIFx0ZXh0e0RvbWFpbn0gPSBceyh4LCB5LCB6KSBcaW4gXG1hdGhiYntSfV4zIFxtaWQgMSAtIHheMiAtIHleMiAtIHpeMiBcbmVxIDBcfSBcXQ0KDQoqKlJhbmdlOioqICANCkFzIHRoZSBkZW5vbWluYXRvciBhcHByb2FjaGVzIHplcm8sIHRoZSBmdW5jdGlvbiB0ZW5kcyB0b3dhcmRzIGluZmluaXR5IG9yIG5lZ2F0aXZlIGluZmluaXR5LiBUaGVyZWZvcmUsIHRoZSByYW5nZSBpcyBhbGwgcmVhbCBudW1iZXJzIGV4Y2VwdCB6ZXJvLCB3aGljaCBjYW4gYmUgZXhwcmVzc2VkIGFzOg0KDQpcWyBcdGV4dHtSYW5nZX0gPSBcbWF0aGJie1J9IFxzZXRtaW51cyBcezBcfSBcXQ0KDQojIyBFeGVyY2lzZSAyNQ0KDQpGb3IgdGhlIGZ1bmN0aW9uIFwoIGYoeCwgeSwgeikgPSBcc3FydHt6IC0geF4yICsgeV4yfSBcKSwgdGhlIGRvbWFpbiBhbmQgcmFuZ2UgYXJlIGFzIGZvbGxvd3M6DQoNCioqRG9tYWluOioqICANClRoZSBmdW5jdGlvbiBpcyBkZWZpbmVkIGZvciBhbGwgcmVhbCBudW1iZXJzIFwoIHggXCksIFwoIHkgXCksIGFuZCBcKCB6IFwpIHN1Y2ggdGhhdCB0aGUgZXhwcmVzc2lvbiBpbnNpZGUgdGhlIHNxdWFyZSByb290IFwoIHogLSB4XjIgKyB5XjIgXCkgaXMgbm9uLW5lZ2F0aXZlLiBUaHVzLCB0aGUgZG9tYWluIGNhbiBiZSBleHByZXNzZWQgYXM6DQoNClxbIFx0ZXh0e0RvbWFpbn0gPSBceyh4LCB5LCB6KSBcaW4gXG1hdGhiYntSfV4zIFxtaWQgeiAtIHheMiArIHleMiBcZ2VxIDBcfSBcXQ0KDQoqKlJhbmdlOioqICANClNpbmNlIHRoZSBzcXVhcmUgcm9vdCBmdW5jdGlvbiBvdXRwdXRzIG5vbi1uZWdhdGl2ZSB2YWx1ZXMsIHRoZSByYW5nZSBvZiB0aGUgZnVuY3Rpb24gd2lsbCBiZSBhbGwgbm9uLW5lZ2F0aXZlIHJlYWwgbnVtYmVycywgaW5jbHVkaW5nIHplcm8uIFRoZXJlZm9yZSwgdGhlIHJhbmdlIGNhbiBiZSBleHByZXNzZWQgYXM6DQoNClxbIFx0ZXh0e1JhbmdlfSA9IFswLCBcaW5mdHkpIFxdDQoNCiMjIEV4ZXJjaXNlIDI2DQoNCkZvciB0aGUgZnVuY3Rpb24gXCggZih4LCB5LCB6KSA9IHpeMiBcc2lue3h9IFxjb3N7eX0gXCksIHRoZSBkb21haW4gYW5kIHJhbmdlIGFyZSBhcyBmb2xsb3dzOg0KDQoqKkRvbWFpbjoqKiAgDQpUaGUgZnVuY3Rpb24gaXMgZGVmaW5lZCBmb3IgYWxsIHJlYWwgbnVtYmVycyBcKCB4IFwpLCBcKCB5IFwpLCBhbmQgXCggeiBcKSB3aXRob3V0IGFueSByZXN0cmljdGlvbnMgb24gdGhlaXIgdmFsdWVzLiBIZW5jZSwgdGhlIGRvbWFpbiBpcyB0aGUgc2V0IG9mIGFsbCByZWFsIG51bWJlcnM6DQoNClxbIFx0ZXh0e0RvbWFpbn0gPSBcbWF0aGJie1J9XjMgXF0NCg0KKipSYW5nZToqKiAgDQpUaGUgcmFuZ2Ugb2YgdGhlIGZ1bmN0aW9uIGlzIGRldGVybWluZWQgYnkgdGhlIGJlaGF2aW9yIG9mIFwoIFxzaW57eH0gXCkgYW5kIFwoIFxjb3N7eX0gXCksIHdoaWNoIG9zY2lsbGF0ZSBiZXR3ZWVuIC0xIGFuZCAxIGZvciBhbGwgcmVhbCBpbnB1dHMuIFNpbmNlIFwoIHpeMiBcKSBjYW4gdGFrZSBhbnkgbm9uLW5lZ2F0aXZlIHZhbHVlLCB0aGUgcmFuZ2Ugb2YgdGhlIGZ1bmN0aW9uIHdpbGwgYmUgYWxsIHJlYWwgbnVtYmVycyBiZXR3ZWVuIFwoIC16XjIgXCkgYW5kIFwoIHpeMiBcKS4gVGhlcmVmb3JlLCB0aGUgcmFuZ2UgY2FuIGJlIGV4cHJlc3NlZCBhczoNCg0KXFsgXHRleHR7UmFuZ2V9ID0gWy16XjIsIHpeMl0gXF0NCg==