── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::first() masks xts::first()
✖ dplyr::lag() masks stats::lag()
✖ dplyr::last() masks xts::last()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Primeira Base de Dados
# Defina o período para os dadosstart_date <-"1970-01-01"end_date <-Sys.Date()# Obtenha os dados da Federal Funds RategetSymbols("FEDFUNDS", src ="FRED", from = start_date, to = end_date)
[1] "FEDFUNDS"
fed_funds <- FEDFUNDS# Obtenha os dados da taxa de juros de Treasury Bills de 1 anogetSymbols("TB1YR", src ="FRED", from = start_date, to = end_date)
[1] "TB1YR"
treasury_bills <- TB1YR# Combine os dados em um único data framedata <-data.frame(Date =index(fed_funds), Federal_Funds_Rate =as.numeric(fed_funds),Treasury_Bills_Rate =as.numeric(treasury_bills))# Adicione uma coluna indicando recessõesdata$Recession <-ifelse(data$Federal_Funds_Rate > data$Treasury_Bills_Rate, "Recession", "No Recession")# Crie um gráfico usando ggplot2ggplot(data, aes(x = Date)) +geom_line(aes(y = Federal_Funds_Rate, color ="Federal Funds Rate")) +geom_line(aes(y = Treasury_Bills_Rate, color ="Treasury Bills Rate")) +scale_color_manual(values =c("red", "blue")) +labs(title ="Federal Funds Rate vs Treasury Bills Rate",y ="Taxa de Juros (%)",color ="Interest Rate Type") +theme_economist_white()
Segunda Base de Dados
# Defina o período para os dadosstart_date <-"1970-01-01"end_date <-Sys.Date()# Obtenha os dados da Federal Funds RategetSymbols("FEDFUNDS", src ="FRED", from = start_date, to = end_date)
[1] "FEDFUNDS"
fed_funds <- FEDFUNDS# Obtenha os dados da taxa de juros de Treasury Bills de 3 mesesgetSymbols("TB3MS", src ="FRED", from = start_date, to = end_date)
[1] "TB3MS"
treasury_bills <- TB3MS# Combine os dados em um único data framedata <-data.frame(Date =index(fed_funds), Federal_Funds_Rate =as.numeric(fed_funds),Treasury_Bills_Rate =as.numeric(treasury_bills))# Adicione uma coluna indicando recessõesdata$Recession <-ifelse(data$Federal_Funds_Rate > data$Treasury_Bills_Rate, "Recession", "No Recession")# Crie um gráfico usando ggplot2ggplot(data, aes(x = Date)) +geom_line(aes(y = Federal_Funds_Rate, color ="Federal Funds Rate")) +geom_line(aes(y = Treasury_Bills_Rate, color ="Treasury Bills Rate")) +scale_color_manual(values =c("red", "blue")) +labs(title ="Federal Funds Rate vs Treasury Bills Rate",y ="Taxa de Juros (%)",color ="Interest Rate Type") +theme_economist_white()
Quarta Base de Dados
# Defina o período para os dadosstart_date <-"1970-01-01"end_date <-Sys.Date()# Obtenha os dados da Federal Funds RategetSymbols("FEDFUNDS", src ="FRED", from = start_date, to = end_date)
[1] "FEDFUNDS"
fed_funds <- FEDFUNDS# Obtenha os dados da taxa de juros de Treasury Bills de 6 mesesgetSymbols("TB6MS", src ="FRED", from = start_date, to = end_date)
[1] "TB6MS"
treasury_bills <- TB6MS# Combine os dados em um único data framedata <-data.frame(Date =index(fed_funds), Federal_Funds_Rate =as.numeric(fed_funds),Treasury_Bills_Rate =as.numeric(treasury_bills))# Adicione uma coluna indicando recessõesdata$Recession <-ifelse(data$Federal_Funds_Rate > data$Treasury_Bills_Rate, "Recession", "No Recession")# Crie um gráfico usando ggplot2ggplot(data, aes(x = Date)) +geom_line(aes(y = Federal_Funds_Rate, color ="Federal Funds Rate")) +geom_line(aes(y = Treasury_Bills_Rate, color ="Treasury Bills Rate")) +scale_color_manual(values =c("red", "blue")) +labs(title ="Federal Funds Rate vs Treasury Bills Rate",y ="Taxa de Juros (%)",color ="Interest Rate Type") +theme_economist_white()
Quinta Base de Dados
# Defina o período para os dadosstart_date <-"1970-01-01"end_date <-Sys.Date()# Obtenha os dados do Produto Interno Bruto (PIB) real, PIB potencial e taxa de desemprego dos EUAgetSymbols(c("GDPC1", "GDPPOT", "UNRATE"), src ="FRED", from = start_date, to = end_date)
[1] "GDPC1" "GDPPOT" "UNRATE"
# Ajuste o comprimento dos dados para corresponder aos outros dadosgdp_real <-na.omit(GDPC1)gdp_potential <-na.omit(GDPPOT)unemployment_rate <-na.omit(UNRATE)# Mantenha apenas as datas comuns aos três conjuntos de dadoscommon_dates <-index(GDPC1) %in%index(GDPPOT) &index(GDPC1) %in%index(UNRATE)gdp_real <- GDPC1[common_dates]gdp_potential <- GDPPOT[common_dates]unemployment_rate <- UNRATE[common_dates]# Combine os dados do PIB real e potencial em um único data framedata_gdp <-data.frame(Date =index(gdp_real), Real_GDP =as.numeric(coredata(gdp_real)),Potential_GDP =as.numeric(coredata(gdp_potential)))# Combine os dados da taxa de desemprego em um único data framedata_unemployment <-data.frame(Date =index(unemployment_rate), Unemployment_Rate =as.numeric(coredata(unemployment_rate)))# Crie os gráficos separadosplot_gdp <-ggplot(data_gdp, aes(x = Date)) +geom_line(aes(y = Real_GDP/1000, color ="Real GDP"), linetype ="solid") +geom_line(aes(y = Potential_GDP/1000, color ="Potential GDP"), linetype ="solid") +scale_y_continuous(sec.axis =sec_axis(~.*1000, name ="GDP (billions of dollars)")) +scale_color_manual(values =c("blue", "red")) +labs(title ="US Real GDP vs Potential GDP",y ="GDP (billions of dollars)",color ="GDP Type") +theme_economist_white()plot_unemployment <-ggplot(data_unemployment, aes(x = Date, y = Unemployment_Rate)) +geom_line(color ="red") +labs(title ="US Unemployment Rate",y ="Unemployment Rate (%)",x ="") +theme_economist_white()
Sexta Base Dedados
# Defina o período para os dadosstart_date <-"1970-01-01"end_date <-Sys.Date()# Obtenha os dados do Produto Interno Bruto (PIB) real e do PIB potencial dos EUAgetSymbols(c("GDPC1", "GDPPOT"), src ="FRED", from = start_date, to = end_date)
[1] "GDPC1" "GDPPOT"
# Ajuste o comprimento dos dados do PIB para corresponder aos outros dadosgdp_real <-na.omit(GDPC1)gdp_potential <-na.omit(GDPPOT)gdp <-merge(gdp_real, gdp_potential)# Crie um data frame com as datas, o PIB real e o PIB potencialdata <-data.frame(Date =index(gdp), GDP_Real =as.numeric(coredata(gdp[,1])),GDP_Potential =as.numeric(coredata(gdp[,2])))# Crie um gráfico usando ggplot2 com o PIB real e o PIB potencialggplot(data, aes(x = Date)) +geom_line(aes(y = GDP_Real, color ="Real GDP")) +geom_line(aes(y = GDP_Potential, color ="Potential GDP")) +scale_color_manual(values =c("blue", "red")) +labs(title ="US Real GDP vs Potential GDP",y ="GDP (billions of dollars)",x ="Data",color ="GDP Type") +theme_economist_white()+geom_vline(xintercept =as.numeric(as.Date(c("1978-01-01", "1980-12-31"))), linetype ="dashed", color ="black") +geom_vline(xintercept =as.numeric(as.Date(c("1989-01-01", "1990-12-31"))), linetype ="dashed", color ="red") +geom_vline(xintercept =as.numeric(as.Date(c("2000-01-01", "2001-12-31"))), linetype ="dashed", color ="black") +geom_vline(xintercept =as.numeric(as.Date(c("2006-01-01", "2007-12-31"))), linetype ="dashed", color ="red") +geom_vline(xintercept =as.numeric(as.Date(c("2019-01-01"))), linetype ="dashed", color ="black")
Warning: Removed 1 row containing missing values or values outside the scale range
(`geom_line()`).
Setima Base de Dados
# Defina o período para os dadosstart_date <-"1970-01-01"end_date <-Sys.Date()# Obtenha os dados do Produto Interno Bruto (PIB) dos EUAgetSymbols("GDPC1", src ="FRED", from = start_date, to = end_date)
[1] "GDPC1"
gdp <- GDPC1# Ajuste o comprimento dos dados do PIB para corresponder aos outros dadosgdp <-na.omit(gdp)gdp <-window(gdp, start = start_date, end = end_date)# Crie um gráfico usando ggplot2 apenas com os dados do PIBggplot(data.frame(Date =index(gdp), GDP =as.numeric(gdp)), aes(x = Date, y = GDP/1000)) +geom_line(color ="blue") +labs(title ="US Gross Domestic Product (GDP)",y ="GDP (trillions of dollars)",x ="Year") +theme_economist_white() +geom_vline(xintercept =as.numeric(as.Date(c("1978-01-01", "1980-12-31"))), linetype ="dashed", color ="black") +geom_vline(xintercept =as.numeric(as.Date(c("1989-01-01", "1990-12-31"))), linetype ="dashed", color ="red") +geom_vline(xintercept =as.numeric(as.Date(c("2000-01-01", "2001-12-31"))), linetype ="dashed", color ="black") +geom_vline(xintercept =as.numeric(as.Date(c("2006-01-01", "2007-12-31"))), linetype ="dashed", color ="red") +geom_vline(xintercept =as.numeric(as.Date(c("2019-01-01"))), linetype ="dashed", color ="black")
Oitava Base de Dados
# Defina o período para os dadosstart_date <-"1970-01-01"end_date <-Sys.Date()# Obtenha os dados da taxa de desemprego dos EUAgetSymbols("UNRATE", src ="FRED", from = start_date, to = end_date)
[1] "UNRATE"
unemployment_rate <-na.omit(UNRATE)# Crie um data frame com as datas e a taxa de desempregodata <-data.frame(Date =index(unemployment_rate), Unemployment_Rate =as.numeric(coredata(unemployment_rate)))# Crie um gráfico usando ggplot2 com a taxa de desempregoggplot(data, aes(x = Date, y = Unemployment_Rate)) +geom_line(color ="red") +labs(title ="Taxa de Desemprego",y ="Taxa de Desemprego (%)",x ="Year") +theme_economist_white()+geom_vline(xintercept =as.numeric(as.Date(c("1978-01-01", "1980-12-31"))), linetype ="dashed", color ="black") +geom_vline(xintercept =as.numeric(as.Date(c("1989-01-01", "1990-12-31"))), linetype ="dashed", color ="red") +geom_vline(xintercept =as.numeric(as.Date(c("2000-01-01", "2001-12-31"))), linetype ="dashed", color ="black") +geom_vline(xintercept =as.numeric(as.Date(c("2006-01-01", "2007-12-31"))), linetype ="dashed", color ="red") +geom_vline(xintercept =as.numeric(as.Date(c("2019-01-01"))), linetype ="dashed", color ="black")