# Load necessary libraries
library(ggplot2)
library(tidyr)
# Read data from CSV file
Sheet2 <- read.csv("Sheet2.csv")
# Convert `% Improved`, `% Unchanged`, `% Worsened` to numeric
Sheet2$X..Improved <- as.numeric(sub("%", "", Sheet2$X..Improved))
Sheet2$X..Unchanged <- as.numeric(sub("%", "", Sheet2$X..Unchanged))
Sheet2$X..Worsened <- as.numeric(sub("%", "", Sheet2$X..Worsened))
# Reshape the data for plotting
Sheet2_long <- pivot_longer(Sheet2, cols = c(`X..Worsened`, `X..Unchanged`, `X..Improved`), names_to = "Status", values_to = "Percentage")
# Box plot showing distribution of percentages for each measure (monochrome)
box_plot <- ggplot(Sheet2_long, aes(x = Measure, y = Percentage)) +
geom_boxplot() +
facet_wrap(~ Status) + # Facet by Status (3 separate plots)
labs(title = "Distribution of Percentages for Each Measure",
x = "Measure",
y = "Percentage") +
theme() +
theme(axis.text.x = element_text(angle = 45, hjust = 1),
legend.position = "none") # Remove legend
# Display the plot
print(box_plot)
