## Warning: package 'wooldridge' was built under R version 4.3.3
## Warning in data(hpricel): data set 'hpricel' not found
library(stargazer)
modelo_estimado<-lm("price~.",data = hprice1)
stargazer(modelo_estimado,title = "Modelo estimado", type = "text")##
## Modelo estimado
## ===============================================
## Dependent variable:
## ---------------------------
## NA
## -----------------------------------------------
## assess 1.233***
## (0.097)
##
## bdrms 2.652
## (2.118)
##
## lotsize 0.00003
## (0.0003)
##
## sqrft 0.008
## (0.019)
##
## colonial -0.410
## (3.390)
##
## lprice 276.094***
## (10.186)
##
## lassess -396.819***
## (38.182)
##
## llotsize 1.755
## (5.791)
##
## lsqrft -3.954
## (41.502)
##
## Constant 606.372**
## (246.442)
##
## -----------------------------------------------
## Observations 88
## R2 0.986
## Adjusted R2 0.984
## Residual Std. Error 12.921 (df = 78)
## F Statistic 602.196*** (df = 9; 78)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
## Warning: package 'tseries' was built under R version 4.3.3
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
##
## Jarque Bera Test
##
## data: modelo_estimado$residuals
## X-squared = 86.125, df = 2, p-value < 2.2e-16
## Warning: package 'fastGraph' was built under R version 4.3.3
alpha_sig<-0.05
JB<-salida_JB$statistic
gl<-salida_JB$parameter
VC<-qchisq(1-alpha_sig,gl,lower.tail = TRUE)
shadeDist(JB,ddist = "dchisq",
parm1 = gl,
lower.tail = FALSE,xmin = 0,
sub=paste("VC:",round(VC,2)," ","JB:",round(JB,2)))##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Warning: package 'gt' was built under R version 4.3.3
library(gtExtras) # Carga la librería gtExtras para agregar funcionalidades a las tablas creadas con gt## Warning: package 'gtExtras' was built under R version 4.3.3
residuos<-modelo_estimado$residuals # Crea un vector con los residuos del modelo estimado
residuos %>% # Utiliza el operador %>% para encadenar las operaciones siguientes al vector residuos
as_tibble() %>% # Convierte el vector residuos en una tibble (tabla) de una columna
mutate(posicion=row_number()) %>% # Agrega una columna llamada "posicion" con el número de fila
arrange(value) %>% # Ordena la tabla por los valores de residuos en orden ascendente
mutate(dist1=row_number()/n()) %>% # Agrega una columna "dist1" con los percentiles según su posición en la tabla (usando la función row_number() y n() para obtener el número de filas)
mutate(dist2=(row_number()-1)/n()) %>% # Agrega una columna "dist2" con los percentiles según su posición en la tabla, pero ajustando en una unidad para evitar problemas con los extremos de la distribución
mutate(zi=as.vector(scale(value,center=TRUE))) %>% # Agrega una columna "zi" con los valores de residuos escalados para tener media cero y varianza uno
mutate(pi=pnorm(zi,lower.tail = TRUE)) %>% # Agrega una columna "pi" con los valores de la función de distribución acumulada (CDF) de una distribución normal estándar evaluada en los valores de zi
mutate(dif1=abs(dist1-pi)) %>% # Agrega una columna "dif1" con las diferencias absolutas entre los percentiles según la posición y los valores de pi
mutate(dif2=abs(dist2-pi)) %>% # Agrega una columna "dif2" con las diferencias absolutas entre los percentiles ajustados según la posición y los valores de pi
rename(residuales=value) -> tabla_KS # Renombra la columna "value" como "residuales" y asigna la tabla resultante a la variable tabla_KS
#Formato
tabla_KS %>% # Utiliza el operador %>% para encadenar las operaciones siguientes a la tabla tabla_KS
gt() %>% # Crea una tabla con la función gt()
tab_header("Tabla para calcular el Estadistico KS") %>% # Agrega un encabezado a la tabla
tab_source_note(source_note = "Fuente: Elaboración propia") %>% # Agrega una nota de fuente a la tabla
tab_style( # Cambia el estilo de algunas celdas de la tabla
style = list(
cell_fill(color = "#A569BD"), # Cambia el color de fondo de las celdas a un tono de morado
cell_text(style = "italic") # Cambia el estilo de texto de las celdas a itálico
),
locations = cells_body( # Aplica el estilo a las celdas del cuerpo de la tabla que cumplan las siguientes condiciones:
columns = dif1, # Que pertenezcan a la columna "dif1"
rows = dif1==max(dif1) # Que pertenezcan a la fila donde el valor de "dif1" es máximo
)) %>%
tab_style( # Cambia el estilo de algunas celdas de la tabla
style = list(
cell_fill(color = "#3498DB"), # Cambia el color de fondo de las celdas a un tono de azul
cell_text(style = "italic") # Cambia el estilo de texto de las celdas a itálico
),
locations = cells_body( # Aplica el estilo a las celdas del cuerpo de la tabla que cumplan las siguientes condiciones:
columns = dif2, # Que pertenezcan a la columna "dif2"
rows = dif2==max(dif2) # Que pertenezcan a la fila donde el valor de "dif2" es máximo
))| Tabla para calcular el Estadistico KS | |||||||
| residuales | posicion | dist1 | dist2 | zi | pi | dif1 | dif2 |
|---|---|---|---|---|---|---|---|
| -41.2989150 | 68 | 0.01136364 | 0.00000000 | -3.375648564 | 0.0003682096 | 1.099543e-02 | 0.0003682096 |
| -23.3204472 | 53 | 0.02272727 | 0.01136364 | -1.906142909 | 0.0283158335 | 5.588561e-03 | 0.0169521971 |
| -22.5628916 | 69 | 0.03409091 | 0.02272727 | -1.844222609 | 0.0325753524 | 1.515557e-03 | 0.0098480796 |
| -20.9181052 | 37 | 0.04545455 | 0.03409091 | -1.709782732 | 0.0436530287 | 1.801517e-03 | 0.0095621196 |
| -20.1036293 | 12 | 0.05681818 | 0.04545455 | -1.643209930 | 0.0501697531 | 6.648429e-03 | 0.0047152076 |
| -19.6482343 | 48 | 0.06818182 | 0.05681818 | -1.605987318 | 0.0541383482 | 1.404347e-02 | 0.0026798336 |
| -18.9942513 | 31 | 0.07954545 | 0.06818182 | -1.552532727 | 0.0602674041 | 1.927805e-02 | 0.0079144141 |
| -18.3298397 | 44 | 0.09090909 | 0.07954545 | -1.498225730 | 0.0670373064 | 2.387178e-02 | 0.0125081481 |
| -16.4864218 | 33 | 0.10227273 | 0.09090909 | -1.347550322 | 0.0889015289 | 1.337120e-02 | 0.0020075620 |
| -12.8744141 | 66 | 0.11363636 | 0.10227273 | -1.052315718 | 0.1463273614 | 3.269100e-02 | 0.0440546341 |
| -11.0038306 | 16 | 0.12500000 | 0.11363636 | -0.899419872 | 0.1842145291 | 5.921453e-02 | 0.0705781654 |
| -10.0332997 | 36 | 0.13636364 | 0.12500000 | -0.820091612 | 0.2060819418 | 6.971831e-02 | 0.0810819418 |
| -9.6484892 | 63 | 0.14772727 | 0.13636364 | -0.788638365 | 0.2151617004 | 6.743443e-02 | 0.0787980641 |
| -8.6214495 | 25 | 0.15909091 | 0.14772727 | -0.704691238 | 0.2405012026 | 8.141029e-02 | 0.0927739299 |
| -8.6137642 | 32 | 0.17045455 | 0.15909091 | -0.704063066 | 0.2406967499 | 7.024220e-02 | 0.0816058408 |
| -7.5049668 | 57 | 0.18181818 | 0.17045455 | -0.613433313 | 0.2697949324 | 8.797675e-02 | 0.0993403869 |
| -6.7752121 | 46 | 0.19318182 | 0.18181818 | -0.553785374 | 0.2898628694 | 9.668105e-02 | 0.1080446876 |
| -6.7305352 | 82 | 0.20454545 | 0.19318182 | -0.550133615 | 0.2911138660 | 8.656841e-02 | 0.0979320479 |
| -6.5480845 | 88 | 0.21590909 | 0.20454545 | -0.535220644 | 0.2962486463 | 8.033956e-02 | 0.0917031918 |
| -6.3671194 | 34 | 0.22727273 | 0.21590909 | -0.520429109 | 0.3013822628 | 7.410954e-02 | 0.0854731719 |
| -4.7071332 | 75 | 0.23863636 | 0.22727273 | -0.384746848 | 0.3502124911 | 1.115761e-01 | 0.1229397639 |
| -4.1467978 | 77 | 0.25000000 | 0.23863636 | -0.338946729 | 0.3673249306 | 1.173249e-01 | 0.1286885670 |
| -4.1068770 | 13 | 0.26136364 | 0.25000000 | -0.335683718 | 0.3685546927 | 1.071911e-01 | 0.1185546927 |
| -3.9417052 | 29 | 0.27272727 | 0.26136364 | -0.322183078 | 0.3736570015 | 1.009297e-01 | 0.1122933652 |
| -3.5767192 | 3 | 0.28409091 | 0.27272727 | -0.292350226 | 0.3850094303 | 1.009185e-01 | 0.1122821576 |
| -3.3545986 | 65 | 0.29545455 | 0.28409091 | -0.274194755 | 0.3919674794 | 9.651293e-02 | 0.1078765704 |
| -3.0586260 | 72 | 0.30681818 | 0.29545455 | -0.250002848 | 0.4012925732 | 9.447439e-02 | 0.1058380277 |
| -2.8256330 | 1 | 0.31818182 | 0.30681818 | -0.230958704 | 0.4086734420 | 9.049162e-02 | 0.1018552602 |
| -2.5550806 | 49 | 0.32954545 | 0.31818182 | -0.208844568 | 0.4172847890 | 8.773933e-02 | 0.0991029708 |
| -2.5206267 | 87 | 0.34090909 | 0.32954545 | -0.206028415 | 0.4183843579 | 7.747527e-02 | 0.0888389033 |
| -2.4270263 | 9 | 0.35227273 | 0.34090909 | -0.198377799 | 0.4213747431 | 6.910202e-02 | 0.0804656522 |
| -2.2831744 | 10 | 0.36363636 | 0.35227273 | -0.186619778 | 0.4259793795 | 6.234302e-02 | 0.0737066522 |
| -2.1248700 | 80 | 0.37500000 | 0.36363636 | -0.173680459 | 0.4310582977 | 5.605830e-02 | 0.0674219341 |
| -1.8079549 | 79 | 0.38636364 | 0.37500000 | -0.147776775 | 0.4412594694 | 5.489583e-02 | 0.0662594694 |
| -1.7304233 | 11 | 0.39772727 | 0.38636364 | -0.141439575 | 0.4437613463 | 4.603407e-02 | 0.0573977099 |
| -1.3793116 | 43 | 0.40909091 | 0.39772727 | -0.112740766 | 0.4551180405 | 4.602713e-02 | 0.0573907678 |
| -1.3107578 | 15 | 0.42045455 | 0.40909091 | -0.107137381 | 0.4573399961 | 3.688545e-02 | 0.0482490871 |
| -0.9841003 | 85 | 0.43181818 | 0.42045455 | -0.080437384 | 0.4679446975 | 3.612652e-02 | 0.0474901520 |
| -0.8218197 | 55 | 0.44318182 | 0.43181818 | -0.067173057 | 0.4732219670 | 3.004015e-02 | 0.0414037852 |
| -0.7654623 | 58 | 0.45454545 | 0.44318182 | -0.062566579 | 0.4750558216 | 2.051037e-02 | 0.0318740034 |
| -0.1756014 | 67 | 0.46590909 | 0.45454545 | -0.014353127 | 0.4942741275 | 2.836504e-02 | 0.0397286730 |
| -0.1165840 | 56 | 0.47727273 | 0.46590909 | -0.009529222 | 0.4961984478 | 1.892572e-02 | 0.0302893569 |
| 0.1503223 | 62 | 0.48863636 | 0.47727273 | 0.012286888 | 0.5049016357 | 1.626527e-02 | 0.0276289085 |
| 0.2850896 | 19 | 0.50000000 | 0.48863636 | 0.023302361 | 0.5092954558 | 9.295456e-03 | 0.0206590921 |
| 0.4808659 | 60 | 0.51136364 | 0.50000000 | 0.039304530 | 0.5156762025 | 4.312566e-03 | 0.0156762025 |
| 0.7404134 | 27 | 0.52272727 | 0.51136364 | 0.060519159 | 0.5241289212 | 1.401649e-03 | 0.0127652849 |
| 0.8431883 | 83 | 0.53409091 | 0.52272727 | 0.068919665 | 0.5274732175 | 6.617692e-03 | 0.0047459448 |
| 1.0116768 | 50 | 0.54545455 | 0.53409091 | 0.082691410 | 0.5329515422 | 1.250300e-02 | 0.0011393669 |
| 1.0651444 | 73 | 0.55681818 | 0.54545455 | 0.087061687 | 0.5346887605 | 2.212942e-02 | 0.0107657849 |
| 1.4331671 | 26 | 0.56818182 | 0.55681818 | 0.117142748 | 0.5466265325 | 2.155529e-02 | 0.0101916493 |
| 1.5478694 | 21 | 0.57954545 | 0.56818182 | 0.126518170 | 0.5503391163 | 2.920634e-02 | 0.0178427019 |
| 1.6330240 | 54 | 0.59090909 | 0.57954545 | 0.133478451 | 0.5530924971 | 3.781659e-02 | 0.0264529574 |
| 1.7791547 | 22 | 0.60227273 | 0.59090909 | 0.145422733 | 0.5578114415 | 4.446129e-02 | 0.0330976494 |
| 1.9280651 | 17 | 0.61363636 | 0.60227273 | 0.157594218 | 0.5626117200 | 5.102464e-02 | 0.0396610072 |
| 2.0434993 | 64 | 0.62500000 | 0.61363636 | 0.167029459 | 0.5663265653 | 5.867343e-02 | 0.0473097983 |
| 2.4686017 | 4 | 0.63636364 | 0.62500000 | 0.201776043 | 0.5799540943 | 5.640954e-02 | 0.0450459057 |
| 2.5455524 | 20 | 0.64772727 | 0.63636364 | 0.208065761 | 0.5824111895 | 6.531608e-02 | 0.0539524469 |
| 2.6803507 | 59 | 0.65909091 | 0.64772727 | 0.219083766 | 0.5867076018 | 7.238331e-02 | 0.0610196709 |
| 2.7600191 | 41 | 0.67045455 | 0.65909091 | 0.225595625 | 0.5892420282 | 8.121252e-02 | 0.0698488808 |
| 3.1473027 | 51 | 0.68181818 | 0.67045455 | 0.257251019 | 0.6015074992 | 8.031068e-02 | 0.0689470463 |
| 3.1719704 | 7 | 0.69318182 | 0.68181818 | 0.259267282 | 0.6022854892 | 9.089633e-02 | 0.0795326926 |
| 3.2162912 | 47 | 0.70454545 | 0.69318182 | 0.262889931 | 0.6036822914 | 1.008632e-01 | 0.0894995268 |
| 3.3807103 | 78 | 0.71590909 | 0.70454545 | 0.276329048 | 0.6088523263 | 1.070568e-01 | 0.0956931282 |
| 3.5031146 | 52 | 0.72727273 | 0.71590909 | 0.286334010 | 0.6126888439 | 1.145839e-01 | 0.1032202470 |
| 3.6694580 | 18 | 0.73863636 | 0.72727273 | 0.299930414 | 0.6178848825 | 1.207515e-01 | 0.1093878448 |
| 4.5321986 | 70 | 0.75000000 | 0.73863636 | 0.370448226 | 0.6444757267 | 1.055243e-01 | 0.0941606370 |
| 4.5920714 | 84 | 0.76136364 | 0.75000000 | 0.375342048 | 0.6462969509 | 1.150667e-01 | 0.1037030491 |
| 5.3185296 | 74 | 0.77272727 | 0.76136364 | 0.434720546 | 0.6681173584 | 1.046099e-01 | 0.0932462780 |
| 5.4787177 | 30 | 0.78409091 | 0.77272727 | 0.447813834 | 0.6728562208 | 1.112347e-01 | 0.0998710519 |
| 6.0680656 | 28 | 0.79545455 | 0.78409091 | 0.495985351 | 0.6900476267 | 1.054069e-01 | 0.0940432824 |
| 6.1464676 | 8 | 0.80681818 | 0.79545455 | 0.502393691 | 0.6923046921 | 1.145135e-01 | 0.1031498533 |
| 7.0166330 | 40 | 0.81818182 | 0.80681818 | 0.573518388 | 0.7168531237 | 1.013287e-01 | 0.0899650581 |
| 7.8700740 | 23 | 0.82954545 | 0.81818182 | 0.643276078 | 0.7399775122 | 8.956794e-02 | 0.0782043060 |
| 8.0367148 | 86 | 0.84090909 | 0.82954545 | 0.656896792 | 0.7443763594 | 9.653273e-02 | 0.0851690952 |
| 8.0592050 | 35 | 0.85227273 | 0.84090909 | 0.658735073 | 0.7449670468 | 1.073057e-01 | 0.0959420441 |
| 8.1208002 | 14 | 0.86363636 | 0.85227273 | 0.663769681 | 0.7465811333 | 1.170552e-01 | 0.1056915939 |
| 8.1761378 | 61 | 0.87500000 | 0.86363636 | 0.668292810 | 0.7480266491 | 1.269734e-01 | 0.1156097145 |
| 8.1833683 | 45 | 0.88636364 | 0.87500000 | 0.668883803 | 0.7482151985 | 1.381484e-01 | 0.1267848015 |
| 8.7462391 | 39 | 0.89772727 | 0.88636364 | 0.714891164 | 0.7626618512 | 1.350654e-01 | 0.1237017851 |
| 10.1459482 | 71 | 0.90909091 | 0.89772727 | 0.829299156 | 0.7965324259 | 1.125585e-01 | 0.1011948469 |
| 10.8897858 | 5 | 0.92045455 | 0.90909091 | 0.890098200 | 0.8132934202 | 1.071611e-01 | 0.0957974889 |
| 11.3520843 | 24 | 0.93181818 | 0.92045455 | 0.927885078 | 0.8232664073 | 1.085518e-01 | 0.0971881382 |
| 13.0234074 | 2 | 0.94318182 | 0.93181818 | 1.064493978 | 0.8564475096 | 8.673431e-02 | 0.0753706722 |
| 23.7752790 | 6 | 0.95454545 | 0.94318182 | 1.943319493 | 0.9740112161 | 1.946576e-02 | 0.0308293980 |
| 24.7262254 | 76 | 0.96590909 | 0.95454545 | 2.021046976 | 0.9783625488 | 1.245346e-02 | 0.0238170942 |
| 26.3001756 | 38 | 0.97727273 | 0.96590909 | 2.149696908 | 0.9842104014 | 6.937674e-03 | 0.0183013105 |
| 31.5993386 | 42 | 0.98863636 | 0.97727273 | 2.582834491 | 0.9951003840 | 6.464020e-03 | 0.0178276567 |
| 53.4624652 | 81 | 1.00000000 | 0.98863636 | 4.369860414 | 0.9999937837 | 6.216299e-06 | 0.0113574201 |
| Fuente: Elaboración propia | |||||||
## [1] 0.1381484
En este caso dado que 0.1381484 < 0.875897 No se rechaza la Hipótesis Nula: ϵ∼N(0,σ2), por lo que los residuos siguen una distribución normal.
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: modelo_estimado$residuals
## D = 0.13815, p-value = 0.0002732
library(dplyr)
library(gt)
residuos<-modelo_estimado$residuals
residuos %>%
as_tibble() %>%
rename(residuales=value) %>%
arrange(residuales) %>%
mutate(pi=(row_number()-0.375)/(n()+0.25)) %>%
mutate(mi=qnorm(pi,lower.tail = TRUE)) %>%
mutate(ai=0)->tabla_SW
m<-sum(tabla_SW$mi^2)
n<-nrow(hprice1)
theta<-1/sqrt(n)
tabla_SW$ai[n]<- -2.706056*theta^5+4.434685*theta^4-2.071190*theta^3-0.147981*theta^2+0.2211570*theta+tabla_SW$mi[n]/sqrt(m)
tabla_SW$ai[n-1]<- -3.582633*theta^5+5.682633*theta^4-1.752461*theta^3-0.293762*theta^2+0.042981*theta+tabla_SW$mi[n-1]/sqrt(m)
tabla_SW$ai[1]<- -tabla_SW$ai[n]
tabla_SW$ai[2]<- -tabla_SW$ai[n-1]
omega<-(m-2*tabla_SW$mi[n]^2-2*tabla_SW$mi[n-1]^2)/(1-2*tabla_SW$ai[n]^2-2*tabla_SW$ai[n-1]^2)
tabla_SW$ai[3:(n-2)]<-tabla_SW$mi[3:(n-2)]/sqrt(omega)
tabla_SW %>%
mutate(ai_ui=ai*residuales,ui2=residuales^2) ->tabla_SW
tabla_SW %>%
gt() %>% tab_header("Tabla para calcular el Estadistico W") %>% # Agrega un encabezado a la tabla
tab_source_note(source_note = "Fuente: Elaboración propia")| Tabla para calcular el Estadistico W | |||||
| residuales | pi | mi | ai | ai_ui | ui2 |
|---|---|---|---|---|---|
| -41.2989150 | 0.007082153 | -2.45306927 | -0.286093929 | 11.8153688426 | 1.705600e+03 |
| -23.3204472 | 0.018413598 | -2.08767462 | -0.226331231 | 5.2781455054 | 5.438433e+02 |
| -22.5628916 | 0.029745042 | -1.88455395 | -0.201511408 | 4.5466800637 | 5.090841e+02 |
| -20.9181052 | 0.041076487 | -1.73832835 | -0.185875811 | 3.8881697572 | 4.375671e+02 |
| -20.1036293 | 0.052407932 | -1.62194155 | -0.173430814 | 3.4865887894 | 4.041559e+02 |
| -19.6482343 | 0.063739377 | -1.52411994 | -0.162970954 | 3.2020914774 | 3.860531e+02 |
| -18.9942513 | 0.075070822 | -1.43903134 | -0.153872609 | 2.9226949969 | 3.607816e+02 |
| -18.3298397 | 0.086402266 | -1.36324747 | -0.145769197 | 2.6719260222 | 3.359830e+02 |
| -16.4864218 | 0.097733711 | -1.29457343 | -0.138426027 | 2.2821498734 | 2.718021e+02 |
| -12.8744141 | 0.109065156 | -1.23151500 | -0.131683320 | 1.6953455908 | 1.657505e+02 |
| -11.0038306 | 0.120396601 | -1.17300649 | -0.125427129 | 1.3801788730 | 1.210843e+02 |
| -10.0332997 | 0.131728045 | -1.11825971 | -0.119573169 | 1.1997134451 | 1.006671e+02 |
| -9.6484892 | 0.143059490 | -1.06667420 | -0.114057239 | 1.1004800454 | 9.309334e+01 |
| -8.6214495 | 0.154390935 | -1.01778137 | -0.108829231 | 0.9382657131 | 7.432939e+01 |
| -8.6137642 | 0.165722380 | -0.97120790 | -0.103849228 | 0.8945327592 | 7.419693e+01 |
| -7.5049668 | 0.177053824 | -0.92665123 | -0.099084876 | 0.7436286973 | 5.632453e+01 |
| -6.7752121 | 0.188385269 | -0.88386232 | -0.094509548 | 0.6403222346 | 4.590350e+01 |
| -6.7305352 | 0.199716714 | -0.84263354 | -0.090101040 | 0.6064282202 | 4.530010e+01 |
| -6.5480845 | 0.211048159 | -0.80278966 | -0.085840618 | 0.5620916168 | 4.287741e+01 |
| -6.3671194 | 0.222379603 | -0.76418130 | -0.081712307 | 0.5202720168 | 4.054021e+01 |
| -4.7071332 | 0.233711048 | -0.72667986 | -0.077702356 | 0.3657553367 | 2.215710e+01 |
| -4.1467978 | 0.245042493 | -0.69017366 | -0.073798824 | 0.3060288053 | 1.719593e+01 |
| -4.1068770 | 0.256373938 | -0.65456498 | -0.069991263 | 0.2874455070 | 1.686644e+01 |
| -3.9417052 | 0.267705382 | -0.61976766 | -0.066270458 | 0.2612186106 | 1.553704e+01 |
| -3.5767192 | 0.279036827 | -0.58570518 | -0.062628228 | 0.2240035887 | 1.279292e+01 |
| -3.3545986 | 0.290368272 | -0.55230918 | -0.059057264 | 0.1981134138 | 1.125333e+01 |
| -3.0586260 | 0.301699717 | -0.51951819 | -0.055550992 | 0.1699097071 | 9.355193e+00 |
| -2.8256330 | 0.313031161 | -0.48727661 | -0.052103467 | 0.1472252757 | 7.984202e+00 |
| -2.5550806 | 0.324362606 | -0.45553386 | -0.048709282 | 0.1244561405 | 6.528437e+00 |
| -2.5206267 | 0.335694051 | -0.42424369 | -0.045363489 | 0.1143444238 | 6.353559e+00 |
| -2.4270263 | 0.347025496 | -0.39336354 | -0.042061540 | 0.1020844645 | 5.890457e+00 |
| -2.2831744 | 0.358356941 | -0.36285409 | -0.038799229 | 0.0885854047 | 5.212885e+00 |
| -2.1248700 | 0.369688385 | -0.33267878 | -0.035572645 | 0.0755872484 | 4.515073e+00 |
| -1.8079549 | 0.381019830 | -0.30280344 | -0.032378138 | 0.0585382146 | 3.268701e+00 |
| -1.7304233 | 0.392351275 | -0.27319601 | -0.029212277 | 0.0505496052 | 2.994365e+00 |
| -1.3793116 | 0.403682720 | -0.24382619 | -0.026071824 | 0.0359611692 | 1.902501e+00 |
| -1.3107578 | 0.415014164 | -0.21466524 | -0.022953704 | 0.0300867461 | 1.718086e+00 |
| -0.9841003 | 0.426345609 | -0.18568573 | -0.019854987 | 0.0195392978 | 9.684534e-01 |
| -0.8218197 | 0.437677054 | -0.15686137 | -0.016772858 | 0.0137842642 | 6.753876e-01 |
| -0.7654623 | 0.449008499 | -0.12816677 | -0.013704604 | 0.0104903585 | 5.859326e-01 |
| -0.1756014 | 0.460339943 | -0.09957734 | -0.010647596 | 0.0018697326 | 3.083585e-02 |
| -0.1165840 | 0.471671388 | -0.07106908 | -0.007599268 | 0.0008859529 | 1.359182e-02 |
| 0.1503223 | 0.483002833 | -0.04261848 | -0.004557105 | -0.0006850343 | 2.259678e-02 |
| 0.2850896 | 0.494334278 | -0.01420234 | -0.001518626 | -0.0004329445 | 8.127607e-02 |
| 0.4808659 | 0.505665722 | 0.01420234 | 0.001518626 | 0.0007302556 | 2.312321e-01 |
| 0.7404134 | 0.516997167 | 0.04261848 | 0.004557105 | 0.0033741415 | 5.482121e-01 |
| 0.8431883 | 0.528328612 | 0.07106908 | 0.007599268 | 0.0064076139 | 7.109665e-01 |
| 1.0116768 | 0.539660057 | 0.09957734 | 0.010647596 | 0.0107719266 | 1.023490e+00 |
| 1.0651444 | 0.550991501 | 0.12816677 | 0.013704604 | 0.0145973828 | 1.134533e+00 |
| 1.4331671 | 0.562322946 | 0.15686137 | 0.016772858 | 0.0240383072 | 2.053968e+00 |
| 1.5478694 | 0.573654391 | 0.18568573 | 0.019854987 | 0.0307329262 | 2.395900e+00 |
| 1.6330240 | 0.584985836 | 0.21466524 | 0.022953704 | 0.0374839503 | 2.666767e+00 |
| 1.7791547 | 0.596317280 | 0.24382619 | 0.026071824 | 0.0463858081 | 3.165392e+00 |
| 1.9280651 | 0.607648725 | 0.27319601 | 0.029212277 | 0.0563231721 | 3.717435e+00 |
| 2.0434993 | 0.618980170 | 0.30280344 | 0.032378138 | 0.0661647023 | 4.175889e+00 |
| 2.4686017 | 0.630311615 | 0.33267878 | 0.035572645 | 0.0878146910 | 6.093994e+00 |
| 2.5455524 | 0.641643059 | 0.36285409 | 0.038799229 | 0.0987654678 | 6.479837e+00 |
| 2.6803507 | 0.652974504 | 0.39336354 | 0.042061540 | 0.1127396768 | 7.184280e+00 |
| 2.7600191 | 0.664305949 | 0.42424369 | 0.045363489 | 0.1252040980 | 7.617706e+00 |
| 3.1473027 | 0.675637394 | 0.45553386 | 0.048709282 | 0.1533028568 | 9.905514e+00 |
| 3.1719704 | 0.686968839 | 0.48727661 | 0.052103467 | 0.1652706584 | 1.006140e+01 |
| 3.2162912 | 0.698300283 | 0.51951819 | 0.055550992 | 0.1786681696 | 1.034453e+01 |
| 3.3807103 | 0.709631728 | 0.55230918 | 0.059057264 | 0.1996555004 | 1.142920e+01 |
| 3.5031146 | 0.720963173 | 0.58570518 | 0.062628228 | 0.2193938641 | 1.227181e+01 |
| 3.6694580 | 0.732294618 | 0.61976766 | 0.066270458 | 0.2431766631 | 1.346492e+01 |
| 4.5321986 | 0.743626062 | 0.65456498 | 0.069991263 | 0.3172143073 | 2.054082e+01 |
| 4.5920714 | 0.754957507 | 0.69017366 | 0.073798824 | 0.3388894739 | 2.108712e+01 |
| 5.3185296 | 0.766288952 | 0.72667986 | 0.077702356 | 0.4132622799 | 2.828676e+01 |
| 5.4787177 | 0.777620397 | 0.76418130 | 0.081712307 | 0.4476786605 | 3.001635e+01 |
| 6.0680656 | 0.788951841 | 0.80278966 | 0.085840618 | 0.5208864993 | 3.682142e+01 |
| 6.1464676 | 0.800283286 | 0.84263354 | 0.090101040 | 0.5538031197 | 3.777906e+01 |
| 7.0166330 | 0.811614731 | 0.88386232 | 0.094509548 | 0.6631388126 | 4.923314e+01 |
| 7.8700740 | 0.822946176 | 0.92665123 | 0.099084876 | 0.7798053058 | 6.193807e+01 |
| 8.0367148 | 0.834277620 | 0.97120790 | 0.103849228 | 0.8346066255 | 6.458878e+01 |
| 8.0592050 | 0.845609065 | 1.01778137 | 0.108829231 | 0.8770770798 | 6.495079e+01 |
| 8.1208002 | 0.856940510 | 1.06667420 | 0.114057239 | 0.9262360559 | 6.594740e+01 |
| 8.1761378 | 0.868271955 | 1.11825971 | 0.119573169 | 0.9776467141 | 6.684923e+01 |
| 8.1833683 | 0.879603399 | 1.17300649 | 0.125427129 | 1.0264163848 | 6.696752e+01 |
| 8.7462391 | 0.890934844 | 1.23151500 | 0.131683320 | 1.1517338019 | 7.649670e+01 |
| 10.1459482 | 0.902266289 | 1.29457343 | 0.138426027 | 1.4044632937 | 1.029403e+02 |
| 10.8897858 | 0.913597734 | 1.36324747 | 0.145769197 | 1.5873953403 | 1.185874e+02 |
| 11.3520843 | 0.924929178 | 1.43903134 | 0.153872609 | 1.7467748206 | 1.288698e+02 |
| 13.0234074 | 0.936260623 | 1.52411994 | 0.162970954 | 2.1224371189 | 1.696091e+02 |
| 23.7752790 | 0.947592068 | 1.62194155 | 0.173430814 | 4.1233660018 | 5.652639e+02 |
| 24.7262254 | 0.958923513 | 1.73832835 | 0.185875811 | 4.5960071921 | 6.113862e+02 |
| 26.3001756 | 0.970254958 | 1.88455395 | 0.201511408 | 5.2997854104 | 6.916992e+02 |
| 31.5993386 | 0.981586402 | 2.08767462 | 0.226331231 | 7.1519172024 | 9.985182e+02 |
| 53.4624652 | 0.992917847 | 2.45306927 | 0.286093929 | 15.2952866999 | 2.858235e+03 |
| Fuente: Elaboración propia | |||||
mu<-0.0038915*log(n)^3-0.083751*log(n)^2-0.31082*log(n)-1.5861
sigma<-exp(0.0030302*log(n)^2-0.082676*log(n)-0.4803)
Wn<-(log(1-W)-mu)/sigma
print(Wn)## [1] 4.474404
## [1] 3.831244e-06
En este caso dado que 3.831244 > 0.05 No se rechaza la Hipótesis Nula: ϵ∼N(0,σ2), por lo que los residuos siguen una distribución normal.
##
## Shapiro-Wilk normality test
##
## data: modelo_estimado$residuals
## W = 0.89732, p-value = 3.831e-06