# for Core packages
library(tidyverse)
## Warning: package 'ggplot2' was built under R version 4.3.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.0     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# for financial analysis
library(tidyquant)
## Warning: package 'tidyquant' was built under R version 4.3.3
## Loading required package: PerformanceAnalytics
## Warning: package 'PerformanceAnalytics' was built under R version 4.3.3
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## 
## ######################### Warning from 'xts' package ##########################
## #                                                                             #
## # The dplyr lag() function breaks how base R's lag() function is supposed to  #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or       #
## # source() into this session won't work correctly.                            #
## #                                                                             #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop           #
## # dplyr from breaking base R's lag() function.                                #
## #                                                                             #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning.  #
## #                                                                             #
## ###############################################################################
## 
## Attaching package: 'xts'
## 
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## 
## Attaching package: 'PerformanceAnalytics'
## 
## The following object is masked from 'package:graphics':
## 
##     legend
## 
## Loading required package: quantmod
## Warning: package 'quantmod' was built under R version 4.3.3
## Loading required package: TTR
## Warning: package 'TTR' was built under R version 4.3.3
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
# for times series
library(timetk)
## Warning: package 'timetk' was built under R version 4.3.3

Goal: Apply Matt Dancho’s tutorial to state unemployment initial claims of New England states.

The following is the replication of Matt Dancho’s tutorial on this page

start_date <- "1989-01-01"

symbols_txt <- c("CTICLAIMS", # Connecticut
                 "MEICLAIMS", # Maine
                 "MAICLAIMS", # Massachusetts
                 "NHICLAIMS", # New Hampshire
                 "RIICLAIMS", # Rhode Island
                 "VTICLAIMS") # Vermont

claims_tbl <- tq_get(symbols_txt, get = "economic.data", from = start_date) %>%
    mutate(symbol = fct_recode(symbol,
                               "Connecticut"   = "CTICLAIMS",
                               "Maine"         = "MEICLAIMS",
                               "Massachusetts" = "MAICLAIMS",
                               "New Hampshire" = "NHICLAIMS",
                               "Rhode Island"  = "RIICLAIMS",
                               "Vermont"       = "VTICLAIMS")) %>%
    rename(claims = price)

Plotting time series

claims_tbl
## # A tibble: 11,058 × 3
##    symbol      date       claims
##    <fct>       <date>      <int>
##  1 Connecticut 1989-01-07   8345
##  2 Connecticut 1989-01-14   6503
##  3 Connecticut 1989-01-21   3821
##  4 Connecticut 1989-01-28   4663
##  5 Connecticut 1989-02-04   4162
##  6 Connecticut 1989-02-11   4337
##  7 Connecticut 1989-02-18   4079
##  8 Connecticut 1989-02-25   3556
##  9 Connecticut 1989-03-04   3826
## 10 Connecticut 1989-03-11   3515
## # ℹ 11,048 more rows
claims_tbl %>%
  plot_time_series(.date_var = date, .value = claims)

Box plots

claims_tbl %>% count(symbol)
## # A tibble: 6 × 2
##   symbol            n
##   <fct>         <int>
## 1 Connecticut    1843
## 2 Massachusetts  1843
## 3 Maine          1843
## 4 New Hampshire  1843
## 5 Rhode Island   1843
## 6 Vermont        1843
claims_tbl %>%
  filter_by_time(.date_var = date, .end_date = "2024") %>%
  group_by(symbol) %>%
  plot_time_series_boxplot(
      .date_var = date,
      .value    = claims,
      .period   = "1 year",
      .facet_ncol = 2)

Regression plots

claims_tbl %>%
  group_by(symbol) %>%
  plot_time_series_regression(
    .date_var = date,
    .facet_ncol = 2,
    .formula = log(claims) ~ as.numeric(date) + month(date, label = TRUE),
    .show_summary = FALSE)

Plotting Seasonality and Correlation

Correlation Plots

claims_tbl %>%
  group_by(symbol) %>%
  plot_acf_diagnostics(date, claims, .lags = "7 days")

Seasonality

claims_tbl %>%
  plot_seasonal_diagnostics(date, claims)
claims_tbl %>% count(claims)
## # A tibble: 5,332 × 2
##    claims     n
##     <int> <int>
##  1    152     1
##  2    154     1
##  3    184     2
##  4    189     1
##  5    200     1
##  6    201     1
##  7    203     1
##  8    205     1
##  9    206     1
## 10    211     2
## # ℹ 5,322 more rows
claims_tbl %>%
  group_by(symbol) %>%
  plot_seasonal_diagnostics(date, claims)

STL Diagnostics

claims_tbl %>%
  group_by(symbol) %>%
  plot_stl_diagnostics(
    date, claims,
    .feature_set = c("observed", "season", "trend", "remainder"))
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year

Time Series Data Wrangling

Summarize by Time

daily data

claims_tbl %>%
  group_by(symbol) %>%
  plot_time_series(date, claims, .facet_ncol = 2, .interactive = FALSE)

summarize it by quarter

claims_tbl %>%
  group_by(symbol) %>%
  summarise_by_time(.date_var = date, .by = "month", claims = mean(claims)) %>%
  plot_time_series(date, claims, .facet_ncol = 2, .interactive = FALSE)

Filter By Time

claims_tbl %>%
  group_by(symbol) %>%
  filter_by_time(.date_var = date,
                 .start_date = "2013-09", 
                 .end_date = "2013") %>%
  plot_time_series(date, claims, .facet_ncol = 2)

Padding Data

claims_tbl %>%
  group_by(symbol) %>%
  pad_by_time(date, .by = "day", .pad_value = 0)
## # A tibble: 77,370 × 3
## # Groups:   symbol [6]
##    symbol      date       claims
##    <fct>       <date>      <int>
##  1 Connecticut 1989-01-07   8345
##  2 Connecticut 1989-01-08      0
##  3 Connecticut 1989-01-09      0
##  4 Connecticut 1989-01-10      0
##  5 Connecticut 1989-01-11      0
##  6 Connecticut 1989-01-12      0
##  7 Connecticut 1989-01-13      0
##  8 Connecticut 1989-01-14   6503
##  9 Connecticut 1989-01-15      0
## 10 Connecticut 1989-01-16      0
## # ℹ 77,360 more rows

Sliding (Rolling) Calculations

claims_tbl %>%
  head(10) %>%
  mutate(rolling_avg_2 = slidify_vec(claims, mean,
                                     .period = 2,
                                     .align = "right",
                                     .partial = TRUE))
## # A tibble: 10 × 4
##    symbol      date       claims rolling_avg_2
##    <fct>       <date>      <int>         <dbl>
##  1 Connecticut 1989-01-07   8345         8345 
##  2 Connecticut 1989-01-14   6503         7424 
##  3 Connecticut 1989-01-21   3821         5162 
##  4 Connecticut 1989-01-28   4663         4242 
##  5 Connecticut 1989-02-04   4162         4412.
##  6 Connecticut 1989-02-11   4337         4250.
##  7 Connecticut 1989-02-18   4079         4208 
##  8 Connecticut 1989-02-25   3556         3818.
##  9 Connecticut 1989-03-04   3826         3691 
## 10 Connecticut 1989-03-11   3515         3670.
# Rolling regressions are easy to implement using ' .unlist = FALSE'
lm_roll <- slidify(~ lm(..1 ~ ..2), .period = 90,
                   .unlist = FALSE, .align = "right")

claims_tbl %>%
  select(symbol, date, claims) %>%
  group_by(symbol) %>%
  mutate(date = as.numeric(date)) %>%
  # Apply rolling regression 
  mutate(rolling_lm = lm_roll(claims, date)) %>%
  filter(!is.na(rolling_lm))
## # A tibble: 10,524 × 4
## # Groups:   symbol [6]
##    symbol       date claims rolling_lm
##    <fct>       <dbl>  <int> <list>    
##  1 Connecticut  7569   3927 <lm>      
##  2 Connecticut  7576   4471 <lm>      
##  3 Connecticut  7583   4430 <lm>      
##  4 Connecticut  7590   4494 <lm>      
##  5 Connecticut  7597   4894 <lm>      
##  6 Connecticut  7604   4653 <lm>      
##  7 Connecticut  7611   4719 <lm>      
##  8 Connecticut  7618   5347 <lm>      
##  9 Connecticut  7625   4824 <lm>      
## 10 Connecticut  7632   5367 <lm>      
## # ℹ 10,514 more rows