#Carga de datos
library(wooldridge) #Carga de libreria
data(hprice1) #Carga de la data
head(force(hprice1),n=5) # 5 primeras observaciones
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
options(scipen = 999999)
library(wooldridge) #Carga de libreria
data(hprice1) #Carga de datos
modelo_estimado<-lm(price~lotsize+sqrft+bdrms,data=hprice1)
summary(modelo_estimado)
##
## Call:
## lm(formula = price ~ lotsize + sqrft + bdrms, data = hprice1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -120.026 -38.530 -6.555 32.323 209.376
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -21.7703081 29.4750419 -0.739 0.46221
## lotsize 0.0020677 0.0006421 3.220 0.00182 **
## sqrft 0.1227782 0.0132374 9.275 0.0000000000000166 ***
## bdrms 13.8525217 9.0101454 1.537 0.12795
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 59.83 on 84 degrees of freedom
## Multiple R-squared: 0.6724, Adjusted R-squared: 0.6607
## F-statistic: 57.46 on 3 and 84 DF, p-value: < 0.00000000000000022
library(fitdistrplus)
fit_normal<-fitdist(data = modelo_estimado$residuals,distr = "norm")
plot(fit_normal)
summary(fit_normal)
## Fitting of the distribution ' norm ' by maximum likelihood
## Parameters :
## estimate Std. Error
## mean -0.000000000000002321494 6.231624
## sd 58.457813569303191059134 4.406423
## Loglikelihood: -482.8775 AIC: 969.7549 BIC: 974.7096
## Correlation matrix:
## mean sd
## mean 1 0
## sd 0 1
library(tseries)
salida_JB<-jarque.bera.test(modelo_estimado$residuals)
salida_JB
##
## Jarque Bera Test
##
## data: modelo_estimado$residuals
## X-squared = 32.278, df = 2, p-value = 0.00000009794
Se puede concluir que se rechaza la hipotesis Nula, ya que es un valor pequeño (0.00000009794) al nivel de significancia del 0.05, por lo tanto no existe una distribución normal.
library(fastGraph) #Cargar el paquete fastGraph
alpha_sig<-0.05 # Nivel de significancia
JB<-salida_JB$statistic # Se asigna el estadistico de la prueba de Jarque-Bera a la variable JB
gl<-salida_JB$parameter # Se asigna el número de grados de libertad a la variable gl
VC<-qchisq(1-alpha_sig,gl,lower.tail = TRUE) # Se calcula el valor critico para la prueba Chi- cuadrado
shadeDist(JB,
ddist = "dchisq",
parm1 = gl,
lower.tail = FALSE,xmin=0,
sub=paste("VC:",round(VC,2)," ","JB:",round(JB,2)))
library(dplyr) # Carga la librerÃa dplyr para manipulación de datos
library(gt) # Carga la librerÃa gt para crear tablas de datos
library(gtExtras) # Carga la librerÃa gtExtras para agregar funcionalidades a las tablas creadas con gt
residuos<-modelo_estimado$residuals # Crea un vector con los residuos del modelo estimado
residuos %>% # Utiliza el operador %>% para encadenar las operaciones siguientes al vector residuos
as_tibble() %>% # Convierte el vector residuos en una tabla de una columna
mutate(posicion=row_number()) %>% # Agrega una columna llamada "posicion" con el número de fila
arrange(value) %>% # Ordena la tabla por los valores de residuos en orden ascendente
mutate(dist1=row_number()/n()) %>% # Agrega una columna "dist1" con los percentiles según su posición en la tabla (usando la función row_number() y n() para obtener el número de filas)
mutate(dist2=(row_number()-1)/n()) %>% # Agrega una columna "dist2" con los percentiles según su posición en la tabla, pero ajustando en una unidad para evitar problemas con los extremos de la distribución
mutate(zi=as.vector(scale(value,center=TRUE))) %>% # Agrega una columna "zi" con los valores de residuos escalados para tener media cero y varianza uno
mutate(pi=pnorm(zi,lower.tail = TRUE)) %>% # Agrega una columna "pi" con los valores de la función de distribución acumulada (CDF) de una distribución normal estándar evaluada en los valores de zi
mutate(dif1=abs(dist1-pi)) %>% # Agrega una columna "dif1" con las diferencias absolutas entre los percentiles según la posición y los valores de pi
mutate(dif2=abs(dist2-pi)) %>% # Agrega una columna "dif2" con las diferencias absolutas entre los percentiles ajustados según la posición y los valores de pi
rename(residuales=value) -> tabla_KS # Renombra la columna "value" como "residuales" y asigna la tabla resultante a la variable tabla_KS
#Formato
tabla_KS %>% # Utiliza el operador %>% para encadenar las operaciones siguientes a la tabla tabla_KS
gt() %>% # Crea una tabla con la función gt()
tab_header("Tabla para calcular el Estadistico KS") %>% # Agrega un encabezado a la tabla
tab_source_note(source_note = "Fuente: Elaboración propia") %>% # Agrega una nota de fuente a la tabla
tab_style( # Cambia el estilo de algunas celdas de la tabla
style = list(
cell_fill(color = "#A569BD"), # Cambia el color de fondo de las celdas a un tono de morado
cell_text(style = "italic") # Cambia el estilo de texto de las celdas a itálico
),
locations = cells_body( # Aplica el estilo a las celdas del cuerpo de la tabla que cumplan las siguientes condiciones:
columns = dif1, # Que pertenezcan a la columna "dif1"
rows = dif1==max(dif1) # Que pertenezcan a la fila donde el valor de "dif1" es máximo
)) %>%
tab_style( # Cambia el estilo de algunas celdas de la tabla
style = list(
cell_fill(color = "#3498DB"), # Cambia el color de fondo de las celdas a un tono de azul
cell_text(style = "italic") # Cambia el estilo de texto de las celdas a itálico
),
locations = cells_body( # Aplica el estilo a las celdas del cuerpo de la tabla que cumplan las siguientes condiciones:
columns = dif2, # Que pertenezcan a la columna "dif2"
rows = dif2==max(dif2) # Que pertenezcan a la fila donde el valor de "dif2" es máximo
))
| Tabla para calcular el Estadistico KS | |||||||
| residuales | posicion | dist1 | dist2 | zi | pi | dif1 | dif2 |
|---|---|---|---|---|---|---|---|
| -120.026447 | 81 | 0.01136364 | 0.00000000 | -2.041515459 | 0.02059981 | 0.0092361731 | 0.0205998094 |
| -115.508697 | 77 | 0.02272727 | 0.01136364 | -1.964673586 | 0.02472601 | 0.0019987418 | 0.0133623781 |
| -107.080889 | 24 | 0.03409091 | 0.02272727 | -1.821326006 | 0.03427866 | 0.0001877487 | 0.0115513850 |
| -91.243980 | 48 | 0.04545455 | 0.03409091 | -1.551957925 | 0.06033615 | 0.0148816002 | 0.0262452366 |
| -85.461169 | 12 | 0.05681818 | 0.04545455 | -1.453598781 | 0.07302879 | 0.0162106057 | 0.0275742421 |
| -77.172687 | 32 | 0.06818182 | 0.05681818 | -1.312620980 | 0.09465535 | 0.0264735301 | 0.0378371665 |
| -74.702719 | 54 | 0.07954545 | 0.06818182 | -1.270609602 | 0.10193378 | 0.0223883300 | 0.0337519664 |
| -65.502849 | 39 | 0.09090909 | 0.07954545 | -1.114130117 | 0.13261169 | 0.0417025941 | 0.0530662305 |
| -63.699108 | 69 | 0.10227273 | 0.09090909 | -1.083450505 | 0.13930425 | 0.0370315271 | 0.0483951634 |
| -62.566594 | 83 | 0.11363636 | 0.10227273 | -1.064187703 | 0.14362184 | 0.0299854747 | 0.0413491110 |
| -59.845223 | 36 | 0.12500000 | 0.11363636 | -1.017900230 | 0.15436269 | 0.0293626861 | 0.0407263225 |
| -54.466158 | 13 | 0.13636364 | 0.12500000 | -0.926408352 | 0.17711690 | 0.0407532663 | 0.0521169027 |
| -54.300415 | 14 | 0.14772727 | 0.13636364 | -0.923589260 | 0.17785010 | 0.0301228311 | 0.0414864675 |
| -52.129801 | 15 | 0.15909091 | 0.14772727 | -0.886669532 | 0.18762842 | 0.0285375141 | 0.0399011505 |
| -51.441108 | 17 | 0.17045455 | 0.15909091 | -0.874955638 | 0.19079902 | 0.0203444766 | 0.0317081129 |
| -48.704980 | 47 | 0.18181818 | 0.17045455 | -0.828417174 | 0.20371714 | 0.0218989601 | 0.0332625965 |
| -48.350295 | 29 | 0.19318182 | 0.18181818 | -0.822384375 | 0.20542908 | 0.0122472664 | 0.0236109028 |
| -47.855859 | 11 | 0.20454545 | 0.19318182 | -0.813974573 | 0.20782976 | 0.0032843043 | 0.0146479407 |
| -45.639765 | 1 | 0.21590909 | 0.20454545 | -0.776281294 | 0.21879146 | 0.0028823668 | 0.0142460032 |
| -43.142550 | 9 | 0.22727273 | 0.21590909 | -0.733806463 | 0.23153335 | 0.0042606233 | 0.0156242596 |
| -41.749618 | 57 | 0.23863636 | 0.22727273 | -0.710114247 | 0.23881665 | 0.0001802823 | 0.0115439187 |
| -40.869022 | 27 | 0.25000000 | 0.23863636 | -0.695136302 | 0.24348494 | 0.0065150566 | 0.0048485798 |
| -37.749811 | 34 | 0.26136364 | 0.25000000 | -0.642082009 | 0.26040997 | 0.0009536682 | 0.0104099682 |
| -36.663785 | 71 | 0.27272727 | 0.26136364 | -0.623609925 | 0.26644190 | 0.0062853771 | 0.0050782592 |
| -36.646568 | 79 | 0.28409091 | 0.27272727 | -0.623317083 | 0.26653809 | 0.0175528221 | 0.0061891857 |
| -33.801248 | 37 | 0.29545455 | 0.28409091 | -0.574921384 | 0.28267223 | 0.0127823120 | 0.0014186757 |
| -29.766931 | 16 | 0.30681818 | 0.29545455 | -0.506302171 | 0.30632227 | 0.0004959124 | 0.0108677240 |
| -26.696234 | 22 | 0.31818182 | 0.30681818 | -0.454073044 | 0.32488813 | 0.0067063089 | 0.0180699452 |
| -24.271531 | 23 | 0.32954545 | 0.31818182 | -0.412831567 | 0.33986501 | 0.0103195566 | 0.0216831929 |
| -23.651448 | 86 | 0.34090909 | 0.32954545 | -0.402284648 | 0.34373728 | 0.0028281851 | 0.0141918214 |
| -19.683427 | 88 | 0.35227273 | 0.34090909 | -0.334793052 | 0.36889060 | 0.0166178738 | 0.0279815102 |
| -17.817835 | 10 | 0.36363636 | 0.35227273 | -0.303061413 | 0.38092153 | 0.0172851663 | 0.0286488027 |
| -16.762094 | 60 | 0.37500000 | 0.36363636 | -0.285104441 | 0.38778206 | 0.0127820638 | 0.0241457002 |
| -16.596960 | 21 | 0.38636364 | 0.37500000 | -0.282295711 | 0.38885839 | 0.0024947507 | 0.0138583870 |
| -16.271207 | 58 | 0.39772727 | 0.38636364 | -0.276755010 | 0.39098411 | 0.0067431583 | 0.0046204781 |
| -13.815798 | 56 | 0.40909091 | 0.39772727 | -0.234991254 | 0.40710776 | 0.0019831485 | 0.0093804879 |
| -13.462160 | 75 | 0.42045455 | 0.40909091 | -0.228976273 | 0.40944368 | 0.0110108666 | 0.0003527698 |
| -12.081520 | 4 | 0.43181818 | 0.42045455 | -0.205493119 | 0.41859344 | 0.0132247451 | 0.0018611087 |
| -11.629207 | 51 | 0.44318182 | 0.43181818 | -0.197799788 | 0.42160086 | 0.0215809622 | 0.0102173258 |
| -11.312669 | 74 | 0.45454545 | 0.44318182 | -0.192415834 | 0.42370825 | 0.0308372092 | 0.0194735728 |
| -8.236558 | 3 | 0.46590909 | 0.45454545 | -0.140094626 | 0.44429261 | 0.0216164775 | 0.0102528411 |
| -7.662789 | 70 | 0.47727273 | 0.46590909 | -0.130335452 | 0.44815052 | 0.0291222111 | 0.0177585748 |
| -6.752801 | 67 | 0.48863636 | 0.47727273 | -0.114857588 | 0.45427900 | 0.0343573625 | 0.0229937262 |
| -6.707262 | 31 | 0.50000000 | 0.48863636 | -0.114083016 | 0.45458599 | 0.0454140074 | 0.0340503710 |
| -6.402439 | 85 | 0.51136364 | 0.50000000 | -0.108898313 | 0.45664157 | 0.0547220642 | 0.0433584278 |
| -5.446904 | 82 | 0.52272727 | 0.51136364 | -0.092645733 | 0.46309251 | 0.0596347676 | 0.0482711313 |
| -3.537785 | 43 | 0.53409091 | 0.52272727 | -0.060173762 | 0.47600862 | 0.0580822876 | 0.0467186512 |
| -2.824941 | 61 | 0.54545455 | 0.53409091 | -0.048049090 | 0.48083856 | 0.0646159857 | 0.0532523493 |
| -2.745208 | 68 | 0.55681818 | 0.54545455 | -0.046692922 | 0.48137899 | 0.0754391961 | 0.0640755598 |
| -0.195089 | 65 | 0.56818182 | 0.55681818 | -0.003318245 | 0.49867621 | 0.0695056040 | 0.0581419676 |
| 1.399296 | 55 | 0.57954545 | 0.56818182 | 0.023800450 | 0.50949411 | 0.0700513452 | 0.0586877088 |
| 5.363331 | 26 | 0.59090909 | 0.57954545 | 0.091224254 | 0.53634280 | 0.0545662924 | 0.0432026561 |
| 6.700640 | 53 | 0.60227273 | 0.59090909 | 0.113970383 | 0.54536936 | 0.0569033628 | 0.0455397265 |
| 7.386314 | 80 | 0.61363636 | 0.60227273 | 0.125632935 | 0.54998875 | 0.0636476093 | 0.0522839730 |
| 9.099900 | 41 | 0.62500000 | 0.61363636 | 0.154779103 | 0.56150227 | 0.0634977329 | 0.0521340965 |
| 12.433611 | 46 | 0.63636364 | 0.62500000 | 0.211481796 | 0.58374433 | 0.0526193043 | 0.0412556680 |
| 16.718018 | 62 | 0.64772727 | 0.63636364 | 0.284354766 | 0.61193074 | 0.0357965328 | 0.0244328965 |
| 18.093192 | 5 | 0.65909091 | 0.64772727 | 0.307744934 | 0.62086179 | 0.0382291219 | 0.0268654856 |
| 18.801816 | 38 | 0.67045455 | 0.65909091 | 0.319797835 | 0.62543921 | 0.0450153400 | 0.0336517036 |
| 19.168108 | 33 | 0.68181818 | 0.67045455 | 0.326028052 | 0.62779843 | 0.0540197476 | 0.0426561112 |
| 19.219211 | 72 | 0.69318182 | 0.68181818 | 0.326897255 | 0.62812720 | 0.0650546167 | 0.0536909803 |
| 20.334434 | 59 | 0.70454545 | 0.69318182 | 0.345865960 | 0.63527827 | 0.0692671805 | 0.0579035442 |
| 24.909926 | 78 | 0.71590909 | 0.70454545 | 0.423689939 | 0.66410402 | 0.0518050676 | 0.0404414312 |
| 26.236229 | 40 | 0.72727273 | 0.71590909 | 0.446248874 | 0.67229126 | 0.0549814685 | 0.0436178321 |
| 30.924022 | 25 | 0.73863636 | 0.72727273 | 0.525982978 | 0.70054998 | 0.0380863808 | 0.0267227444 |
| 32.253952 | 45 | 0.75000000 | 0.73863636 | 0.548603608 | 0.70836125 | 0.0416387548 | 0.0302751184 |
| 32.529367 | 49 | 0.76136364 | 0.75000000 | 0.553288104 | 0.70996693 | 0.0513967091 | 0.0400330727 |
| 32.675968 | 18 | 0.77272727 | 0.76136364 | 0.555781630 | 0.71081993 | 0.0619073452 | 0.0505437088 |
| 33.275839 | 20 | 0.78409091 | 0.77272727 | 0.565984762 | 0.71429793 | 0.0697929786 | 0.0584293423 |
| 36.031430 | 52 | 0.79545455 | 0.78409091 | 0.612854281 | 0.73001365 | 0.0654408934 | 0.0540772571 |
| 37.147186 | 84 | 0.80681818 | 0.79545455 | 0.631832029 | 0.73625168 | 0.0705665028 | 0.0592028664 |
| 40.320875 | 7 | 0.81818182 | 0.80681818 | 0.685812928 | 0.75358446 | 0.0645973596 | 0.0532337232 |
| 44.334467 | 30 | 0.82954545 | 0.81818182 | 0.754079634 | 0.77459930 | 0.0549461574 | 0.0435825211 |
| 46.907165 | 28 | 0.84090909 | 0.82954545 | 0.797838357 | 0.78751785 | 0.0533912405 | 0.0420276041 |
| 54.418366 | 87 | 0.85227273 | 0.84090909 | 0.925595465 | 0.82267187 | 0.0296008528 | 0.0182372164 |
| 55.091131 | 35 | 0.86363636 | 0.85227273 | 0.937038450 | 0.82563061 | 0.0380057535 | 0.0266421172 |
| 55.470305 | 44 | 0.87500000 | 0.86363636 | 0.943487765 | 0.82728426 | 0.0477157353 | 0.0363520989 |
| 62.939597 | 6 | 0.88636364 | 0.87500000 | 1.070532059 | 0.85781006 | 0.0285535797 | 0.0171899433 |
| 66.478628 | 50 | 0.89772727 | 0.88636364 | 1.130727018 | 0.87091500 | 0.0268122757 | 0.0154486394 |
| 67.426518 | 63 | 0.90909091 | 0.89772727 | 1.146849569 | 0.87427810 | 0.0348128083 | 0.0234491719 |
| 67.603959 | 19 | 0.92045455 | 0.90909091 | 1.149867648 | 0.87490081 | 0.0455537393 | 0.0341901029 |
| 69.707122 | 64 | 0.93181818 | 0.92045455 | 1.185640095 | 0.88211777 | 0.0497004123 | 0.0383367759 |
| 69.843246 | 8 | 0.94318182 | 0.93181818 | 1.187955411 | 0.88257451 | 0.0606073068 | 0.0492436705 |
| 74.848732 | 2 | 0.95454545 | 0.94318182 | 1.273093116 | 0.89850750 | 0.0560379553 | 0.0446743189 |
| 112.729191 | 66 | 0.96590909 | 0.95454545 | 1.917397313 | 0.97240626 | 0.0064971714 | 0.0178608078 |
| 163.795081 | 73 | 0.97727273 | 0.96590909 | 2.785970904 | 0.99733162 | 0.0200588896 | 0.0314225260 |
| 198.660139 | 42 | 0.98863636 | 0.97727273 | 3.378986513 | 0.99963623 | 0.0109998685 | 0.0223635048 |
| 209.375830 | 76 | 1.00000000 | 0.98863636 | 3.561248407 | 0.99981545 | 0.0001845478 | 0.0111790885 |
| Fuente: Elaboración propia | |||||||
D<-max(max(tabla_KS$dif1),max(tabla_KS$dif2)) #Se define la variable D como el máximo valor entre el máximo de la columna dif1 y el máximo de la columna dif2 de la tabla tabla_KS.
print(D) #Imprime el valor D
## [1] 0.0754392
En este caso se puede ver que se reafirma el no rechazo de la hipotesis nula.
library(nortest)
prueba_KS <- lillie.test(modelo_estimado$residuals)
prueba_KS
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: modelo_estimado$residuals
## D = 0.075439, p-value = 0.2496
El valor de 0.2496 es un valor mayor al nivel de significancia se concluye el no rechazar la hipotesis nula, por lo tanto los residuos tienen una distribución normal.
library(dplyr) #carga de libreria
library(gt) #Carga de libreria
residuos<-modelo_estimado$residuals #Extraer los residuos del modelo
residuos %>%
as_tibble() %>%
rename(residuales=value) %>%
arrange(residuales) %>% #Ordenar los residuos
mutate(pi=(row_number()-0.375)/(n()+0.25)) %>% #Calcular pi para la prueba de Shapiro-wilk
mutate(mi=qnorm(pi,lower.tail = TRUE)) %>% #Calcula mi para la prueba de Shapiro-wilk
mutate(ai=0)->tabla_SW #Agrega una columna inicializada con ceros
m<-sum(tabla_SW$mi^2) #Calcula la suma de los residuos de mi
n<-nrow(hprice1) #Asiganación de valor numérico a n
theta<- 1/sqrt(n) #Calculo de Theta
tabla_SW$ai[n]<- -2.706056*theta^5+4.434685*theta^4-2.071190*theta^3-0.147981*theta^2+0.2211570*theta+tabla_SW$mi[n]/sqrt(m)
tabla_SW$ai[n-1]<- -3.582633*theta^5+5.682633*theta^4-1.752461*theta^3-0.293762*theta^2+0.042981*theta+tabla_SW$mi[n-1]/sqrt(m)
tabla_SW$ai[1]<- -tabla_SW$ai[n]
tabla_SW$ai[2]<- -tabla_SW$ai[n-1]
omega<-(m-2*tabla_SW$mi[n]^2-2*tabla_SW$mi[n-1]^2)/(1-2*tabla_SW$ai[n]^2-2*tabla_SW$ai[n-1]^2) #Se calcula omega
tabla_SW$ai[3:(n-2)]<-tabla_SW$mi[3:(n-2)]/sqrt(omega)
tabla_SW %>%
mutate(ai_ui=ai*residuales,ui2=residuales^2) ->tabla_SW
tabla_SW %>%
gt() %>%
tab_header("Tabla para calcular el Estadistico W") %>% # Agrega un encabezado a la tabla
tab_source_note(source_note = "Fuente: Elaboración propia") #Agrega la nota de la fuente de la tabla
| Tabla para calcular el Estadistico W | |||||
| residuales | pi | mi | ai | ai_ui | ui2 |
|---|---|---|---|---|---|
| -120.026447 | 0.007082153 | -2.45306927 | -0.286093929 | 34.338837782 | 1.440635e+04 |
| -115.508697 | 0.018413598 | -2.08767462 | -0.226331231 | 26.143225495 | 1.334226e+04 |
| -107.080889 | 0.029745042 | -1.88455395 | -0.201511408 | 21.578020632 | 1.146632e+04 |
| -91.243980 | 0.041076487 | -1.73832835 | -0.185875811 | 16.960048752 | 8.325464e+03 |
| -85.461169 | 0.052407932 | -1.62194155 | -0.173430814 | 14.821600075 | 7.303611e+03 |
| -77.172687 | 0.063739377 | -1.52411994 | -0.162970954 | 12.576906330 | 5.955624e+03 |
| -74.702719 | 0.075070822 | -1.43903134 | -0.153872609 | 11.494702279 | 5.580496e+03 |
| -65.502849 | 0.086402266 | -1.36324747 | -0.145769197 | 9.548297773 | 4.290623e+03 |
| -63.699108 | 0.097733711 | -1.29457343 | -0.138426027 | 8.817614500 | 4.057576e+03 |
| -62.566594 | 0.109065156 | -1.23151500 | -0.131683320 | 8.238976839 | 3.914579e+03 |
| -59.845223 | 0.120396601 | -1.17300649 | -0.125427129 | 7.506214499 | 3.581451e+03 |
| -54.466158 | 0.131728045 | -1.11825971 | -0.119573169 | 6.512691096 | 2.966562e+03 |
| -54.300415 | 0.143059490 | -1.06667420 | -0.114057239 | 6.193355472 | 2.948535e+03 |
| -52.129801 | 0.154390935 | -1.01778137 | -0.108829231 | 5.673246083 | 2.717516e+03 |
| -51.441108 | 0.165722380 | -0.97120790 | -0.103849228 | 5.342119306 | 2.646188e+03 |
| -48.704980 | 0.177053824 | -0.92665123 | -0.099084876 | 4.825926905 | 2.372175e+03 |
| -48.350295 | 0.188385269 | -0.88386232 | -0.094509548 | 4.569564512 | 2.337751e+03 |
| -47.855859 | 0.199716714 | -0.84263354 | -0.090101040 | 4.311862673 | 2.290183e+03 |
| -45.639765 | 0.211048159 | -0.80278966 | -0.085840618 | 3.917745629 | 2.082988e+03 |
| -43.142550 | 0.222379603 | -0.76418130 | -0.081712307 | 3.525277277 | 1.861280e+03 |
| -41.749618 | 0.233711048 | -0.72667986 | -0.077702356 | 3.244043648 | 1.743031e+03 |
| -40.869022 | 0.245042493 | -0.69017366 | -0.073798824 | 3.016085791 | 1.670277e+03 |
| -37.749811 | 0.256373938 | -0.65456498 | -0.069991263 | 2.642156946 | 1.425048e+03 |
| -36.663785 | 0.267705382 | -0.61976766 | -0.066270458 | 2.429725818 | 1.344233e+03 |
| -36.646568 | 0.279036827 | -0.58570518 | -0.062628228 | 2.295109622 | 1.342971e+03 |
| -33.801248 | 0.290368272 | -0.55230918 | -0.059057264 | 1.996209250 | 1.142524e+03 |
| -29.766931 | 0.301699717 | -0.51951819 | -0.055550992 | 1.653582575 | 8.860702e+02 |
| -26.696234 | 0.313031161 | -0.48727661 | -0.052103467 | 1.390966354 | 7.126889e+02 |
| -24.271531 | 0.324362606 | -0.45553386 | -0.048709282 | 1.182248861 | 5.891072e+02 |
| -23.651448 | 0.335694051 | -0.42424369 | -0.045363489 | 1.072912217 | 5.593910e+02 |
| -19.683427 | 0.347025496 | -0.39336354 | -0.042061540 | 0.827915257 | 3.874373e+02 |
| -17.817835 | 0.358356941 | -0.36285409 | -0.038799229 | 0.691318234 | 3.174752e+02 |
| -16.762094 | 0.369688385 | -0.33267878 | -0.035572645 | 0.596272007 | 2.809678e+02 |
| -16.596960 | 0.381019830 | -0.30280344 | -0.032378138 | 0.537378676 | 2.754591e+02 |
| -16.271207 | 0.392351275 | -0.27319601 | -0.029212277 | 0.475319006 | 2.647522e+02 |
| -13.815798 | 0.403682720 | -0.24382619 | -0.026071824 | 0.360203050 | 1.908763e+02 |
| -13.462160 | 0.415014164 | -0.21466524 | -0.022953704 | 0.309006447 | 1.812298e+02 |
| -12.081520 | 0.426345609 | -0.18568573 | -0.019854987 | 0.239878409 | 1.459631e+02 |
| -11.629207 | 0.437677054 | -0.15686137 | -0.016772858 | 0.195055032 | 1.352385e+02 |
| -11.312669 | 0.449008499 | -0.12816677 | -0.013704604 | 0.155035654 | 1.279765e+02 |
| -8.236558 | 0.460339943 | -0.09957734 | -0.010647596 | 0.087699542 | 6.784089e+01 |
| -7.662789 | 0.471671388 | -0.07106908 | -0.007599268 | 0.058231584 | 5.871833e+01 |
| -6.752801 | 0.483002833 | -0.04261848 | -0.004557105 | 0.030773222 | 4.560033e+01 |
| -6.707262 | 0.494334278 | -0.01420234 | -0.001518626 | 0.010185824 | 4.498736e+01 |
| -6.402439 | 0.505665722 | 0.01420234 | 0.001518626 | -0.009722911 | 4.099122e+01 |
| -5.446904 | 0.516997167 | 0.04261848 | 0.004557105 | -0.024822110 | 2.966876e+01 |
| -3.537785 | 0.528328612 | 0.07106908 | 0.007599268 | -0.026884576 | 1.251592e+01 |
| -2.824941 | 0.539660057 | 0.09957734 | 0.010647596 | -0.030078835 | 7.980294e+00 |
| -2.745208 | 0.550991501 | 0.12816677 | 0.013704604 | -0.037621996 | 7.536170e+00 |
| -0.195089 | 0.562322946 | 0.15686137 | 0.016772858 | -0.003272200 | 3.805971e-02 |
| 1.399296 | 0.573654391 | 0.18568573 | 0.019854987 | 0.027782994 | 1.958028e+00 |
| 5.363331 | 0.584985836 | 0.21466524 | 0.022953704 | 0.123108313 | 2.876532e+01 |
| 6.700640 | 0.596317280 | 0.24382619 | 0.026071824 | 0.174697904 | 4.489858e+01 |
| 7.386314 | 0.607648725 | 0.27319601 | 0.029212277 | 0.215771059 | 5.455764e+01 |
| 9.099900 | 0.618980170 | 0.30280344 | 0.032378138 | 0.294637808 | 8.280817e+01 |
| 12.433611 | 0.630311615 | 0.33267878 | 0.035572645 | 0.442296424 | 1.545947e+02 |
| 16.718018 | 0.641643059 | 0.36285409 | 0.038799229 | 0.648646203 | 2.794921e+02 |
| 18.093192 | 0.652974504 | 0.39336354 | 0.042061540 | 0.761027520 | 3.273636e+02 |
| 18.801816 | 0.664305949 | 0.42424369 | 0.045363489 | 0.852915978 | 3.535083e+02 |
| 19.168108 | 0.675637394 | 0.45553386 | 0.048709282 | 0.933664777 | 3.674164e+02 |
| 19.219211 | 0.686968839 | 0.48727661 | 0.052103467 | 1.001387528 | 3.693781e+02 |
| 20.334434 | 0.698300283 | 0.51951819 | 0.055550992 | 1.129598008 | 4.134892e+02 |
| 24.909926 | 0.709631728 | 0.55230918 | 0.059057264 | 1.471112049 | 6.205044e+02 |
| 26.236229 | 0.720963173 | 0.58570518 | 0.062628228 | 1.643128534 | 6.883397e+02 |
| 30.924022 | 0.732294618 | 0.61976766 | 0.066270458 | 2.049349072 | 9.562951e+02 |
| 32.253952 | 0.743626062 | 0.65456498 | 0.069991263 | 2.257494854 | 1.040317e+03 |
| 32.529367 | 0.754957507 | 0.69017366 | 0.073798824 | 2.400629035 | 1.058160e+03 |
| 32.675968 | 0.766288952 | 0.72667986 | 0.077702356 | 2.538999708 | 1.067719e+03 |
| 33.275839 | 0.777620397 | 0.76418130 | 0.081712307 | 2.719045583 | 1.107281e+03 |
| 36.031430 | 0.788951841 | 0.80278966 | 0.085840618 | 3.092960242 | 1.298264e+03 |
| 37.147186 | 0.800283286 | 0.84263354 | 0.090101040 | 3.347000059 | 1.379913e+03 |
| 40.320875 | 0.811614731 | 0.88386232 | 0.094509548 | 3.810707636 | 1.625773e+03 |
| 44.334467 | 0.822946176 | 0.92665123 | 0.099084876 | 4.392875123 | 1.965545e+03 |
| 46.907165 | 0.834277620 | 0.97120790 | 0.103849228 | 4.871272904 | 2.200282e+03 |
| 54.418366 | 0.845609065 | 1.01778137 | 0.108829231 | 5.922308882 | 2.961359e+03 |
| 55.091131 | 0.856940510 | 1.06667420 | 0.114057239 | 6.283542333 | 3.035033e+03 |
| 55.470305 | 0.868271955 | 1.11825971 | 0.119573169 | 6.632760113 | 3.076955e+03 |
| 62.939597 | 0.879603399 | 1.17300649 | 0.125427129 | 7.894332885 | 3.961393e+03 |
| 66.478628 | 0.890934844 | 1.23151500 | 0.131683320 | 8.754126443 | 4.419408e+03 |
| 67.426518 | 0.902266289 | 1.29457343 | 0.138426027 | 9.333585010 | 4.546335e+03 |
| 67.603959 | 0.913597734 | 1.36324747 | 0.145769197 | 9.854574914 | 4.570295e+03 |
| 69.707122 | 0.924929178 | 1.43903134 | 0.153872609 | 10.726016772 | 4.859083e+03 |
| 69.843246 | 0.936260623 | 1.52411994 | 0.162970954 | 11.382420482 | 4.878079e+03 |
| 74.848732 | 0.947592068 | 1.62194155 | 0.173430814 | 12.981076532 | 5.602333e+03 |
| 112.729191 | 0.958923513 | 1.73832835 | 0.185875811 | 20.953629849 | 1.270787e+04 |
| 163.795081 | 0.970254958 | 1.88455395 | 0.201511408 | 33.006577315 | 2.682883e+04 |
| 198.660139 | 0.981586402 | 2.08767462 | 0.226331231 | 44.962993843 | 3.946585e+04 |
| 209.375830 | 0.992917847 | 2.45306927 | 0.286093929 | 59.901153719 | 4.383824e+04 |
| Fuente: Elaboración propia | |||||
W<-(sum(tabla_SW$ai_ui)^2)/sum(tabla_SW$ui2) #calcula el estadÃstico W
print(W) #Imprime el valor w
## [1] 0.9413208
mu<-0.0038915*log(n)^3-0.083751*log(n)^2-0.31082*log(n)-1.5861 #Calcular el valor mu
sigma<-exp(0.0030302*log(n)^2-0.082676*log(n)-0.4803) #Calcular el valor sigma
Wn<-(log(1-W)-mu)/sigma # Calcular wn con los valores de mu y sigma
print(Wn) #Imprime el valor de wn
## [1] 3.241867
p.value<-pnorm(Wn,lower.tail = FALSE) #calcula el valor de p
print(p.value) #Imprime el valor de p
## [1] 0.0005937472
library(fastGraph)
shadeDist(Wn,ddist = "dnorm",lower.tail = FALSE)
salida_SW<-shapiro.test(modelo_estimado$residuals)
print(salida_SW)
##
## Shapiro-Wilk normality test
##
## data: modelo_estimado$residuals
## W = 0.94132, p-value = 0.0005937
Wn_salida<-qnorm(salida_SW$p.value,lower.tail = FALSE)
print(Wn_salida)
## [1] 3.241867