Praktikum 10 - Visualisasi Data

Febrian Adhitya Cahya Belardi

Pendahuluan

Package Installation

library(ggplot2)            
library(tidyverse) 

Data & Visualisasi

EUvax <- read.csv("/Users/user/Downloads/EUvaccine.csv") 
dataworld <- map_data("world") 
dataEU <- left_join(dataworld, EUvax, by="region")
dataEU_vac <- dataEU %>% filter(!is.na(dataEU$Perc_vaccinated))
ggplot(dataEU_vac, aes( x = long, y = lat, group=group)) +
  geom_polygon(aes(fill = Perc_vaccinated), color = "black")+ 
  scale_fill_gradient(name = "% vaccinated", low = "yellow", high =  "red", na.value = "green")+
  theme(axis.text.x = element_blank(),
        axis.text.y = element_blank(),
        axis.ticks = element_blank(),
        axis.title.y=element_blank(),
        axis.title.x=element_blank(),
        rect = element_blank())

arrests <- USArrests 
arrests$region <- tolower(rownames(USArrests))

states_map <- map_data("state")
arrests_map <- left_join(states_map, arrests, by = "region")

ggplot(arrests_map, aes(long, lat, group = group))+
  geom_polygon(aes(fill = Assault), color = "white")+
  scale_fill_viridis_c(option = "C") +
  theme_classic() 

library("ggplot2")
library("sf")
## Linking to GEOS 3.11.0, GDAL 3.5.3, PROJ 9.1.0; sf_use_s2() is TRUE
library("rnaturalearth")
library("rnaturalearthdata")
## 
## Attaching package: 'rnaturalearthdata'
## The following object is masked from 'package:rnaturalearth':
## 
##     countries110
library(sf)
library(ggspatial)
world <- ne_countries(scale = "medium", returnclass = "sf") # part of `naturalearth` package

ggplot(data = world) +
    geom_sf()

ggplot(data = world) +
    geom_sf(aes(fill = pop_est)) +
    scale_fill_viridis_c(option = "volcano")
## Warning in viridisLite::viridis(n, alpha, begin, end, direction, option):
## Option 'volcano' does not exist. Defaulting to 'viridis'.

ggplot(data = world) +
    geom_sf() +
    coord_sf(xlim = c(-102.15, -74.12), ylim = c(7.65, 33.97), expand = FALSE)

    scale_fill_viridis_c(option = "magma") 
## <ScaleContinuous>
##  Range:  
##  Limits:    0 --    1
world_points <- st_centroid(world)
## Warning: st_centroid assumes attributes are constant over geometries
world_points <- cbind(world, st_coordinates(st_centroid(world$geometry)))

ggplot(data = world) +
  geom_sf() +
  geom_text(data= world_points,aes(x=X, y=Y, label=name),
      color = "pink", fontface = "bold", check_overlap = FALSE) +
  annotate(geom = "text", x = -90, y = 26, label = "Gulf of Mexico", 
      fontface = "italic", color = "orange", size = 6) +
    annotation_north_arrow(location = "bl", which_north = "true", 
        pad_x = unit(0.75, "in"), pad_y = unit(0.5, "in"),
        style = north_arrow_fancy_orienteering) +
  coord_sf(xlim = c(-102.15, -74.12), ylim = c(7.65, 33.97), expand = F) +
  theme_bw()

# saving the map

# ggsave("filename")

Opsi untuk visualisasi spasial: 1. Looker 2. Python 3. Tableau 4. PowerBI 5. Quicksight 6. SUperset 7. etc.