Taylor Series
\(f(x)=\frac{1}{1-x}\)
This function is not defined when \(x = 1\).
Derivatives and evaluation at \(x=0\):
Use McLaurin Series formula:
\[1 + \frac{1}{1!}x + \frac{2}{2!}x^2 + \frac{6}{3!}x^3 + \frac{24}{4!}x^4 + \frac{120}{5!}x^5 + \ldots\]
This is simplified to:
\[1+x+x^2+x^3+x^4+x^5+\ldots+x^n\]
Presented in summation form:
\[\sum_{n=0}^\infty x^n\]
\(f(x)=e^x\)
Derivatives and evaluation at \(x=0\):
Using the McLaurin Series formula:
\[1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}x^4 + \ldots\]
This simplifies to:
\[1+x+\frac{x^2}{2}+\frac{x^3}{6}+\frac{x^4}{24}+\ldots+\frac{x^n}{n!}\]
In summation form:
\[\sum_{n=0}^\infty \frac{x^n}{n!}\]
\(f(x)=\ln(1+x)\)
Derivatives and evaluation at \(x=0\):
Using the McLaurin Series formula:
\[0 + \frac{1}{1!}x - \frac{1}{2!}x^2 + \frac{1}{3!}x^3 - \frac{1}{4!}x^4 + \frac{1}{5!}x^5 + \ldots\]
Simplifies to:
\[x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \frac{1}{5}x^5 + \ldots + (-1)^{n+1}\frac{x^n}{n}\]
In summation form:
\[\sum_{n=0}^\infty (-1)^{n+1}\frac{x^n}{n}\]