library(wooldridge)
data(hprice1)
head(hprice1, n = 5) #mostrar las primeras 5 observaciones
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
modelo <- lm(price ~ lotsize + sqrft + bdrms, data = hprice1)
summary(modelo)
##
## Call:
## lm(formula = price ~ lotsize + sqrft + bdrms, data = hprice1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -120.026 -38.530 -6.555 32.323 209.376
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.177e+01 2.948e+01 -0.739 0.46221
## lotsize 2.068e-03 6.421e-04 3.220 0.00182 **
## sqrft 1.228e-01 1.324e-02 9.275 1.66e-14 ***
## bdrms 1.385e+01 9.010e+00 1.537 0.12795
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 59.83 on 84 degrees of freedom
## Multiple R-squared: 0.6724, Adjusted R-squared: 0.6607
## F-statistic: 57.46 on 3 and 84 DF, p-value: < 2.2e-16
# Calcula el estadístico de prueba de JarqueBera
n <- length(modelo$residuals)
JB_stat <- (n / 6) * (sum(modelo$residuals^3)/sd(modelo$residuals)^3)^2 +
(n / 24) * (sum(modelo$residuals^4)/sd(modelo$residuals)^4) - 3 * (n - 1)
# Grados de libertad para la distribución chi-cuadrado
df <- 2
# Valor p
p_value_JB <- pchisq(JB_stat, df, lower.tail = FALSE)
# Imprimir resultados
cat("Estadística de prueba de Jarque-Bera:", JB_stat, "\n")
## Estadística de prueba de Jarque-Bera: 102688.2
cat("Valor p:", p_value_JB, "\n")
## Valor p: 0
# Prueba de Kolmogorov-Smirnov
ks.test <- ks.test(modelo$residuals, "pnorm", mean(modelo$residuals), sd(modelo$residuals))
ks.test
##
## Exact one-sample Kolmogorov-Smirnov test
##
## data: modelo$residuals
## D = 0.075439, p-value = 0.67
## alternative hypothesis: two-sided
# Prueba de Shapiro-Wilk
shapiro.test <- shapiro.test(modelo$residuals)
shapiro.test
##
## Shapiro-Wilk normality test
##
## data: modelo$residuals
## W = 0.94132, p-value = 0.0005937