The Taylor polynomial of degree \(n\) of \(f\) at \(x=c\) is:
\(p_n(x) = f(c) + f'(c)(x-c) + \frac{f''(c)(x-c)^2}{2!} + \frac{f'''(c)(x-c)^3}{3!} + \dots + \frac{f^{(n)}(c)(x-c)^n}{n!}\)
Step 1: Find the first \(n\) derivatives of \(f(x)\).
Step 2: Evaluate these derivatives at \(x=0\).
Step 3: Substitute the derivatives into the Taylor Polynomial.
\[\begin{align*} p_n(x) & = 1 + x + x^2 + x^3 + \dots \\ & = \sum_{n=0}^{\infty} x^n \end{align*}\]
which is centered at \(c=0\). The interval of convergence is \((-1,1)\).
Step 1: Find the first \(n\) derivatives of \(f(x)\).
Step 2: Evaluate these derivatives at \(x=0\).
Step 3: Substitute the derivatives into the Taylor Polynomial.
\[\begin{align*} p_n(x) & = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \\ & = \sum_{n=0}^{\infty} \frac{x^n}{n!} \end{align*}\]
which is centered at \(c=0\). The interval of convergence is \((-\infty, \infty)\).
This one can be done in a different way. From Key Idea 8.8.1,
\(ln(x) = \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{(x-1)^n}{n}\)
The first few terms are,
\((x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \dots\)
The interval of convergence is \((0,2]\) and the series is centered at \(x=1\). We can center the series for \(f(x) = ln(1+x)\) at
\(x=1\) as well.
Substitute \(1+x\) to obtain,
\[\begin{align*} ln(1+x) & = \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{([1+x]-1)^n}{n} \\ & = \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{x^n}{n} \end{align*}\]
We will center the series on \(x=1\).
Step 1: Find the first few derivatives of \(f(x)\).
Step 2: Evaluate the derivatives at \(x=1\).
Step 2: Substitute the derivatives.
\[\begin{align*} p_n(x) & = 1 + \frac{1}{2}(x-1) - \frac{1}{4}\frac{(x-1)^2}{2!} + \frac{3}{8}\frac{(x-1)^3}{3!} \dots \\ & = 1 + \frac{x-1}{2} - \frac{(x-1)^2}{8} + \frac{(x-1)^3}{16} - \dots \end{align*}\]