( 5.6, 8.8 ), ( 6.3, 12.4 ), ( 7, 14.8 ), ( 7.7, 18.2 ), ( 8.4, 20.8 )
x <- c(5.6, 6.3, 7, 7.7, 8.4)
y <- c(8.8, 12.4, 14.8, 18.2, 20.8)
rm <- lm(y~x)
rm
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## -14.800 4.257
The equation is y = 4.26x - 14.80.
\[f(x,y)=24x-6xy^{2}-8y^{3}\]
\[f_x(x,y) = 24 - 6y^2\]
\[f_y(x,y) = -12xy -24y^2\]
\[f_{xx}(x,y) = 0\]
\[f_{yy}=-12x-48y\]
\[f_{xy}(x,y) = -12y\]
Set each partial derivative equal to zero:
\[f_{x}(x, y)=24-6y^{2}=0\\ 6y^{2} =24\\ y^{2} = 4\\ y=-2\ or\ y =2\]
Solve partial derivative by substitute y=-2 or y =2
\[f_{y}(x, y)=-12xy-24y^{2}=0\\ -12xy=24y^{2}\\ x=-2y\\ subsitute\ y=-2\ and\ y=2\\ x=4\ or\ x =-4\\ \]
The following points for (x, y, z) is (4, -2, z) and (-4, 2, z)
To find the value of z:
#(4, -2, z)
#24x-6xy^2-8y^3
x = 4
y = -2
z = 24*x-6*x*y^2-8*y^3
z
## [1] 64
#(-4, 2, z)
#24x-6xy^2-8y^3
x = -4
y = 2
z = 24*x-6*x*y^2-8*y^3
z
## [1] -64
The critical points are (4, -2, 64) & (-4, 2, -64)
Use Second Derivative Test to find out if f has saddle points
\[D=f_(xx)(x,y)f_{yy}(x,y)-[f_{xy}(x, y)]^{2}\]
\[f_{x}(x, y)=24-6y^{2}\\ f_{xx}(x, y)=0\] \[f_{y}(x, y)=-12xy-24y^{2}\\ f_{yy}(x, y)=-12x-48y\] \[f_{x}(x, y)=24-6y^{2}\\ f_{xy}(x, y)=-12y\]
\[D=(0)(-12x-48y)-[-12y]^{2}\\ D=-144y^{2}\]
Since D<0, f has a saddle point at critical points
Step 1. Find the revenue function R(x,y). We can perform some algebra by distributing and combining similar terms where possible
R(x, y) can be obtained by combining “house” & “name” function
\[ R(x,y) = (81- 21x + 17y)x + (40 + 11x - 23y)y\\ =81x - 21x^2 + 28yx + 40y - 23y^2\]
Step 2. What is the revenue if she sells the “house” brand for $2.30 and the “name” brand for $4.10?
The revenue is $116.62
#R(x, y) = R(2.30, 4.10)
x = 2.30
y = 4.10
r = 81*x-21*x^2+28*y*x+40*y-23*y^2
r
## [1] 116.62
\[c(x,y)=\frac{1}{6}x^{2}+\frac{1}{6}y^{2}+7x+25y+700\\\]
\[x + y = 96\\ y = 96-x\]
\[C(x)=\frac{1}{6}x^2 + \frac{1}{6}(96-x)^2 + 7x + 25(96-x) + 700\]
\[C'(x)=\frac{1}{3}x-\frac{1}{3}(96-x)+7-25 \]
set C’(x) equal to 0
\[\frac{1}{3}x-\frac{1}{3}(96-x)+7-25 = 0\]
\[0 = \frac{2}{3}x-50 \] \[x = 75\] \[y = 96-75 = 21\]
Number of units should be produced in Los Angeles is 75
Number of units should be produced in Denver is 21
\[\int_R\int(e^{8x+3y}dA; R:2\le x\le 4\ and\ 2 \le y \le 4)\]
\[ \int_{2}^{4} e^{8x+3y} \, dy = \left[\frac{1}{3}e^{8x+3y}\right]_{2}^{4} = \frac{1}{3}(e^{8x+12} - e^{8x+6}) \]
\[ \int_{2}^{4} \frac{1}{3}(e^{8x+12} - e^{8x+6}) \, dx \]
\[ \frac{1}{3}\left(\frac{1}{8}e^{8x+12} - \frac{1}{8}e^{8x+6}\right) \bigg|_{2}^{4} \]
\[ = \frac{1}{3}\left(\frac{1}{8}e^{44} - \frac{1}{8}e^{28} - \frac{1}{8}e^{36} + \frac{1}{8}e^{22}\right) \]
\[ = \frac{1}{24}(e^{44} - e^{36} - e^{28} + e^{22}) \]