Mixed Effects Models are used when there is one or more predictor variables with multiple values for each unit of observation. Mixed Effects Models are prominently used in research involving human and animal subjects in fields ranging from genetics to marketing, and have also been used in baseball and industrial statistics.

I found that the best and simple explanation of Mixed Effects Models is presented by Christoph Scherber in his video “Mixed effects models with R”. The video showing basic usage of the “lme” command (nlme library) in R. In particular, the comparison output from the lm() command with that from a call to lme(). Now let’s take a look at the difference of two models.

data(Oats)

INSPECT DATASET

## Classes 'nfnGroupedData', 'nfGroupedData', 'groupedData' and 'data.frame':   72 obs. of  4 variables:
##  $ Block  : Ord.factor w/ 6 levels "VI"<"V"<"III"<..: 6 6 6 6 6 6 6 6 6 6 ...
##  $ Variety: Factor w/ 3 levels "Golden Rain",..: 3 3 3 3 1 1 1 1 2 2 ...
##  $ nitro  : num  0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 ...
##  $ yield  : num  111 130 157 174 117 114 161 141 105 140 ...
##  - attr(*, "formula")=Class 'formula'  language yield ~ nitro | Block
##   .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##  - attr(*, "labels")=List of 2
##   ..$ y: chr "Yield"
##   ..$ x: chr "Nitrogen concentration"
##  - attr(*, "units")=List of 2
##   ..$ y: chr "(bushels/acre)"
##   ..$ x: chr "(cwt/acre)"
##  - attr(*, "inner")=Class 'formula'  language ~Variety
##   .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
plot(Oats)

Let’s Model this data

Model1=lm(yield~Variety*nitro, data=Oats)
summary(Model1)
## 
## Call:
## lm(formula = yield ~ Variety * nitro, data = Oats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -35.950 -14.967  -1.258  12.675  52.050 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               81.900      7.342  11.155  < 2e-16 ***
## VarietyMarvellous          8.517     10.383   0.820 0.415033    
## VarietyVictory            -8.600     10.383  -0.828 0.410506    
## nitro                     75.333     19.622   3.839 0.000279 ***
## VarietyMarvellous:nitro  -10.750     27.750  -0.387 0.699718    
## VarietyVictory:nitro       5.750     27.750   0.207 0.836487    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 21.5 on 66 degrees of freedom
## Multiple R-squared:  0.4134, Adjusted R-squared:  0.369 
## F-statistic: 9.303 on 5 and 66 DF,  p-value: 9.66e-07
Model2=lme(yield~Variety*nitro, data=Oats,random=~1|Block/Variety)
summary(Model2)
## Linear mixed-effects model fit by REML
##   Data: Oats 
##        AIC      BIC    logLik
##   581.2372 600.9441 -281.6186
## 
## Random effects:
##  Formula: ~1 | Block
##         (Intercept)
## StdDev:    14.64487
## 
##  Formula: ~1 | Variety %in% Block
##         (Intercept) Residual
## StdDev:    10.39931 12.99039
## 
## Fixed effects:  yield ~ Variety * nitro 
##                             Value Std.Error DF   t-value p-value
## (Intercept)              81.90000  8.570715 51  9.555796  0.0000
## VarietyMarvellous         8.51667  8.684676 10  0.980655  0.3499
## VarietyVictory           -8.60000  8.684676 10 -0.990250  0.3454
## nitro                    75.33333 11.858547 51  6.352661  0.0000
## VarietyMarvellous:nitro -10.75000 16.770518 51 -0.641006  0.5244
## VarietyVictory:nitro      5.75000 16.770518 51  0.342864  0.7331
##  Correlation: 
##                         (Intr) VrtyMr VrtyVc nitro  VrtyM:
## VarietyMarvellous       -0.507                            
## VarietyVictory          -0.507  0.500                     
## nitro                   -0.415  0.410  0.410              
## VarietyMarvellous:nitro  0.294 -0.579 -0.290 -0.707       
## VarietyVictory:nitro     0.294 -0.290 -0.579 -0.707  0.500
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -1.78878622 -0.64954421 -0.06301218  0.57818029  1.63463799 
## 
## Number of Observations: 72
## Number of Groups: 
##              Block Variety %in% Block 
##                  6                 18
coef(Model1)
##             (Intercept)       VarietyMarvellous          VarietyVictory 
##               81.900000                8.516667               -8.600000 
##                   nitro VarietyMarvellous:nitro    VarietyVictory:nitro 
##               75.333333              -10.750000                5.750000
coef(Model2)
##                 (Intercept) VarietyMarvellous VarietyVictory    nitro
## VI/Golden Rain     69.89230          8.516667           -8.6 75.33333
## VI/Marvellous      79.57387          8.516667           -8.6 75.33333
## VI/Victory         74.29846          8.516667           -8.6 75.33333
## V/Golden Rain      72.45580          8.516667           -8.6 75.33333
## V/Marvellous       61.27554          8.516667           -8.6 75.33333
## V/Victory          74.88368          8.516667           -8.6 75.33333
## III/Golden Rain    67.29867          8.516667           -8.6 75.33333
## III/Marvellous     86.33209          8.516667           -8.6 75.33333
## III/Victory        69.18703          8.516667           -8.6 75.33333
## IV/Golden Rain     83.09717          8.516667           -8.6 75.33333
## IV/Marvellous      69.93864          8.516667           -8.6 75.33333
## IV/Victory         76.17321          8.516667           -8.6 75.33333
## II/Golden Rain     88.94013          8.516667           -8.6 75.33333
## II/Marvellous      90.88844          8.516667           -8.6 75.33333
## II/Victory         75.18212          8.516667           -8.6 75.33333
## I/Golden Rain     109.71591          8.516667           -8.6 75.33333
## I/Marvellous      103.39143          8.516667           -8.6 75.33333
## I/Victory         121.67549          8.516667           -8.6 75.33333
##                 VarietyMarvellous:nitro VarietyVictory:nitro
## VI/Golden Rain                   -10.75                 5.75
## VI/Marvellous                    -10.75                 5.75
## VI/Victory                       -10.75                 5.75
## V/Golden Rain                    -10.75                 5.75
## V/Marvellous                     -10.75                 5.75
## V/Victory                        -10.75                 5.75
## III/Golden Rain                  -10.75                 5.75
## III/Marvellous                   -10.75                 5.75
## III/Victory                      -10.75                 5.75
## IV/Golden Rain                   -10.75                 5.75
## IV/Marvellous                    -10.75                 5.75
## IV/Victory                       -10.75                 5.75
## II/Golden Rain                   -10.75                 5.75
## II/Marvellous                    -10.75                 5.75
## II/Victory                       -10.75                 5.75
## I/Golden Rain                    -10.75                 5.75
## I/Marvellous                     -10.75                 5.75
## I/Victory                        -10.75                 5.75

Looking at the parameters we can see that they don’t change when we use lme function. Standard errors are effected by random effects in the model.Comparing two models we see different intercepts for each block in Model2, while linear regression shows constant intercept of 81.9.

plot(ranef(Model2))

This plot shows simmetrical spread of random effects around 0. There is no particular pattern.

plot(Model2)

Looking at the Linear Model and Mixed Effect Model we can see that including random effects in the model is off necessary.

As has been demonstrated a mixed effects model has both random and fixed effects while a standard linear regression model has only fixed effects. Mixed effects models are useful when we have data with more than one source of random variability.These models are useful in a wide variety of disciplines in the physical, biological and social sciences.