Ejercicio de Pruebas de Normalidad

Ezequiel Benjamin López Coto - LC22057

Datos del dataframe

library(wooldridge)#Carga la biblioteca "wooldridge"
data(hprice1)#Carga el conjunto de datos "hprice1" desde la biblioteca "wooldridge"
head(force(hprice1), n=5)#Muestra las primeras cinco filas del conjunto de datos "hprice1"
##   price assess bdrms lotsize sqrft colonial   lprice  lassess llotsize   lsqrft
## 1   300  349.1     4    6126  2438        1 5.703783 5.855359 8.720297 7.798934
## 2   370  351.5     3    9903  2076        1 5.913503 5.862210 9.200593 7.638198
## 3   191  217.7     3    5200  1374        0 5.252274 5.383118 8.556414 7.225482
## 4   195  231.8     3    4600  1448        1 5.273000 5.445875 8.433811 7.277938
## 5   373  319.1     4    6095  2514        1 5.921578 5.765504 8.715224 7.829630

1. Estimación del modelo

library(stargazer)#Carga la biblioteca "stargazer"
modelo_estimado<-lm(formula= price~lotsize+sqrft+bdrms,data=hprice1)#Se ajusta un modelo de regresión lineal 
stargazer(modelo_estimado,title = "Modelo para pruebas de normalidad", type = "text", digits = 5)#Genera una tabla de resumen del modelo estimado 
## 
## Modelo para pruebas de normalidad
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                                price           
## -----------------------------------------------
## lotsize                     0.00207***         
##                              (0.00064)         
##                                                
## sqrft                       0.12278***         
##                              (0.01324)         
##                                                
## bdrms                        13.85252          
##                              (9.01015)         
##                                                
## Constant                     -21.77031         
##                             (29.47504)         
##                                                
## -----------------------------------------------
## Observations                    88             
## R2                            0.67236          
## Adjusted R2                   0.66066          
## Residual Std. Error     59.83348 (df = 84)     
## F Statistic          57.46023*** (df = 3; 84)  
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01

2. Verifique el supuesto de normalidad, a través de:

A) La prueba JB

Usando tseries

library(tseries)#carga la biblioteca "tseries" 
Prueba_JB<- jarque.bera.test(modelo_estimado$residuals)#Prueba de normalidad sobre los residuos del modelo estimado
Prueba_JB#Imprime el resultado de la prueba de normalidad 
## 
##  Jarque Bera Test
## 
## data:  modelo_estimado$residuals
## X-squared = 32.278, df = 2, p-value = 9.794e-08

Gráfico de la Prueba JB

library(fastGraph)#Carga la biblioteca "fastGraph"
alpha_sig<-0.05#Se establece el nivel de significancia alfa para la prueba de normalidad
JB<-Prueba_JB$statistic#Se guarda el estadístico de la prueba de Jarque-Bera
gl<-Prueba_JB$parameter#Se guarda el número de grados de libertad 
VC<-qchisq(1-alpha_sig,gl,lower.tail = TRUE)#Calcula el valor crítico
shadeDist(JB, ddist = "dchisq",
          parm1 = gl,
          sub = paste("VC", round(VC, 2), "","JB:", round(JB, 2)),
          main = "Gráfico de la Prueba JB")#Genera un gráfico de la distribución chi-cuadrado sombreada en el estadístico de la prueba de Jarque-Bera

Interpretación: con estos datos se puede rechazar la hipotesis nula, esto debido a que el valor critico de 5.99 es menor que el valor de JB que es de 32.28. Tambien se puede decir que elos residuos no tiene una distribución normal por que el p.value es menor que el nive de significancia.

B) La prueba de KS

Prueba manual de KS

library(dplyr)  # Carga la librería dplyr para manipulación de datos
library(gt)  # Carga la librería gt para crear tablas de datos
library(gtExtras)  # Carga la librería gtExtras para agregar funcionalidades a las tablas creadas con gt
residuos<-modelo_estimado$residuals  # Crea un vector con los residuos del modelo estimado
residuos %>%  # Utiliza el operador %>% para encadenar las operaciones siguientes al vector residuos
  as_tibble() %>%  # Convierte el vector residuos en una tibble (tabla) de una columna
  mutate(posicion=row_number()) %>%  # Agrega una columna llamada "posicion" con el número de fila
  arrange(value) %>%  # Ordena la tabla por los valores de residuos en orden ascendente
  mutate(dist1=row_number()/n()) %>%  # Agrega una columna "dist1" con los percentiles según su posición en la tabla (usando la función row_number() y n() para obtener el número de filas)
  mutate(dist2=(row_number()-1)/n()) %>%  # Agrega una columna "dist2" con los percentiles según su posición en la tabla, pero ajustando en una unidad para evitar problemas con los extremos de la distribución
  mutate(zi=as.vector(scale(value,center=TRUE))) %>%  # Agrega una columna "zi" con los valores de residuos escalados para tener media cero y varianza uno
  mutate(pi=pnorm(zi,lower.tail = TRUE)) %>%  # Agrega una columna "pi" con los valores de la función de distribución acumulada (CDF) de una distribución normal estándar evaluada en los valores de zi
  mutate(dif1=abs(dist1-pi)) %>%  # Agrega una columna "dif1" con las diferencias absolutas entre los percentiles según la posición y los valores de pi
  mutate(dif2=abs(dist2-pi)) %>%  # Agrega una columna "dif2" con las diferencias absolutas entre los percentiles ajustados según la posición y los valores de pi
  rename(residuales=value) -> tabla_KS  # Renombra la columna "value" como "residuales" y asigna la tabla resultante a la variable tabla_KS


#Formato
 tabla_KS %>%  # Utiliza el operador %>% para encadenar las operaciones siguientes a la tabla tabla_KS
  gt() %>%  # Crea una tabla con la función gt()
  tab_header("Tabla para calcular el Estadistico KS") %>%  # Agrega un encabezado a la tabla
  tab_source_note(source_note = "Fuente: Ezequiel López") %>%  # Agrega una nota de fuente a la tabla
  tab_style(  # Cambia el estilo de algunas celdas de la tabla
    style = list(
      cell_fill(color = "#A569BD"),  # Cambia el color de fondo de las celdas a un tono de morado
      cell_text(style = "italic")  # Cambia el estilo de texto de las celdas a itálico
      ),
    locations = cells_body(  # Aplica el estilo a las celdas del cuerpo de la tabla que cumplan las siguientes condiciones:
      columns = dif1,  # Que pertenezcan a la columna "dif1"
      rows = dif1==max(dif1)  # Que pertenezcan a la fila donde el valor de "dif1" es máximo
    )) %>%
   tab_style(  # Cambia el estilo de algunas celdas de la tabla
    style = list(
      cell_fill(color = "#3498DB"),  # Cambia el color de fondo de las celdas a un tono de azul
      cell_text(style = "italic")  # Cambia el estilo de texto de las celdas a itálico
      ),
    locations = cells_body(  # Aplica el estilo a las celdas del cuerpo de la tabla que cumplan las siguientes condiciones:
      columns = dif2,  # Que pertenezcan a la columna "dif2"
      rows = dif2==max(dif2)  # Que pertenezcan a la fila donde el valor de "dif2" es máximo
    ))
Tabla para calcular el Estadistico KS
residuales posicion dist1 dist2 zi pi dif1 dif2
-120.026447 81 0.01136364 0.00000000 -2.041515459 0.02059981 0.0092361731 0.0205998094
-115.508697 77 0.02272727 0.01136364 -1.964673586 0.02472601 0.0019987418 0.0133623781
-107.080889 24 0.03409091 0.02272727 -1.821326006 0.03427866 0.0001877487 0.0115513850
-91.243980 48 0.04545455 0.03409091 -1.551957925 0.06033615 0.0148816002 0.0262452366
-85.461169 12 0.05681818 0.04545455 -1.453598781 0.07302879 0.0162106057 0.0275742421
-77.172687 32 0.06818182 0.05681818 -1.312620980 0.09465535 0.0264735301 0.0378371665
-74.702719 54 0.07954545 0.06818182 -1.270609602 0.10193378 0.0223883300 0.0337519664
-65.502849 39 0.09090909 0.07954545 -1.114130117 0.13261169 0.0417025941 0.0530662305
-63.699108 69 0.10227273 0.09090909 -1.083450505 0.13930425 0.0370315271 0.0483951634
-62.566594 83 0.11363636 0.10227273 -1.064187703 0.14362184 0.0299854747 0.0413491110
-59.845223 36 0.12500000 0.11363636 -1.017900230 0.15436269 0.0293626861 0.0407263225
-54.466158 13 0.13636364 0.12500000 -0.926408352 0.17711690 0.0407532663 0.0521169027
-54.300415 14 0.14772727 0.13636364 -0.923589260 0.17785010 0.0301228311 0.0414864675
-52.129801 15 0.15909091 0.14772727 -0.886669532 0.18762842 0.0285375141 0.0399011505
-51.441108 17 0.17045455 0.15909091 -0.874955638 0.19079902 0.0203444766 0.0317081129
-48.704980 47 0.18181818 0.17045455 -0.828417174 0.20371714 0.0218989601 0.0332625965
-48.350295 29 0.19318182 0.18181818 -0.822384375 0.20542908 0.0122472664 0.0236109028
-47.855859 11 0.20454545 0.19318182 -0.813974573 0.20782976 0.0032843043 0.0146479407
-45.639765 1 0.21590909 0.20454545 -0.776281294 0.21879146 0.0028823668 0.0142460032
-43.142550 9 0.22727273 0.21590909 -0.733806463 0.23153335 0.0042606233 0.0156242596
-41.749618 57 0.23863636 0.22727273 -0.710114247 0.23881665 0.0001802823 0.0115439187
-40.869022 27 0.25000000 0.23863636 -0.695136302 0.24348494 0.0065150566 0.0048485798
-37.749811 34 0.26136364 0.25000000 -0.642082009 0.26040997 0.0009536682 0.0104099682
-36.663785 71 0.27272727 0.26136364 -0.623609925 0.26644190 0.0062853771 0.0050782592
-36.646568 79 0.28409091 0.27272727 -0.623317083 0.26653809 0.0175528221 0.0061891857
-33.801248 37 0.29545455 0.28409091 -0.574921384 0.28267223 0.0127823120 0.0014186757
-29.766931 16 0.30681818 0.29545455 -0.506302171 0.30632227 0.0004959124 0.0108677240
-26.696234 22 0.31818182 0.30681818 -0.454073044 0.32488813 0.0067063089 0.0180699452
-24.271531 23 0.32954545 0.31818182 -0.412831567 0.33986501 0.0103195566 0.0216831929
-23.651448 86 0.34090909 0.32954545 -0.402284648 0.34373728 0.0028281851 0.0141918214
-19.683427 88 0.35227273 0.34090909 -0.334793052 0.36889060 0.0166178738 0.0279815102
-17.817835 10 0.36363636 0.35227273 -0.303061413 0.38092153 0.0172851663 0.0286488027
-16.762094 60 0.37500000 0.36363636 -0.285104441 0.38778206 0.0127820638 0.0241457002
-16.596960 21 0.38636364 0.37500000 -0.282295711 0.38885839 0.0024947507 0.0138583870
-16.271207 58 0.39772727 0.38636364 -0.276755010 0.39098411 0.0067431583 0.0046204781
-13.815798 56 0.40909091 0.39772727 -0.234991254 0.40710776 0.0019831485 0.0093804879
-13.462160 75 0.42045455 0.40909091 -0.228976273 0.40944368 0.0110108666 0.0003527698
-12.081520 4 0.43181818 0.42045455 -0.205493119 0.41859344 0.0132247451 0.0018611087
-11.629207 51 0.44318182 0.43181818 -0.197799788 0.42160086 0.0215809622 0.0102173258
-11.312669 74 0.45454545 0.44318182 -0.192415834 0.42370825 0.0308372092 0.0194735728
-8.236558 3 0.46590909 0.45454545 -0.140094626 0.44429261 0.0216164775 0.0102528411
-7.662789 70 0.47727273 0.46590909 -0.130335452 0.44815052 0.0291222111 0.0177585748
-6.752801 67 0.48863636 0.47727273 -0.114857588 0.45427900 0.0343573625 0.0229937262
-6.707262 31 0.50000000 0.48863636 -0.114083016 0.45458599 0.0454140074 0.0340503710
-6.402439 85 0.51136364 0.50000000 -0.108898313 0.45664157 0.0547220642 0.0433584278
-5.446904 82 0.52272727 0.51136364 -0.092645733 0.46309251 0.0596347676 0.0482711313
-3.537785 43 0.53409091 0.52272727 -0.060173762 0.47600862 0.0580822876 0.0467186512
-2.824941 61 0.54545455 0.53409091 -0.048049090 0.48083856 0.0646159857 0.0532523493
-2.745208 68 0.55681818 0.54545455 -0.046692922 0.48137899 0.0754391961 0.0640755598
-0.195089 65 0.56818182 0.55681818 -0.003318245 0.49867621 0.0695056040 0.0581419676
1.399296 55 0.57954545 0.56818182 0.023800450 0.50949411 0.0700513452 0.0586877088
5.363331 26 0.59090909 0.57954545 0.091224254 0.53634280 0.0545662924 0.0432026561
6.700640 53 0.60227273 0.59090909 0.113970383 0.54536936 0.0569033628 0.0455397265
7.386314 80 0.61363636 0.60227273 0.125632935 0.54998875 0.0636476093 0.0522839730
9.099900 41 0.62500000 0.61363636 0.154779103 0.56150227 0.0634977329 0.0521340965
12.433611 46 0.63636364 0.62500000 0.211481796 0.58374433 0.0526193043 0.0412556680
16.718018 62 0.64772727 0.63636364 0.284354766 0.61193074 0.0357965328 0.0244328965
18.093192 5 0.65909091 0.64772727 0.307744934 0.62086179 0.0382291219 0.0268654856
18.801816 38 0.67045455 0.65909091 0.319797835 0.62543921 0.0450153400 0.0336517036
19.168108 33 0.68181818 0.67045455 0.326028052 0.62779843 0.0540197476 0.0426561112
19.219211 72 0.69318182 0.68181818 0.326897255 0.62812720 0.0650546167 0.0536909803
20.334434 59 0.70454545 0.69318182 0.345865960 0.63527827 0.0692671805 0.0579035442
24.909926 78 0.71590909 0.70454545 0.423689939 0.66410402 0.0518050676 0.0404414312
26.236229 40 0.72727273 0.71590909 0.446248874 0.67229126 0.0549814685 0.0436178321
30.924022 25 0.73863636 0.72727273 0.525982978 0.70054998 0.0380863808 0.0267227444
32.253952 45 0.75000000 0.73863636 0.548603608 0.70836125 0.0416387548 0.0302751184
32.529367 49 0.76136364 0.75000000 0.553288104 0.70996693 0.0513967091 0.0400330727
32.675968 18 0.77272727 0.76136364 0.555781630 0.71081993 0.0619073452 0.0505437088
33.275839 20 0.78409091 0.77272727 0.565984762 0.71429793 0.0697929786 0.0584293423
36.031430 52 0.79545455 0.78409091 0.612854281 0.73001365 0.0654408934 0.0540772571
37.147186 84 0.80681818 0.79545455 0.631832029 0.73625168 0.0705665028 0.0592028664
40.320875 7 0.81818182 0.80681818 0.685812928 0.75358446 0.0645973596 0.0532337232
44.334467 30 0.82954545 0.81818182 0.754079634 0.77459930 0.0549461574 0.0435825211
46.907165 28 0.84090909 0.82954545 0.797838357 0.78751785 0.0533912405 0.0420276041
54.418366 87 0.85227273 0.84090909 0.925595465 0.82267187 0.0296008528 0.0182372164
55.091131 35 0.86363636 0.85227273 0.937038450 0.82563061 0.0380057535 0.0266421172
55.470305 44 0.87500000 0.86363636 0.943487765 0.82728426 0.0477157353 0.0363520989
62.939597 6 0.88636364 0.87500000 1.070532059 0.85781006 0.0285535797 0.0171899433
66.478628 50 0.89772727 0.88636364 1.130727018 0.87091500 0.0268122757 0.0154486394
67.426518 63 0.90909091 0.89772727 1.146849569 0.87427810 0.0348128083 0.0234491719
67.603959 19 0.92045455 0.90909091 1.149867648 0.87490081 0.0455537393 0.0341901029
69.707122 64 0.93181818 0.92045455 1.185640095 0.88211777 0.0497004123 0.0383367759
69.843246 8 0.94318182 0.93181818 1.187955411 0.88257451 0.0606073068 0.0492436705
74.848732 2 0.95454545 0.94318182 1.273093116 0.89850750 0.0560379553 0.0446743189
112.729191 66 0.96590909 0.95454545 1.917397313 0.97240626 0.0064971714 0.0178608078
163.795081 73 0.97727273 0.96590909 2.785970904 0.99733162 0.0200588896 0.0314225260
198.660139 42 0.98863636 0.97727273 3.378986513 0.99963623 0.0109998685 0.0223635048
209.375830 76 1.00000000 0.98863636 3.561248407 0.99981545 0.0001845478 0.0111790885
Fuente: Ezequiel López

Prueba de KS usando nortest

library(nortest)#Carga la biblioteca "nortest"
Prueba_KS<-lillie.test(modelo_estimado$residuals)#Realiza la prueba de Lilliefors sobre los residuos del modelo estimado 
Prueba_KS#Imprime el resultado de la prueba de Lilliefors
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  modelo_estimado$residuals
## D = 0.075439, p-value = 0.2496

Interpretación: con los datos obtenidos del p.value se puede concluir que este es mayor que el nivel de significancia y se puede decir que los residuos si siguen una distribución normal y de igual forma no se rechaza la hipotesis nula.

C) La prueba de SW

Prueba manual de SW

library(dplyr)#Carga la biblioteca "dplyr"
library(gt)#Carga la biblioteca "gt"
residuos<-modelo_estimado$residuals #Guarda los residuos del modelo estimado
residuos %>%  
  as_tibble() %>%
  rename(residuales=value) %>%
  arrange(residuales) %>%
  mutate(pi=(row_number()-0.375)/(n()+0.25)) %>%
  mutate(mi=qnorm(pi,lower.tail = TRUE)) %>% 
  mutate(ai=0)->tabla_SW#Se realizan varias manipulaciones de datos utilizando el paquete "dplyr" para calcular estadísticas y crear una tabla llamada "tabla_SW"
m<-sum(tabla_SW$mi^2)#Se calcula una serie de valores y se almacenan en la columna "ai" de la tabla "tabla_SW"
n<-nrow(hprice1)#Obtiene el número de filas en el conjunto de datos "hprice1" y lo asigna a la variable "n"
theta<-1/sqrt(n)#Calcula el valor de theta
tabla_SW$ai[n]<- -2.706056*theta^5+4.434685*theta^4-2.071190*theta^3-0.147981*theta^2+0.2211570*theta+tabla_SW$mi[n]/sqrt(m)#Calcula y asigna el valor crítico de la última entrada de la columna "ai" en la tabla "tabla_SW".
tabla_SW$ai[n-1]<- -3.582633*theta^5+5.682633*theta^4-1.752461*theta^3-0.293762*theta^2+0.042981*theta+tabla_SW$mi[n-1]/sqrt(m)#Calcula y asigna el valor crítico de la penúltima entrada de la columna "ai" en la tabla "tabla_SW".
tabla_SW$ai[1]<- -tabla_SW$ai[n]#Asigna el negativo del valor crítico calculado para la última entrada de la columna "ai" a la primera entrada, asegurando que el primer y último valor de "ai" tengan la misma magnitud pero signos opuestos
tabla_SW$ai[2]<- -tabla_SW$ai[n-1]#Asigna el negativo del valor crítico calculado para la penúltima entrada de la columna "ai" a la segunda entrada, asegurando que el segundo y penúltimo valor de "ai" tengan la misma magnitud pero signos opuestos
omega<-(m-2*tabla_SW$mi[n]^2-2*tabla_SW$mi[n-1]^2)/(1-2*tabla_SW$ai[n]^2-2*tabla_SW$ai[n-1]^2)#Calcula el valor de omega 
tabla_SW$ai[3:(n-2)]<-tabla_SW$mi[3:(n-2)]/sqrt(omega)#Se asignan valores críticos a las entradas restantes de la columna "ai" en la tabla "tabla_SW" 
tabla_SW %>% 
  mutate(ai_ui=ai*residuales,ui2=residuales^2) ->tabla_SW#Se realiza una transformación adicional de los datos y se agregan dos nuevas columnas, "ai_ui" y "ui2", a la tabla "tabla_SW"
tabla_SW %>%
  gt() %>% tab_header("Tabla para calcular el Estadistico W") %>%  
  tab_source_note(source_note = "Fuente: Ezequiel López")#Agrega un encabezado a la tabla y una nota de fuente
Tabla para calcular el Estadistico W
residuales pi mi ai ai_ui ui2
-120.026447 0.007082153 -2.45306927 -0.286093929 34.338837782 1.440635e+04
-115.508697 0.018413598 -2.08767462 -0.226331231 26.143225495 1.334226e+04
-107.080889 0.029745042 -1.88455395 -0.201511408 21.578020632 1.146632e+04
-91.243980 0.041076487 -1.73832835 -0.185875811 16.960048752 8.325464e+03
-85.461169 0.052407932 -1.62194155 -0.173430814 14.821600075 7.303611e+03
-77.172687 0.063739377 -1.52411994 -0.162970954 12.576906330 5.955624e+03
-74.702719 0.075070822 -1.43903134 -0.153872609 11.494702279 5.580496e+03
-65.502849 0.086402266 -1.36324747 -0.145769197 9.548297773 4.290623e+03
-63.699108 0.097733711 -1.29457343 -0.138426027 8.817614500 4.057576e+03
-62.566594 0.109065156 -1.23151500 -0.131683320 8.238976839 3.914579e+03
-59.845223 0.120396601 -1.17300649 -0.125427129 7.506214499 3.581451e+03
-54.466158 0.131728045 -1.11825971 -0.119573169 6.512691096 2.966562e+03
-54.300415 0.143059490 -1.06667420 -0.114057239 6.193355472 2.948535e+03
-52.129801 0.154390935 -1.01778137 -0.108829231 5.673246083 2.717516e+03
-51.441108 0.165722380 -0.97120790 -0.103849228 5.342119306 2.646188e+03
-48.704980 0.177053824 -0.92665123 -0.099084876 4.825926905 2.372175e+03
-48.350295 0.188385269 -0.88386232 -0.094509548 4.569564512 2.337751e+03
-47.855859 0.199716714 -0.84263354 -0.090101040 4.311862673 2.290183e+03
-45.639765 0.211048159 -0.80278966 -0.085840618 3.917745629 2.082988e+03
-43.142550 0.222379603 -0.76418130 -0.081712307 3.525277277 1.861280e+03
-41.749618 0.233711048 -0.72667986 -0.077702356 3.244043648 1.743031e+03
-40.869022 0.245042493 -0.69017366 -0.073798824 3.016085791 1.670277e+03
-37.749811 0.256373938 -0.65456498 -0.069991263 2.642156946 1.425048e+03
-36.663785 0.267705382 -0.61976766 -0.066270458 2.429725818 1.344233e+03
-36.646568 0.279036827 -0.58570518 -0.062628228 2.295109622 1.342971e+03
-33.801248 0.290368272 -0.55230918 -0.059057264 1.996209250 1.142524e+03
-29.766931 0.301699717 -0.51951819 -0.055550992 1.653582575 8.860702e+02
-26.696234 0.313031161 -0.48727661 -0.052103467 1.390966354 7.126889e+02
-24.271531 0.324362606 -0.45553386 -0.048709282 1.182248861 5.891072e+02
-23.651448 0.335694051 -0.42424369 -0.045363489 1.072912217 5.593910e+02
-19.683427 0.347025496 -0.39336354 -0.042061540 0.827915257 3.874373e+02
-17.817835 0.358356941 -0.36285409 -0.038799229 0.691318234 3.174752e+02
-16.762094 0.369688385 -0.33267878 -0.035572645 0.596272007 2.809678e+02
-16.596960 0.381019830 -0.30280344 -0.032378138 0.537378676 2.754591e+02
-16.271207 0.392351275 -0.27319601 -0.029212277 0.475319006 2.647522e+02
-13.815798 0.403682720 -0.24382619 -0.026071824 0.360203050 1.908763e+02
-13.462160 0.415014164 -0.21466524 -0.022953704 0.309006447 1.812298e+02
-12.081520 0.426345609 -0.18568573 -0.019854987 0.239878409 1.459631e+02
-11.629207 0.437677054 -0.15686137 -0.016772858 0.195055032 1.352385e+02
-11.312669 0.449008499 -0.12816677 -0.013704604 0.155035654 1.279765e+02
-8.236558 0.460339943 -0.09957734 -0.010647596 0.087699542 6.784089e+01
-7.662789 0.471671388 -0.07106908 -0.007599268 0.058231584 5.871833e+01
-6.752801 0.483002833 -0.04261848 -0.004557105 0.030773222 4.560033e+01
-6.707262 0.494334278 -0.01420234 -0.001518626 0.010185824 4.498736e+01
-6.402439 0.505665722 0.01420234 0.001518626 -0.009722911 4.099122e+01
-5.446904 0.516997167 0.04261848 0.004557105 -0.024822110 2.966876e+01
-3.537785 0.528328612 0.07106908 0.007599268 -0.026884576 1.251592e+01
-2.824941 0.539660057 0.09957734 0.010647596 -0.030078835 7.980294e+00
-2.745208 0.550991501 0.12816677 0.013704604 -0.037621996 7.536170e+00
-0.195089 0.562322946 0.15686137 0.016772858 -0.003272200 3.805971e-02
1.399296 0.573654391 0.18568573 0.019854987 0.027782994 1.958028e+00
5.363331 0.584985836 0.21466524 0.022953704 0.123108313 2.876532e+01
6.700640 0.596317280 0.24382619 0.026071824 0.174697904 4.489858e+01
7.386314 0.607648725 0.27319601 0.029212277 0.215771059 5.455764e+01
9.099900 0.618980170 0.30280344 0.032378138 0.294637808 8.280817e+01
12.433611 0.630311615 0.33267878 0.035572645 0.442296424 1.545947e+02
16.718018 0.641643059 0.36285409 0.038799229 0.648646203 2.794921e+02
18.093192 0.652974504 0.39336354 0.042061540 0.761027520 3.273636e+02
18.801816 0.664305949 0.42424369 0.045363489 0.852915978 3.535083e+02
19.168108 0.675637394 0.45553386 0.048709282 0.933664777 3.674164e+02
19.219211 0.686968839 0.48727661 0.052103467 1.001387528 3.693781e+02
20.334434 0.698300283 0.51951819 0.055550992 1.129598008 4.134892e+02
24.909926 0.709631728 0.55230918 0.059057264 1.471112049 6.205044e+02
26.236229 0.720963173 0.58570518 0.062628228 1.643128534 6.883397e+02
30.924022 0.732294618 0.61976766 0.066270458 2.049349072 9.562951e+02
32.253952 0.743626062 0.65456498 0.069991263 2.257494854 1.040317e+03
32.529367 0.754957507 0.69017366 0.073798824 2.400629035 1.058160e+03
32.675968 0.766288952 0.72667986 0.077702356 2.538999708 1.067719e+03
33.275839 0.777620397 0.76418130 0.081712307 2.719045583 1.107281e+03
36.031430 0.788951841 0.80278966 0.085840618 3.092960242 1.298264e+03
37.147186 0.800283286 0.84263354 0.090101040 3.347000059 1.379913e+03
40.320875 0.811614731 0.88386232 0.094509548 3.810707636 1.625773e+03
44.334467 0.822946176 0.92665123 0.099084876 4.392875123 1.965545e+03
46.907165 0.834277620 0.97120790 0.103849228 4.871272904 2.200282e+03
54.418366 0.845609065 1.01778137 0.108829231 5.922308882 2.961359e+03
55.091131 0.856940510 1.06667420 0.114057239 6.283542333 3.035033e+03
55.470305 0.868271955 1.11825971 0.119573169 6.632760113 3.076955e+03
62.939597 0.879603399 1.17300649 0.125427129 7.894332885 3.961393e+03
66.478628 0.890934844 1.23151500 0.131683320 8.754126443 4.419408e+03
67.426518 0.902266289 1.29457343 0.138426027 9.333585010 4.546335e+03
67.603959 0.913597734 1.36324747 0.145769197 9.854574914 4.570295e+03
69.707122 0.924929178 1.43903134 0.153872609 10.726016772 4.859083e+03
69.843246 0.936260623 1.52411994 0.162970954 11.382420482 4.878079e+03
74.848732 0.947592068 1.62194155 0.173430814 12.981076532 5.602333e+03
112.729191 0.958923513 1.73832835 0.185875811 20.953629849 1.270787e+04
163.795081 0.970254958 1.88455395 0.201511408 33.006577315 2.682883e+04
198.660139 0.981586402 2.08767462 0.226331231 44.962993843 3.946585e+04
209.375830 0.992917847 2.45306927 0.286093929 59.901153719 4.383824e+04
Fuente: Ezequiel López

Cálculo del estadístico W

W<-(sum(tabla_SW$ai_ui)^2)/sum(tabla_SW$ui2)#Calcula el estadístico W utilizando los valores de las columnas "ai_ui" y "ui2" en la tabla "tabla_SW"
print(W)#Imprime el valor del estadístico W
## [1] 0.9413208

Cálculo del Wn y su p value

mu<-0.0038915*log(n)^3-0.083751*log(n)^2-0.31082*log(n)-1.5861#Calcula el valor de 𝜇, que es una función del logaritmo natural del tamaño de la muestra 𝑛 y se guarda en "mu"
sigma<-exp(0.0030302*log(n)^2-0.082676*log(n)-0.4803)#Calcula el valor de 𝜎, que también es una función del logaritmo natural del tamaño de la muestra 𝑛y se gurda en "sigma"
Wn<-(log(1-W)-mu)/sigma#Calcula el estadístico estandarizado 𝑊𝑛
print(Wn)#Imprime el valor del estadístico estandarizado 𝑊𝑛
## [1] 3.241867
p.value<-pnorm(Wn,lower.tail = FALSE)#Se utiliza la funciónpnorm para calcular la probabilidad acumulada de 𝑊𝑛bajo la distribución normal estándar y El valor de la probabilidad calculada se almacena en la variable "p.value"
print(p.value)#Imprime el valor de "p.value"
## [1] 0.0005937472

Gráfico de la Prueba SW

library(fastGraph)
Valor_critico<-1.6449#Se especifica un valor crítico, que se utilizará para sombrear la distribución normal estándar
shadeDist(xshade = Valor_critico,ddist = "dnorm",lower.tail = FALSE,
          parm1 = 0, sub= paste("Wn:", 3.241867, "VC:", 1.6449),
          main = "Gráfico de la Prueba SW",
          xtic = c(3.24186,1.6449,0))#genera un gráfico de la distribución normal estándar sombreado, se especifica el valor crítico que se sombreará en el gráfico, se especifica que el sombreado se hará desde el valor crítico hacia la derecha de la distribución, Se colocan marcas en el eje x para mostrar los valores de 𝑊𝑛, el valor crítico y el valor cero