Business Scenario: Predicting Student Performance

In this case study, you are an analyst at an online education platform. The management is interested in predicting student performance based on various factors to provide personalized support and improve the learning experience. Your task is to develop a supervised learning model to predict students’ final grades using simulated data.

Objective:

Your goal is to build a predictive model using supervised learning techniques in R. You will utilize simulated student data with features such as study hours, quiz scores, forum participation, and previous grades to predict the final grades.

Data Generation:

# Set a fixed random seed for reproducibility
set.seed(10923)

# Number of students
#TODO: set num_students to 500
# Enter code below:
num_students <- 500


# Simulate study hours (ranging from 1 to 20 hours)
study_hours <- sample(1:20, num_students, replace = TRUE)

# Simulate quiz scores (ranging from 0 to 100)
quiz_scores <- sample(0:100, num_students, replace = TRUE)

# Simulate forum participation (ranging from 0 to 50 posts)
forum_posts <- sample(0:50, num_students, replace = TRUE)

# Simulate previous grades (ranging from 0 to 100)
previous_grades <- sample(0:100, num_students, replace = TRUE)

# Simulate final grades (ranging from 0 to 100)
final_grades <- 0.3 * study_hours + 0.4 * quiz_scores + 0.2 * forum_posts + 0.1 * previous_grades + rnorm(num_students, mean = 0, sd = 5) + 25

# Create a data frame
student_data <- data.frame(StudyHours = study_hours, QuizScores = quiz_scores, ForumPosts = forum_posts, PreviousGrades = previous_grades, FinalGrades = final_grades)

# View the first few rows of the generated data
head(student_data)
##   StudyHours QuizScores ForumPosts PreviousGrades FinalGrades
## 1         20         91         22             78    80.80895
## 2         12         26         27              1    46.45853
## 3         13          5          8             60    40.22946
## 4          4         96         13             78    70.64216
## 5          5         74         45             31    62.35254
## 6         18          1         47             50    48.42835
max(student_data$FinalGrades)
## [1] 95.36113

Explore the data

# Todo:
summary(student_data)
##    StudyHours      QuizScores       ForumPosts    PreviousGrades  
##  Min.   : 1.00   Min.   :  0.00   Min.   : 0.00   Min.   :  0.00  
##  1st Qu.: 6.00   1st Qu.: 24.00   1st Qu.:12.00   1st Qu.: 23.00  
##  Median :11.00   Median : 48.00   Median :24.00   Median : 51.00  
##  Mean   :10.67   Mean   : 48.54   Mean   :24.26   Mean   : 50.05  
##  3rd Qu.:16.00   3rd Qu.: 73.00   3rd Qu.:37.00   3rd Qu.: 75.00  
##  Max.   :20.00   Max.   :100.00   Max.   :50.00   Max.   :100.00  
##   FinalGrades   
##  Min.   :24.19  
##  1st Qu.:47.15  
##  Median :57.18  
##  Mean   :57.35  
##  3rd Qu.:67.01  
##  Max.   :95.36
str(student_data)
## 'data.frame':    500 obs. of  5 variables:
##  $ StudyHours    : int  20 12 13 4 5 18 17 16 3 14 ...
##  $ QuizScores    : int  91 26 5 96 74 1 48 91 28 4 ...
##  $ ForumPosts    : int  22 27 8 13 45 47 6 46 14 5 ...
##  $ PreviousGrades: int  78 1 60 78 31 50 92 39 75 33 ...
##  $ FinalGrades   : num  80.8 46.5 40.2 70.6 62.4 ...

Modeling

Use 80% of the data for training and 20% for testing to predict final grades. Compute the Mean Squared Error and model accuracy based on prediction interval.

# Todo:
# Splitting the data into training and testing sets (80% training, 20% testing)
set.seed(10923) # Set seed for reproducibility
sample_index <- sample(1:nrow(student_data), 0.8 * nrow(student_data))
train_data <- student_data[sample_index, ]
test_data <- student_data[-sample_index, ]

# Building a Linear Regression model using the train data and assign it to an object # called model.
# Todo: Target variable is FinalGrades and the Features are StudyHours, QuizScores, # ForumPosts, and PreviousGrades
# Enter code below:

model <- lm(FinalGrades ~., data = train_data)

# Making predictions on the test set. use the model object to make prediction.
# Enter code below:

prediction <- predict(model, data = test_data)

# Evaluation metrics
# Compute the mean squared error and R-squared
# Enter code below

mse <- mean((test_data$FinalGrades -prediction)^2)

r_sqr <- summary(model)$r.squared

# Calculate residuals
residuals <- prediction - test_data$FinalGrades

# Calculate MSE
# Print evaluation metrics
#Enter code below

mse
## [1] 358.647
r_sqr
## [1] 0.8648338
summary(model)
## 
## Call:
## lm(formula = FinalGrades ~ ., data = train_data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -13.5265  -3.4421   0.3997   3.1947  15.6419 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    24.953643   0.863889  28.885  < 2e-16 ***
## StudyHours      0.331338   0.041453   7.993 1.46e-14 ***
## QuizScores      0.402828   0.008646  46.593  < 2e-16 ***
## ForumPosts      0.194558   0.017110  11.371  < 2e-16 ***
## PreviousGrades  0.090502   0.008312  10.888  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.988 on 395 degrees of freedom
## Multiple R-squared:  0.8648, Adjusted R-squared:  0.8635 
## F-statistic: 631.8 on 4 and 395 DF,  p-value: < 2.2e-16
# Calculate the correlation
correlation <- cor(student_data$StudyHours, student_data$FinalGrades)

# Print the correlation with two decimal places
round(correlation, 2)
## [1] 0.15
summary(student_data)
##    StudyHours      QuizScores       ForumPosts    PreviousGrades  
##  Min.   : 1.00   Min.   :  0.00   Min.   : 0.00   Min.   :  0.00  
##  1st Qu.: 6.00   1st Qu.: 24.00   1st Qu.:12.00   1st Qu.: 23.00  
##  Median :11.00   Median : 48.00   Median :24.00   Median : 51.00  
##  Mean   :10.67   Mean   : 48.54   Mean   :24.26   Mean   : 50.05  
##  3rd Qu.:16.00   3rd Qu.: 73.00   3rd Qu.:37.00   3rd Qu.: 75.00  
##  Max.   :20.00   Max.   :100.00   Max.   :50.00   Max.   :100.00  
##   FinalGrades   
##  Min.   :24.19  
##  1st Qu.:47.15  
##  Median :57.18  
##  Mean   :57.35  
##  3rd Qu.:67.01  
##  Max.   :95.36
str(test_data)
## 'data.frame':    100 obs. of  5 variables:
##  $ StudyHours    : int  12 17 2 11 2 8 2 4 14 6 ...
##  $ QuizScores    : int  89 23 92 91 78 74 11 13 75 55 ...
##  $ ForumPosts    : int  38 18 32 8 5 28 29 17 33 26 ...
##  $ PreviousGrades: int  83 24 77 55 69 88 33 47 22 27 ...
##  $ FinalGrades   : num  74.3 47.6 81.9 73.6 60.9 ...

Model Accuracy based on Prediction Interval

# Get the predictions and prediction intervals
pred_int <- predict(model, newdata = test_data, interval = "prediction")

# Extract lower and upper bounds of the prediction interval
lower_bound <- pred_int[, "lwr"]
upper_bound <- pred_int[, "upr"]

# Actual values from the test data
actual_values <- test_data$FinalGrades

# Check if the actual values fall within the prediction interval
correct_predictions <- actual_values >= lower_bound & actual_values <= upper_bound

# Compute accuracy
accuracy <- sum(correct_predictions) / length(correct_predictions)

# Print accuracy
cat("Model Accuracy using Prediction Interval:", accuracy, "\n")
## Model Accuracy using Prediction Interval: 0.96