1. load libraries

2. Load Seurat Object


load("AllSample_corrected_AzimuthAnnotated_L1.Robj")

All_samples_Merged
An object of class Seurat 
36724 features across 49193 samples within 5 assays 
Active assay: RNA (36601 features, 0 variable features)
 2 layers present: counts, data
 4 other assays present: ADT, prediction.score.celltype.l1, prediction.score.celltype.l2, prediction.score.celltype.l3
 2 dimensional reductions calculated: integrated_dr, ref.umap

3. Data PREPERATION


alldata <- All_samples_Merged

alldata.list <- SplitObject(alldata, split.by = "orig.ident")

for (i in 1:length(alldata.list)) {
    alldata.list[[i]] <- NormalizeData(alldata.list[[i]], verbose = FALSE)
    alldata.list[[i]] <- FindVariableFeatures(alldata.list[[i]], selection.method = "vst", nfeatures = 2000,verbose = FALSE)
}

# get the variable genes from all the datasets.
hvgs_per_dataset <- lapply(alldata.list, function(x) { x@assays$RNA@var.features })

# also add in the variable genes that was selected on the whole dataset
hvgs_per_dataset$all = VariableFeatures(alldata)

temp <- unique(unlist(hvgs_per_dataset))
overlap <- sapply( hvgs_per_dataset , function(x) { temp %in% x } )
pheatmap::pheatmap(t(overlap*1),cluster_rows = F ,
                   color = c("grey90","grey20"))


hvgs_all = SelectIntegrationFeatures(alldata.list)
hvgs_per_dataset$all_ranks = hvgs_all

temp <- unique(unlist(hvgs_per_dataset))
overlap <- sapply( hvgs_per_dataset , function(x) { temp %in% x } )
pheatmap::pheatmap(t(overlap*1),cluster_rows = F ,
                   color = c("grey90","grey20"))



alldata.list <- lapply(X = alldata.list, FUN = function(x) {
    x <- ScaleData(x, features = hvgs_all, verbose = FALSE)
    x <- RunPCA(x, features = hvgs_all, verbose = FALSE)
})

4. CCA-integration

wrap_plots(

    
    DimPlot(alldata.int, reduction = "umap_CCA", group.by = "orig.ident")+NoAxes()+ggtitle("UMAP integrated"),
    DimPlot(alldata.int, reduction = "umap_CCA", group.by = "orig.ident", label = TRUE, label.box = TRUE, repel = TRUE)+NoAxes()+ggtitle("UMAP integrated"),
    
    DimPlot(alldata.int, reduction = "umap_CCA", group.by = "CCA_snn_res.1.2")+NoAxes()+ggtitle("UMAP integrated"),
    DimPlot(alldata.int, reduction = "umap_CCA", group.by = "CCA_snn_res.1.2", label = TRUE, label.box = TRUE, repel = TRUE)+NoAxes()+ggtitle("UMAP integrated"),
    
    DimPlot(alldata.int, reduction = "umap_CCA", group.by = "predicted.celltype.l2")+NoAxes()+ggtitle("UMAP integrated"),
    DimPlot(alldata.int, reduction = "umap_CCA", group.by = "predicted.celltype.l2", label = TRUE, label.box = TRUE, repel = TRUE)+NoAxes()+ggtitle("UMAP integrated"),
    
    ncol = 2) + plot_layout(guides = "collect")


wrap_plots(

    DimPlot(alldata.int, reduction = "pca_CCA", group.by = "orig.ident")+NoAxes()+ggtitle("PCA integrated"),
    DimPlot(alldata.int, reduction = "tsne_CCA", group.by = "orig.ident")+NoAxes()+ggtitle("tSNE integrated"),
    DimPlot(alldata.int, reduction = "umap_CCA", group.by = "orig.ident")+NoAxes()+ggtitle("UMAP integrated"),
  
    DimPlot(alldata.int, reduction = "pca_CCA", group.by = "CCA_snn_res.1.2")+NoAxes()+ggtitle("PCA integrated"),
    DimPlot(alldata.int, reduction = "tsne_CCA", group.by = "CCA_snn_res.1.2")+NoAxes()+ggtitle("tSNE integrated"),
    DimPlot(alldata.int, reduction = "umap_CCA", group.by = "CCA_snn_res.1.2")+NoAxes()+ggtitle("UMAP integrated"),
    
    DimPlot(alldata.int, reduction = "pca_CCA", group.by = "predicted.celltype.l2")+NoAxes()+ggtitle("PCA integrated"),
    DimPlot(alldata.int, reduction = "tsne_CCA", group.by = "predicted.celltype.l2")+NoAxes()+ggtitle("tSNE integrated"),
    DimPlot(alldata.int, reduction = "umap_CCA", group.by = "predicted.celltype.l2")+NoAxes()+ggtitle("UMAP integrated"),
    
    ncol = 3) + plot_layout(guides = "collect")


DimPlot(alldata.int, reduction = "pca_CCA", group.by = "orig.ident")+NoAxes()+ggtitle("PCA integrated")

    DimPlot(alldata.int, reduction = "tsne_CCA", group.by = "orig.ident")+NoAxes()+ggtitle("tSNE integrated")

    DimPlot(alldata.int, reduction = "umap_CCA", group.by = "orig.ident")+NoAxes()+ggtitle("UMAP integrated")

  
    DimPlot(alldata.int, reduction = "pca_CCA", group.by = "CCA_snn_res.1.2")+NoAxes()+ggtitle("PCA integrated")

    DimPlot(alldata.int, reduction = "tsne_CCA", group.by = "CCA_snn_res.1.2")+NoAxes()+ggtitle("tSNE integrated")

    DimPlot(alldata.int, reduction = "umap_CCA", group.by = "CCA_snn_res.1.2")+NoAxes()+ggtitle("UMAP integrated")

    
    DimPlot(alldata.int, reduction = "pca_CCA", group.by = "predicted.celltype.l2")+NoAxes()+ggtitle("PCA integrated")

    DimPlot(alldata.int, reduction = "tsne_CCA", group.by = "predicted.celltype.l2")+NoAxes()+ggtitle("tSNE integrated")

    DimPlot(alldata.int, reduction = "umap_CCA", group.by = "predicted.celltype.l2")+NoAxes()+ggtitle("UMAP integrated")

5. Harmony-integration

wrap_plots(

    
    DimPlot(alldata.int, reduction = "umap_harmony", group.by = "orig.ident")+NoAxes()+ggtitle("UMAP integrated"),
    DimPlot(alldata.int, reduction = "umap_harmony", group.by = "orig.ident", label = TRUE, label.box = TRUE, repel = TRUE)+NoAxes()+ggtitle("UMAP integrated"),
    
    DimPlot(alldata.int, reduction = "umap_harmony", group.by = "RNA_snn_res.1.2")+NoAxes()+ggtitle("UMAP integrated"),
    DimPlot(alldata.int, reduction = "umap_harmony", group.by = "RNA_snn_res.1.2", label = TRUE, label.box = TRUE, repel = TRUE)+NoAxes()+ggtitle("UMAP integrated"),
    
    DimPlot(alldata.int, reduction = "umap_harmony", group.by = "predicted.celltype.l2")+NoAxes()+ggtitle("UMAP integrated"),
     DimPlot(alldata.int, reduction = "umap_harmony", group.by = "predicted.celltype.l2", label = TRUE, label.box = TRUE, repel = TRUE)+NoAxes()+ggtitle("UMAP integrated"),
    ncol = 2) + plot_layout(guides = "collect")

wrap_plots(

    DimPlot(alldata.int, reduction = "pca_harmony", group.by = "orig.ident")+NoAxes()+ggtitle("PCA integrated"),
    DimPlot(alldata.int, reduction = "tsne_harmony", group.by = "orig.ident")+NoAxes()+ggtitle("tSNE integrated"),
    DimPlot(alldata.int, reduction = "umap_harmony", group.by = "orig.ident")+NoAxes()+ggtitle("UMAP integrated"),
  
    DimPlot(alldata.int, reduction = "pca_harmony", group.by = "CCA_snn_res.1.2")+NoAxes()+ggtitle("PCA integrated"),
    DimPlot(alldata.int, reduction = "tsne_harmony", group.by = "CCA_snn_res.1.2")+NoAxes()+ggtitle("tSNE integrated"),
    DimPlot(alldata.int, reduction = "umap_harmony", group.by = "CCA_snn_res.1.2")+NoAxes()+ggtitle("UMAP integrated"),
    
    DimPlot(alldata.int, reduction = "pca_harmony", group.by = "predicted.celltype.l2")+NoAxes()+ggtitle("PCA integrated"),
    DimPlot(alldata.int, reduction = "tsne_harmony", group.by = "predicted.celltype.l2")+NoAxes()+ggtitle("tSNE integrated"),
    DimPlot(alldata.int, reduction = "umap_harmony", group.by = "predicted.celltype.l2")+NoAxes()+ggtitle("UMAP integrated"),
    
    DimPlot(alldata.int, reduction = "pca_harmony", group.by = "predicted.celltype.l2", label = TRUE, label.box = TRUE, repel = TRUE)+NoAxes()+ggtitle("PCA integrated"),
    DimPlot(alldata.int, reduction = "tsne_harmony", group.by = "predicted.celltype.l2", label = TRUE, label.box = TRUE, repel = TRUE)+NoAxes()+ggtitle("tSNE integrated"),
    DimPlot(alldata.int, reduction = "umap_harmony", group.by = "predicted.celltype.l2", label = TRUE, label.box = TRUE, repel = TRUE)+NoAxes()+ggtitle("UMAP integrated"),
    ncol = 3) + plot_layout(guides = "collect")


DimPlot(alldata.int, reduction = "umap_harmony", group.by = "orig.ident")+NoAxes()+ggtitle("UMAP integrated")

    DimPlot(alldata.int, reduction = "umap_harmony", group.by = "orig.ident", label = TRUE, label.box = TRUE, repel = TRUE)+NoAxes()+ggtitle("UMAP integrated")

    
    DimPlot(alldata.int, reduction = "umap_harmony", group.by = "RNA_snn_res.1.2")+NoAxes()+ggtitle("UMAP integrated")

    DimPlot(alldata.int, reduction = "umap_harmony", group.by = "RNA_snn_res.1.2", label = TRUE, label.box = TRUE, repel = TRUE)+NoAxes()+ggtitle("UMAP integrated")

    
    DimPlot(alldata.int, reduction = "umap_harmony", group.by = "predicted.celltype.l2")+NoAxes()+ggtitle("UMAP integrated")

     DimPlot(alldata.int, reduction = "umap_harmony", group.by = "predicted.celltype.l2", label = TRUE, label.box = TRUE, repel = TRUE)+NoAxes()+ggtitle("UMAP integrated")

   

DimPlot(alldata.int, reduction = "pca_harmony", group.by = "orig.ident")+NoAxes()+ggtitle("PCA integrated")

    DimPlot(alldata.int, reduction = "tsne_harmony", group.by = "orig.ident")+NoAxes()+ggtitle("tSNE integrated")

    DimPlot(alldata.int, reduction = "umap_harmony", group.by = "orig.ident")+NoAxes()+ggtitle("UMAP integrated")

  
    DimPlot(alldata.int, reduction = "pca_harmony", group.by = "CCA_snn_res.1.2")+NoAxes()+ggtitle("PCA integrated")

    DimPlot(alldata.int, reduction = "tsne_harmony", group.by = "CCA_snn_res.1.2")+NoAxes()+ggtitle("tSNE integrated")

    DimPlot(alldata.int, reduction = "umap_harmony", group.by = "CCA_snn_res.1.2")+NoAxes()+ggtitle("UMAP integrated")

    
    DimPlot(alldata.int, reduction = "pca_harmony", group.by = "predicted.celltype.l2")+NoAxes()+ggtitle("PCA integrated")

    DimPlot(alldata.int, reduction = "tsne_harmony", group.by = "predicted.celltype.l2")+NoAxes()+ggtitle("tSNE integrated")

    DimPlot(alldata.int, reduction = "umap_harmony", group.by = "predicted.celltype.l2")+NoAxes()+ggtitle("UMAP integrated")

    
    DimPlot(alldata.int, reduction = "pca_harmony", group.by = "predicted.celltype.l2", label = TRUE, label.box = TRUE, repel = TRUE)+NoAxes()+ggtitle("PCA integrated")

    DimPlot(alldata.int, reduction = "tsne_harmony", group.by = "predicted.celltype.l2", label = TRUE, label.box = TRUE, repel = TRUE)+NoAxes()+ggtitle("tSNE integrated")

    DimPlot(alldata.int, reduction = "umap_harmony", group.by = "predicted.celltype.l2", label = TRUE, label.box = TRUE, repel = TRUE)+NoAxes()+ggtitle("UMAP integrated")

FeaturePlot



myfeatures <- c("CD3E", "CD4", "CD8A", "NKG7", "GNLY", "MS4A1", "CD14", "LYZ", "MS4A7", "FCGR3A", "CST3", "FCER1A")
FeaturePlot(alldata.int, reduction = "umap_harmony", dims = 1:2, features = myfeatures, ncol = 4, order = T) + NoLegend() + NoAxes() + NoGrid()


FeaturePlot(alldata.int, reduction = "umap_CCA", dims = 1:2, features = myfeatures, ncol = 4, order = T) + NoLegend() + NoAxes() + NoGrid()

6. Save the Seurat object as an Robj file


save(alldata.int, file = "Integrated_by_CCA_Harmony.Robj")
LS0tCnRpdGxlOiAiSW50ZWdyYXRpb24gYnkgQ0NBLUhhcm1vbnkiCmF1dGhvcjogTmFzaXIgTWFobW9vZCBBYmJhc2kKZGF0ZTogIjIwMjQtMDQtMDMiCm91dHB1dDoKICBodG1sX25vdGVib29rOiAKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICB0b2NfY29sbGFwc2VkOiB0cnVlCiAgICB0aGVtZTogZGFya2x5Ci0tLQojIDEuIGxvYWQgbGlicmFyaWVzCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQpsaWJyYXJ5KFNldXJhdCkKbGlicmFyeShTZXVyYXRPYmplY3QpCmxpYnJhcnkoU2V1cmF0RGF0YSkKbGlicmFyeShwYXRjaHdvcmspCmxpYnJhcnkoaGFybW9ueSkKbGlicmFyeShnZ3Bsb3QyKQpsaWJyYXJ5KHJldGljdWxhdGUpCmxpYnJhcnkoQXppbXV0aCkKbGlicmFyeShkcGx5cikKbGlicmFyeShSdHNuZSkKbGlicmFyeShoYXJtb255KQoKYGBgCgojIDIuIExvYWQgU2V1cmF0IE9iamVjdCAKYGBge3IgbG9hZF9zZXVyYXR9Cgpsb2FkKCJBbGxTYW1wbGVfY29ycmVjdGVkX0F6aW11dGhBbm5vdGF0ZWRfTDEuUm9iaiIpCgpBbGxfc2FtcGxlc19NZXJnZWQKCmBgYAoKCiMgMy4gRGF0YSBQUkVQRVJBVElPTgpgYGB7ciBkYXRhLCBmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD0xMH0KCmFsbGRhdGEgPC0gQWxsX3NhbXBsZXNfTWVyZ2VkCgphbGxkYXRhLmxpc3QgPC0gU3BsaXRPYmplY3QoYWxsZGF0YSwgc3BsaXQuYnkgPSAib3JpZy5pZGVudCIpCgpmb3IgKGkgaW4gMTpsZW5ndGgoYWxsZGF0YS5saXN0KSkgewogICAgYWxsZGF0YS5saXN0W1tpXV0gPC0gTm9ybWFsaXplRGF0YShhbGxkYXRhLmxpc3RbW2ldXSwgdmVyYm9zZSA9IEZBTFNFKQogICAgYWxsZGF0YS5saXN0W1tpXV0gPC0gRmluZFZhcmlhYmxlRmVhdHVyZXMoYWxsZGF0YS5saXN0W1tpXV0sIHNlbGVjdGlvbi5tZXRob2QgPSAidnN0IiwgbmZlYXR1cmVzID0gMjAwMCx2ZXJib3NlID0gRkFMU0UpCn0KCiMgZ2V0IHRoZSB2YXJpYWJsZSBnZW5lcyBmcm9tIGFsbCB0aGUgZGF0YXNldHMuCmh2Z3NfcGVyX2RhdGFzZXQgPC0gbGFwcGx5KGFsbGRhdGEubGlzdCwgZnVuY3Rpb24oeCkgeyB4QGFzc2F5cyRSTkFAdmFyLmZlYXR1cmVzIH0pCgojIGFsc28gYWRkIGluIHRoZSB2YXJpYWJsZSBnZW5lcyB0aGF0IHdhcyBzZWxlY3RlZCBvbiB0aGUgd2hvbGUgZGF0YXNldApodmdzX3Blcl9kYXRhc2V0JGFsbCA9IFZhcmlhYmxlRmVhdHVyZXMoYWxsZGF0YSkKCnRlbXAgPC0gdW5pcXVlKHVubGlzdChodmdzX3Blcl9kYXRhc2V0KSkKb3ZlcmxhcCA8LSBzYXBwbHkoIGh2Z3NfcGVyX2RhdGFzZXQgLCBmdW5jdGlvbih4KSB7IHRlbXAgJWluJSB4IH0gKQpwaGVhdG1hcDo6cGhlYXRtYXAodChvdmVybGFwKjEpLGNsdXN0ZXJfcm93cyA9IEYgLAogICAgICAgICAgICAgICAgICAgY29sb3IgPSBjKCJncmV5OTAiLCJncmV5MjAiKSkKCmh2Z3NfYWxsID0gU2VsZWN0SW50ZWdyYXRpb25GZWF0dXJlcyhhbGxkYXRhLmxpc3QpCmh2Z3NfcGVyX2RhdGFzZXQkYWxsX3JhbmtzID0gaHZnc19hbGwKCnRlbXAgPC0gdW5pcXVlKHVubGlzdChodmdzX3Blcl9kYXRhc2V0KSkKb3ZlcmxhcCA8LSBzYXBwbHkoIGh2Z3NfcGVyX2RhdGFzZXQgLCBmdW5jdGlvbih4KSB7IHRlbXAgJWluJSB4IH0gKQpwaGVhdG1hcDo6cGhlYXRtYXAodChvdmVybGFwKjEpLGNsdXN0ZXJfcm93cyA9IEYgLAogICAgICAgICAgICAgICAgICAgY29sb3IgPSBjKCJncmV5OTAiLCJncmV5MjAiKSkKCgphbGxkYXRhLmxpc3QgPC0gbGFwcGx5KFggPSBhbGxkYXRhLmxpc3QsIEZVTiA9IGZ1bmN0aW9uKHgpIHsKICAgIHggPC0gU2NhbGVEYXRhKHgsIGZlYXR1cmVzID0gaHZnc19hbGwsIHZlcmJvc2UgPSBGQUxTRSkKICAgIHggPC0gUnVuUENBKHgsIGZlYXR1cmVzID0gaHZnc19hbGwsIHZlcmJvc2UgPSBGQUxTRSkKfSkKYGBgCgojIDQuIENDQS1pbnRlZ3JhdGlvbgpgYGB7ciBpbnRlZ3JhdGlvbi1DQ0EsIGZpZy5oZWlnaHQ9NiwgZmlnLndpZHRoPTEwfQoKIyBFeGNsdWRlIGdlbmVzIHN0YXJ0aW5nIHdpdGggIkhMQS0iIG9yICJYaXN0IgpodmdzX2FsbF9maW5hbCA8LSBodmdzX2FsbFshZ3JlcGwoIl5ITEEtfF5YSVNUIiwgaHZnc19hbGwpXQoKCmFsbGRhdGEuYW5jaG9ycyA8LSBGaW5kSW50ZWdyYXRpb25BbmNob3JzKG9iamVjdC5saXN0ID0gYWxsZGF0YS5saXN0LCBkaW1zID0gMToxMiwgcmVkdWN0aW9uID0gImNjYSIsIGFuY2hvci5mZWF0dXJlcyA9IGh2Z3NfYWxsX2ZpbmFsKQoKYWxsZGF0YS5pbnQgPC0gSW50ZWdyYXRlRGF0YShhbmNob3JzZXQgPSBhbGxkYXRhLmFuY2hvcnMsIGRpbXMgPSAxOjEyLCBuZXcuYXNzYXkubmFtZSA9ICJDQ0EiKQoKbmFtZXMoYWxsZGF0YS5pbnRAYXNzYXlzKQoKYWxsZGF0YS5pbnRAYWN0aXZlLmFzc2F5CgpEZWZhdWx0QXNzYXkoYWxsZGF0YS5pbnQpIDwtICJDQ0EiCgojUnVuIERpbWVuc2lvbmFsaXR5IHJlZHVjdGlvbiBvbiBpbnRlZ3JhdGVkIHNwYWNlCmFsbGRhdGEuaW50IDwtIFNjYWxlRGF0YShhbGxkYXRhLmludCwgdmVyYm9zZSA9IFRSVUUpCmFsbGRhdGEuaW50IDwtIFJ1blBDQShhbGxkYXRhLmludCwgZmVhdHVyZXMgPSBodmdzX2FsbCwgcmVkdWN0aW9uLm5hbWUgPSAicGNhX0NDQSIsIGRvLnByaW50ID0gVFJVRSwgcGNzLnByaW50ID0gMTo1LCBnZW5lcy5wcmludCA9IDE1LCB2ZXJib3NlID0gRkFMU0UpCmFsbGRhdGEuaW50IDwtIFJ1blVNQVAoYWxsZGF0YS5pbnQsIHJlZHVjdGlvbiA9ICJwY2FfQ0NBIiwgcmVkdWN0aW9uLm5hbWUgPSAidW1hcF9DQ0EiLCBkaW1zID0gMToxMiwgdmVyYm9zZSA9IEZBTFNFKQphbGxkYXRhLmludCA8LSBSdW5UU05FKGFsbGRhdGEuaW50LCByZWR1Y3Rpb24gPSAicGNhX0NDQSIscmVkdWN0aW9uLm5hbWUgPSAidHNuZV9DQ0EiLGRpbXMgPSAxOjEyLCB2ZXJib3NlID0gRkFMU0UpCmFsbGRhdGEuaW50IDwtIEZpbmROZWlnaGJvcnMoYWxsZGF0YS5pbnQsIHJlZHVjdGlvbiA9ICJwY2FfQ0NBIiwgZGltcyA9IDE6MTIsIHZlcmJvc2UgPSBGQUxTRSkKYWxsZGF0YS5pbnQgPC0gRmluZENsdXN0ZXJzKGFsbGRhdGEuaW50LCByZXNvbHV0aW9uID0gMS4yLCB2ZXJib3NlID0gRkFMU0UpCgp3cmFwX3Bsb3RzKAoKICAgIAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInVtYXBfQ0NBIiwgZ3JvdXAuYnkgPSAib3JpZy5pZGVudCIpK05vQXhlcygpK2dndGl0bGUoIlVNQVAgaW50ZWdyYXRlZCIpLAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInVtYXBfQ0NBIiwgZ3JvdXAuYnkgPSAib3JpZy5pZGVudCIsIGxhYmVsID0gVFJVRSwgbGFiZWwuYm94ID0gVFJVRSwgcmVwZWwgPSBUUlVFKStOb0F4ZXMoKStnZ3RpdGxlKCJVTUFQIGludGVncmF0ZWQiKSwKICAgIAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInVtYXBfQ0NBIiwgZ3JvdXAuYnkgPSAiQ0NBX3Nubl9yZXMuMS4yIikrTm9BeGVzKCkrZ2d0aXRsZSgiVU1BUCBpbnRlZ3JhdGVkIiksCiAgICBEaW1QbG90KGFsbGRhdGEuaW50LCByZWR1Y3Rpb24gPSAidW1hcF9DQ0EiLCBncm91cC5ieSA9ICJDQ0Ffc25uX3Jlcy4xLjIiLCBsYWJlbCA9IFRSVUUsIGxhYmVsLmJveCA9IFRSVUUsIHJlcGVsID0gVFJVRSkrTm9BeGVzKCkrZ2d0aXRsZSgiVU1BUCBpbnRlZ3JhdGVkIiksCiAgICAKICAgIERpbVBsb3QoYWxsZGF0YS5pbnQsIHJlZHVjdGlvbiA9ICJ1bWFwX0NDQSIsIGdyb3VwLmJ5ID0gInByZWRpY3RlZC5jZWxsdHlwZS5sMiIpK05vQXhlcygpK2dndGl0bGUoIlVNQVAgaW50ZWdyYXRlZCIpLAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInVtYXBfQ0NBIiwgZ3JvdXAuYnkgPSAicHJlZGljdGVkLmNlbGx0eXBlLmwyIiwgbGFiZWwgPSBUUlVFLCBsYWJlbC5ib3ggPSBUUlVFLCByZXBlbCA9IFRSVUUpK05vQXhlcygpK2dndGl0bGUoIlVNQVAgaW50ZWdyYXRlZCIpLAogICAgCiAgICBuY29sID0gMikgKyBwbG90X2xheW91dChndWlkZXMgPSAiY29sbGVjdCIpCgoKd3JhcF9wbG90cygKCiAgICBEaW1QbG90KGFsbGRhdGEuaW50LCByZWR1Y3Rpb24gPSAicGNhX0NDQSIsIGdyb3VwLmJ5ID0gIm9yaWcuaWRlbnQiKStOb0F4ZXMoKStnZ3RpdGxlKCJQQ0EgaW50ZWdyYXRlZCIpLAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInRzbmVfQ0NBIiwgZ3JvdXAuYnkgPSAib3JpZy5pZGVudCIpK05vQXhlcygpK2dndGl0bGUoInRTTkUgaW50ZWdyYXRlZCIpLAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInVtYXBfQ0NBIiwgZ3JvdXAuYnkgPSAib3JpZy5pZGVudCIpK05vQXhlcygpK2dndGl0bGUoIlVNQVAgaW50ZWdyYXRlZCIpLAogIAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInBjYV9DQ0EiLCBncm91cC5ieSA9ICJDQ0Ffc25uX3Jlcy4xLjIiKStOb0F4ZXMoKStnZ3RpdGxlKCJQQ0EgaW50ZWdyYXRlZCIpLAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInRzbmVfQ0NBIiwgZ3JvdXAuYnkgPSAiQ0NBX3Nubl9yZXMuMS4yIikrTm9BeGVzKCkrZ2d0aXRsZSgidFNORSBpbnRlZ3JhdGVkIiksCiAgICBEaW1QbG90KGFsbGRhdGEuaW50LCByZWR1Y3Rpb24gPSAidW1hcF9DQ0EiLCBncm91cC5ieSA9ICJDQ0Ffc25uX3Jlcy4xLjIiKStOb0F4ZXMoKStnZ3RpdGxlKCJVTUFQIGludGVncmF0ZWQiKSwKICAgIAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInBjYV9DQ0EiLCBncm91cC5ieSA9ICJwcmVkaWN0ZWQuY2VsbHR5cGUubDIiKStOb0F4ZXMoKStnZ3RpdGxlKCJQQ0EgaW50ZWdyYXRlZCIpLAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInRzbmVfQ0NBIiwgZ3JvdXAuYnkgPSAicHJlZGljdGVkLmNlbGx0eXBlLmwyIikrTm9BeGVzKCkrZ2d0aXRsZSgidFNORSBpbnRlZ3JhdGVkIiksCiAgICBEaW1QbG90KGFsbGRhdGEuaW50LCByZWR1Y3Rpb24gPSAidW1hcF9DQ0EiLCBncm91cC5ieSA9ICJwcmVkaWN0ZWQuY2VsbHR5cGUubDIiKStOb0F4ZXMoKStnZ3RpdGxlKCJVTUFQIGludGVncmF0ZWQiKSwKICAgIAogICAgbmNvbCA9IDMpICsgcGxvdF9sYXlvdXQoZ3VpZGVzID0gImNvbGxlY3QiKQoKRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInBjYV9DQ0EiLCBncm91cC5ieSA9ICJvcmlnLmlkZW50IikrTm9BeGVzKCkrZ2d0aXRsZSgiUENBIGludGVncmF0ZWQiKQogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInRzbmVfQ0NBIiwgZ3JvdXAuYnkgPSAib3JpZy5pZGVudCIpK05vQXhlcygpK2dndGl0bGUoInRTTkUgaW50ZWdyYXRlZCIpCiAgICBEaW1QbG90KGFsbGRhdGEuaW50LCByZWR1Y3Rpb24gPSAidW1hcF9DQ0EiLCBncm91cC5ieSA9ICJvcmlnLmlkZW50IikrTm9BeGVzKCkrZ2d0aXRsZSgiVU1BUCBpbnRlZ3JhdGVkIikKICAKICAgIERpbVBsb3QoYWxsZGF0YS5pbnQsIHJlZHVjdGlvbiA9ICJwY2FfQ0NBIiwgZ3JvdXAuYnkgPSAiQ0NBX3Nubl9yZXMuMS4yIikrTm9BeGVzKCkrZ2d0aXRsZSgiUENBIGludGVncmF0ZWQiKQogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInRzbmVfQ0NBIiwgZ3JvdXAuYnkgPSAiQ0NBX3Nubl9yZXMuMS4yIikrTm9BeGVzKCkrZ2d0aXRsZSgidFNORSBpbnRlZ3JhdGVkIikKICAgIERpbVBsb3QoYWxsZGF0YS5pbnQsIHJlZHVjdGlvbiA9ICJ1bWFwX0NDQSIsIGdyb3VwLmJ5ID0gIkNDQV9zbm5fcmVzLjEuMiIpK05vQXhlcygpK2dndGl0bGUoIlVNQVAgaW50ZWdyYXRlZCIpCiAgICAKICAgIERpbVBsb3QoYWxsZGF0YS5pbnQsIHJlZHVjdGlvbiA9ICJwY2FfQ0NBIiwgZ3JvdXAuYnkgPSAicHJlZGljdGVkLmNlbGx0eXBlLmwyIikrTm9BeGVzKCkrZ2d0aXRsZSgiUENBIGludGVncmF0ZWQiKQogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInRzbmVfQ0NBIiwgZ3JvdXAuYnkgPSAicHJlZGljdGVkLmNlbGx0eXBlLmwyIikrTm9BeGVzKCkrZ2d0aXRsZSgidFNORSBpbnRlZ3JhdGVkIikKICAgIERpbVBsb3QoYWxsZGF0YS5pbnQsIHJlZHVjdGlvbiA9ICJ1bWFwX0NDQSIsIGdyb3VwLmJ5ID0gInByZWRpY3RlZC5jZWxsdHlwZS5sMiIpK05vQXhlcygpK2dndGl0bGUoIlVNQVAgaW50ZWdyYXRlZCIpCgoKYGBgCiMgNS4gSGFybW9ueS1pbnRlZ3JhdGlvbgpgYGB7ciBIYXJtb255X2ludGVncmF0aW9uLCBmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD0xMH0KCmFsbGRhdGEuaW50QGFjdGl2ZS5hc3NheSA9ICJSTkEiCgpWYXJpYWJsZUZlYXR1cmVzKGFsbGRhdGEuaW50KSA9IGh2Z3NfYWxsX2ZpbmFsCmFsbGRhdGEuaW50ID0gU2NhbGVEYXRhKGFsbGRhdGEuaW50LCB2ZXJib3NlID0gVFJVRSkKYWxsZGF0YS5pbnQgPSBSdW5QQ0EoYWxsZGF0YS5pbnQsIHJlZHVjdGlvbi5uYW1lID0gInBjYV9oYXJtb255IikKCgphbGxkYXRhLmludCA8LSBSdW5IYXJtb255KAogIGFsbGRhdGEuaW50LAogIGdyb3VwLmJ5LnZhcnMgPSAib3JpZy5pZGVudCIsCiAgcmVkdWN0aW9uLnVzZSA9ICJwY2FfaGFybW9ueSIsCiAgZGltcy51c2UgPSAxOjEyLAogIGFzc2F5LnVzZSA9ICJSTkEiKQoKCmFsbGRhdGEuaW50IDwtIFJ1blVNQVAoYWxsZGF0YS5pbnQsIGRpbXMgPSAxOjEyLCByZWR1Y3Rpb24gPSAiaGFybW9ueSIsIHJlZHVjdGlvbi5uYW1lID0gInVtYXBfaGFybW9ueSIpCmFsbGRhdGEuaW50IDwtIFJ1blRTTkUoYWxsZGF0YS5pbnQsIGRpbXMgPSAxOjEyLCByZWR1Y3Rpb24gPSAiaGFybW9ueSIsIHJlZHVjdGlvbi5uYW1lID0gInRzbmVfaGFybW9ueSIpCmFsbGRhdGEuaW50IDwtIEZpbmROZWlnaGJvcnMoYWxsZGF0YS5pbnQsIHJlZHVjdGlvbiA9ICJwY2FfaGFybW9ueSIsIGRpbXMgPSAxOjEyLCB2ZXJib3NlID0gRkFMU0UpCmFsbGRhdGEuaW50IDwtIEZpbmRDbHVzdGVycyhhbGxkYXRhLmludCwgcmVzb2x1dGlvbiA9IDEuMiwgdmVyYm9zZSA9IEZBTFNFKQoKCiAKIAogd3JhcF9wbG90cygKCiAgICAKICAgIERpbVBsb3QoYWxsZGF0YS5pbnQsIHJlZHVjdGlvbiA9ICJ1bWFwX2hhcm1vbnkiLCBncm91cC5ieSA9ICJvcmlnLmlkZW50IikrTm9BeGVzKCkrZ2d0aXRsZSgiVU1BUCBpbnRlZ3JhdGVkIiksCiAgICBEaW1QbG90KGFsbGRhdGEuaW50LCByZWR1Y3Rpb24gPSAidW1hcF9oYXJtb255IiwgZ3JvdXAuYnkgPSAib3JpZy5pZGVudCIsIGxhYmVsID0gVFJVRSwgbGFiZWwuYm94ID0gVFJVRSwgcmVwZWwgPSBUUlVFKStOb0F4ZXMoKStnZ3RpdGxlKCJVTUFQIGludGVncmF0ZWQiKSwKICAgIAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInVtYXBfaGFybW9ueSIsIGdyb3VwLmJ5ID0gIlJOQV9zbm5fcmVzLjEuMiIpK05vQXhlcygpK2dndGl0bGUoIlVNQVAgaW50ZWdyYXRlZCIpLAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInVtYXBfaGFybW9ueSIsIGdyb3VwLmJ5ID0gIlJOQV9zbm5fcmVzLjEuMiIsIGxhYmVsID0gVFJVRSwgbGFiZWwuYm94ID0gVFJVRSwgcmVwZWwgPSBUUlVFKStOb0F4ZXMoKStnZ3RpdGxlKCJVTUFQIGludGVncmF0ZWQiKSwKICAgIAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInVtYXBfaGFybW9ueSIsIGdyb3VwLmJ5ID0gInByZWRpY3RlZC5jZWxsdHlwZS5sMiIpK05vQXhlcygpK2dndGl0bGUoIlVNQVAgaW50ZWdyYXRlZCIpLAogICAgIERpbVBsb3QoYWxsZGF0YS5pbnQsIHJlZHVjdGlvbiA9ICJ1bWFwX2hhcm1vbnkiLCBncm91cC5ieSA9ICJwcmVkaWN0ZWQuY2VsbHR5cGUubDIiLCBsYWJlbCA9IFRSVUUsIGxhYmVsLmJveCA9IFRSVUUsIHJlcGVsID0gVFJVRSkrTm9BeGVzKCkrZ2d0aXRsZSgiVU1BUCBpbnRlZ3JhdGVkIiksCiAgICBuY29sID0gMikgKyBwbG90X2xheW91dChndWlkZXMgPSAiY29sbGVjdCIpCgp3cmFwX3Bsb3RzKAoKICAgIERpbVBsb3QoYWxsZGF0YS5pbnQsIHJlZHVjdGlvbiA9ICJwY2FfaGFybW9ueSIsIGdyb3VwLmJ5ID0gIm9yaWcuaWRlbnQiKStOb0F4ZXMoKStnZ3RpdGxlKCJQQ0EgaW50ZWdyYXRlZCIpLAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInRzbmVfaGFybW9ueSIsIGdyb3VwLmJ5ID0gIm9yaWcuaWRlbnQiKStOb0F4ZXMoKStnZ3RpdGxlKCJ0U05FIGludGVncmF0ZWQiKSwKICAgIERpbVBsb3QoYWxsZGF0YS5pbnQsIHJlZHVjdGlvbiA9ICJ1bWFwX2hhcm1vbnkiLCBncm91cC5ieSA9ICJvcmlnLmlkZW50IikrTm9BeGVzKCkrZ2d0aXRsZSgiVU1BUCBpbnRlZ3JhdGVkIiksCiAgCiAgICBEaW1QbG90KGFsbGRhdGEuaW50LCByZWR1Y3Rpb24gPSAicGNhX2hhcm1vbnkiLCBncm91cC5ieSA9ICJDQ0Ffc25uX3Jlcy4xLjIiKStOb0F4ZXMoKStnZ3RpdGxlKCJQQ0EgaW50ZWdyYXRlZCIpLAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInRzbmVfaGFybW9ueSIsIGdyb3VwLmJ5ID0gIkNDQV9zbm5fcmVzLjEuMiIpK05vQXhlcygpK2dndGl0bGUoInRTTkUgaW50ZWdyYXRlZCIpLAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInVtYXBfaGFybW9ueSIsIGdyb3VwLmJ5ID0gIkNDQV9zbm5fcmVzLjEuMiIpK05vQXhlcygpK2dndGl0bGUoIlVNQVAgaW50ZWdyYXRlZCIpLAogICAgCiAgICBEaW1QbG90KGFsbGRhdGEuaW50LCByZWR1Y3Rpb24gPSAicGNhX2hhcm1vbnkiLCBncm91cC5ieSA9ICJwcmVkaWN0ZWQuY2VsbHR5cGUubDIiKStOb0F4ZXMoKStnZ3RpdGxlKCJQQ0EgaW50ZWdyYXRlZCIpLAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInRzbmVfaGFybW9ueSIsIGdyb3VwLmJ5ID0gInByZWRpY3RlZC5jZWxsdHlwZS5sMiIpK05vQXhlcygpK2dndGl0bGUoInRTTkUgaW50ZWdyYXRlZCIpLAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInVtYXBfaGFybW9ueSIsIGdyb3VwLmJ5ID0gInByZWRpY3RlZC5jZWxsdHlwZS5sMiIpK05vQXhlcygpK2dndGl0bGUoIlVNQVAgaW50ZWdyYXRlZCIpLAogICAgCiAgICBEaW1QbG90KGFsbGRhdGEuaW50LCByZWR1Y3Rpb24gPSAicGNhX2hhcm1vbnkiLCBncm91cC5ieSA9ICJwcmVkaWN0ZWQuY2VsbHR5cGUubDIiLCBsYWJlbCA9IFRSVUUsIGxhYmVsLmJveCA9IFRSVUUsIHJlcGVsID0gVFJVRSkrTm9BeGVzKCkrZ2d0aXRsZSgiUENBIGludGVncmF0ZWQiKSwKICAgIERpbVBsb3QoYWxsZGF0YS5pbnQsIHJlZHVjdGlvbiA9ICJ0c25lX2hhcm1vbnkiLCBncm91cC5ieSA9ICJwcmVkaWN0ZWQuY2VsbHR5cGUubDIiLCBsYWJlbCA9IFRSVUUsIGxhYmVsLmJveCA9IFRSVUUsIHJlcGVsID0gVFJVRSkrTm9BeGVzKCkrZ2d0aXRsZSgidFNORSBpbnRlZ3JhdGVkIiksCiAgICBEaW1QbG90KGFsbGRhdGEuaW50LCByZWR1Y3Rpb24gPSAidW1hcF9oYXJtb255IiwgZ3JvdXAuYnkgPSAicHJlZGljdGVkLmNlbGx0eXBlLmwyIiwgbGFiZWwgPSBUUlVFLCBsYWJlbC5ib3ggPSBUUlVFLCByZXBlbCA9IFRSVUUpK05vQXhlcygpK2dndGl0bGUoIlVNQVAgaW50ZWdyYXRlZCIpLAogICAgbmNvbCA9IDMpICsgcGxvdF9sYXlvdXQoZ3VpZGVzID0gImNvbGxlY3QiKQoKRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInVtYXBfaGFybW9ueSIsIGdyb3VwLmJ5ID0gIm9yaWcuaWRlbnQiKStOb0F4ZXMoKStnZ3RpdGxlKCJVTUFQIGludGVncmF0ZWQiKQogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInVtYXBfaGFybW9ueSIsIGdyb3VwLmJ5ID0gIm9yaWcuaWRlbnQiLCBsYWJlbCA9IFRSVUUsIGxhYmVsLmJveCA9IFRSVUUsIHJlcGVsID0gVFJVRSkrTm9BeGVzKCkrZ2d0aXRsZSgiVU1BUCBpbnRlZ3JhdGVkIikKICAgIAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInVtYXBfaGFybW9ueSIsIGdyb3VwLmJ5ID0gIlJOQV9zbm5fcmVzLjEuMiIpK05vQXhlcygpK2dndGl0bGUoIlVNQVAgaW50ZWdyYXRlZCIpCiAgICBEaW1QbG90KGFsbGRhdGEuaW50LCByZWR1Y3Rpb24gPSAidW1hcF9oYXJtb255IiwgZ3JvdXAuYnkgPSAiUk5BX3Nubl9yZXMuMS4yIiwgbGFiZWwgPSBUUlVFLCBsYWJlbC5ib3ggPSBUUlVFLCByZXBlbCA9IFRSVUUpK05vQXhlcygpK2dndGl0bGUoIlVNQVAgaW50ZWdyYXRlZCIpCiAgICAKICAgIERpbVBsb3QoYWxsZGF0YS5pbnQsIHJlZHVjdGlvbiA9ICJ1bWFwX2hhcm1vbnkiLCBncm91cC5ieSA9ICJwcmVkaWN0ZWQuY2VsbHR5cGUubDIiKStOb0F4ZXMoKStnZ3RpdGxlKCJVTUFQIGludGVncmF0ZWQiKQogICAgIERpbVBsb3QoYWxsZGF0YS5pbnQsIHJlZHVjdGlvbiA9ICJ1bWFwX2hhcm1vbnkiLCBncm91cC5ieSA9ICJwcmVkaWN0ZWQuY2VsbHR5cGUubDIiLCBsYWJlbCA9IFRSVUUsIGxhYmVsLmJveCA9IFRSVUUsIHJlcGVsID0gVFJVRSkrTm9BeGVzKCkrZ2d0aXRsZSgiVU1BUCBpbnRlZ3JhdGVkIikKICAgCgpEaW1QbG90KGFsbGRhdGEuaW50LCByZWR1Y3Rpb24gPSAicGNhX2hhcm1vbnkiLCBncm91cC5ieSA9ICJvcmlnLmlkZW50IikrTm9BeGVzKCkrZ2d0aXRsZSgiUENBIGludGVncmF0ZWQiKQogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInRzbmVfaGFybW9ueSIsIGdyb3VwLmJ5ID0gIm9yaWcuaWRlbnQiKStOb0F4ZXMoKStnZ3RpdGxlKCJ0U05FIGludGVncmF0ZWQiKQogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInVtYXBfaGFybW9ueSIsIGdyb3VwLmJ5ID0gIm9yaWcuaWRlbnQiKStOb0F4ZXMoKStnZ3RpdGxlKCJVTUFQIGludGVncmF0ZWQiKQogIAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInBjYV9oYXJtb255IiwgZ3JvdXAuYnkgPSAiQ0NBX3Nubl9yZXMuMS4yIikrTm9BeGVzKCkrZ2d0aXRsZSgiUENBIGludGVncmF0ZWQiKQogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInRzbmVfaGFybW9ueSIsIGdyb3VwLmJ5ID0gIkNDQV9zbm5fcmVzLjEuMiIpK05vQXhlcygpK2dndGl0bGUoInRTTkUgaW50ZWdyYXRlZCIpCiAgICBEaW1QbG90KGFsbGRhdGEuaW50LCByZWR1Y3Rpb24gPSAidW1hcF9oYXJtb255IiwgZ3JvdXAuYnkgPSAiQ0NBX3Nubl9yZXMuMS4yIikrTm9BeGVzKCkrZ2d0aXRsZSgiVU1BUCBpbnRlZ3JhdGVkIikKICAgIAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInBjYV9oYXJtb255IiwgZ3JvdXAuYnkgPSAicHJlZGljdGVkLmNlbGx0eXBlLmwyIikrTm9BeGVzKCkrZ2d0aXRsZSgiUENBIGludGVncmF0ZWQiKQogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInRzbmVfaGFybW9ueSIsIGdyb3VwLmJ5ID0gInByZWRpY3RlZC5jZWxsdHlwZS5sMiIpK05vQXhlcygpK2dndGl0bGUoInRTTkUgaW50ZWdyYXRlZCIpCiAgICBEaW1QbG90KGFsbGRhdGEuaW50LCByZWR1Y3Rpb24gPSAidW1hcF9oYXJtb255IiwgZ3JvdXAuYnkgPSAicHJlZGljdGVkLmNlbGx0eXBlLmwyIikrTm9BeGVzKCkrZ2d0aXRsZSgiVU1BUCBpbnRlZ3JhdGVkIikKICAgIAogICAgRGltUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInBjYV9oYXJtb255IiwgZ3JvdXAuYnkgPSAicHJlZGljdGVkLmNlbGx0eXBlLmwyIiwgbGFiZWwgPSBUUlVFLCBsYWJlbC5ib3ggPSBUUlVFLCByZXBlbCA9IFRSVUUpK05vQXhlcygpK2dndGl0bGUoIlBDQSBpbnRlZ3JhdGVkIikKICAgIERpbVBsb3QoYWxsZGF0YS5pbnQsIHJlZHVjdGlvbiA9ICJ0c25lX2hhcm1vbnkiLCBncm91cC5ieSA9ICJwcmVkaWN0ZWQuY2VsbHR5cGUubDIiLCBsYWJlbCA9IFRSVUUsIGxhYmVsLmJveCA9IFRSVUUsIHJlcGVsID0gVFJVRSkrTm9BeGVzKCkrZ2d0aXRsZSgidFNORSBpbnRlZ3JhdGVkIikKICAgIERpbVBsb3QoYWxsZGF0YS5pbnQsIHJlZHVjdGlvbiA9ICJ1bWFwX2hhcm1vbnkiLCBncm91cC5ieSA9ICJwcmVkaWN0ZWQuY2VsbHR5cGUubDIiLCBsYWJlbCA9IFRSVUUsIGxhYmVsLmJveCA9IFRSVUUsIHJlcGVsID0gVFJVRSkrTm9BeGVzKCkrZ2d0aXRsZSgiVU1BUCBpbnRlZ3JhdGVkIikKCgpgYGAKCiMgRmVhdHVyZVBsb3QKYGBge3IgZmVhdHVyZXBsb3QtaGFybW9ueSwgZmlnLmhlaWdodD02LCBmaWcud2lkdGg9MTB9CgoKbXlmZWF0dXJlcyA8LSBjKCJDRDNFIiwgIkNENCIsICJDRDhBIiwgIk5LRzciLCAiR05MWSIsICJNUzRBMSIsICJDRDE0IiwgIkxZWiIsICJNUzRBNyIsICJGQ0dSM0EiLCAiQ1NUMyIsICJGQ0VSMUEiKQpGZWF0dXJlUGxvdChhbGxkYXRhLmludCwgcmVkdWN0aW9uID0gInVtYXBfaGFybW9ueSIsIGRpbXMgPSAxOjIsIGZlYXR1cmVzID0gbXlmZWF0dXJlcywgbmNvbCA9IDQsIG9yZGVyID0gVCkgKyBOb0xlZ2VuZCgpICsgTm9BeGVzKCkgKyBOb0dyaWQoKQoKRmVhdHVyZVBsb3QoYWxsZGF0YS5pbnQsIHJlZHVjdGlvbiA9ICJ1bWFwX0NDQSIsIGRpbXMgPSAxOjIsIGZlYXR1cmVzID0gbXlmZWF0dXJlcywgbmNvbCA9IDQsIG9yZGVyID0gVCkgKyBOb0xlZ2VuZCgpICsgTm9BeGVzKCkgKyBOb0dyaWQoKQpgYGAKCgojIDYuIFNhdmUgdGhlIFNldXJhdCBvYmplY3QgYXMgYW4gUm9iaiBmaWxlCmBgYHtyIHNhdmVST0JKfQoKc2F2ZShhbGxkYXRhLmludCwgZmlsZSA9ICJJbnRlZ3JhdGVkX2J5X0NDQV9IYXJtb255LlJvYmoiKQoKCmBgYAoKCgoK