• f (x) = (1−x) • f (x) = ex • f (x) = ln(1 + x) • f(x)=x(1/2)
For each function, only consider its valid ranges as indicated in the notes when you are computing the Taylor Series expansion. Please submit your assignment as an R- Markdown document.
\[f(x)=\frac {1}{1-x}\]
Apply the Taylor Series Equality formula to calculate the expansions of the given functions.
\[ f(x) = \sum_{n=0}^{\infty} \frac{f^n(c)}{n!}(n-c)^n\]
Find the first derivatives for the given function f(x)
\[f^0(c)=\frac{1}{1-c}\]
\[f^1(c)=\frac{1}{(1-c)^2}\]
\[f^2(c)=\frac{1}{(1-c)^3}\]
\[f^3(c)=\frac{1}{(1-c)^4}\]
\[f^4(c)=\frac{1}{(1-c)^5}\]
Thus, the Taylor series expansion for f(x) converges over the interval (−1,1) and can be defined as:
\[ f(x) \approx P(x) = \frac{1}{(1-c)^{0}!}(x-c)^0 + \frac{1}{(1-c)^{1}1!}(x-c)^1 + \frac{2}{(1-c)^{2}2!}(x-c)^2+ \frac{2}{(1-c)^{3}3!}(x-c)^3 +m\frac{2}{(1-c)^{4}4!}(x-c)^4+...\]
The sum notation for the expansion can be denoted as:
\[ f(x) \approx P(x) = \sum_{n=0}^{\infty} \frac{1}{(1-c)^{n+1}}(x-c)^n\]
Setting c=0 gives the Maclaurin Series of f(x)
\[ f(x) \approx P(x) = \sum_{n=0}^{\infty}x^n= 1+x+x^2+x^3+x^4\]
# Function of f(x) = 1 / (1 - x)
taylor_series_expansion <- function(x, terms) {
result <- 0
for (n in 0:(terms - 1)) {
term <- x^n
result <- result + term
}
return(result)
}
# Number of terms in the series
num_terms <- 4
# Calculate f(x) = 1 / (1 - x) at different x values
x_values <- seq(-1, 1, by = 0.2) # Range of x values for demonstration
for (x in x_values) {
series_result <- taylor_series_expansion(x, num_terms)
cat("f(", x, ") ≈ P(", x, ") =", series_result, "\n")
}
## f( -1 ) ≈ P( -1 ) = 0
## f( -0.8 ) ≈ P( -0.8 ) = 0.328
## f( -0.6 ) ≈ P( -0.6 ) = 0.544
## f( -0.4 ) ≈ P( -0.4 ) = 0.696
## f( -0.2 ) ≈ P( -0.2 ) = 0.832
## f( 0 ) ≈ P( 0 ) = 1
## f( 0.2 ) ≈ P( 0.2 ) = 1.248
## f( 0.4 ) ≈ P( 0.4 ) = 1.624
## f( 0.6 ) ≈ P( 0.6 ) = 2.176
## f( 0.8 ) ≈ P( 0.8 ) = 2.952
## f( 1 ) ≈ P( 1 ) = 4
The Taylor Series expansion of the exponential function f(x)=e^x is valid for all real numbers x. It is given by
\[ e^x = \sum_{n=0}^{\infty}\frac {x^n}{n!}\]
This expansion represents an infinite sum of powers of x divided by their factorial.
Now finding several derivatives.
\[f(x)^0(c) = e^c\]
\[f(x)^1(c) = e^c\]
\[f(x)^2(c) = e^c\]
\[f(x)^3(c) = e^c\]
\[f(x)^4(c) = e^c\]
\[f(x)^4(c) = e^c\]
\[f(x) = \frac {e^c}{0!}(x-c)^0 + \frac {e^c}{1!}(x-c)^1 + \frac {e^c}{2!}(x-c)^2 + \frac {e^c}{3!}(x-c)^3 +...\]
\[ = \sum_{n=0}^{\infty}\frac {(x-c)^n}{n!}\]
The Maclaurin Series, where c=0
\[ = \sum_{n=0}^{\infty}\frac {x^n}{n!}= 1 + x + \frac{x^2}{2!}+ \frac{x^3}{3!}+ \frac{x^4}{4!}+...\]
# Function of e^x
taylor_exp <- function(x, terms = 4) {
result <- 0
for (n in 0:terms) {
result <- result + (x^n) / factorial(n)
}
return(result)
}
# Set specific value of x
x_value <- 2
result <- taylor_exp(x_value)
# Print the result
cat("e^", x_value, "approximated using Taylor series with 4 terms is:", result, "\n")
## e^ 2 approximated using Taylor series with 4 terms is: 7
Find first derivatives for the given function f(x)
\[f^0(c)=ln(1+c)\]
\[f^1(c)=\frac{1}{c+1}\]
\[f^2(c)=\frac{1}{(c+1)^2}\]
\[f^3(c)=\frac{2}{(c+1)^3}\]
\[f^4(c)=\frac{6}{(c+1)^4}\]
At x=0, these derivatives simplify:
\[f(0)=ln(1)=0\]
\[f^1(0)=\frac{1}{1} =1\]
\[f^2(0)=\frac{-1}{1^2} =-1\]
\[f^3(0)=\frac{2}{1^3} =2\]
\[f^4(0)=\frac{6}{1^4} =-6\]
Taylor series expansion for f(x)=ln(1+x) converges |x|<1 and can be defined as:
\[ f(x) \approx P(x) = P(x)\]
\[ f(x) \approx P(x) = \frac{ln(1+c)}{0!}(x-c)^0 + \frac{1}{(c+1)1!}(x-c)^1 - \frac{1}{(c+1)^22!}(x-c)^2 + \frac{2}{(c+1)^33!}(x-c)^3\] - (x-c)^4 +… ]
The sum notation for the expansion can be written as:
\[ f(x) \approx P(x) = ln(1+c)+\sum_{n=1}^{\infty}(-1)^{n+1}\frac {(x-c)^n}{n(c+1)^n}\]
Setting c=0 gives the Maclaurin Series of f(x):
\[ f(x) \approx P(x) = ln(1+c)+\sum_{n=1}^{\infty}(-1)^{n+1}\frac {(x)^n}{n}= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} +...\]
# Function of ln(1 + x)
maclaurin_ln <- function(x, terms = 4) {
result <- 0
for (n in 1:terms) {
result <- result + ((-1)^(n+1) * (x^n)) / n
}
return(result)
}
# Value of x
x_value <- 0.5
# Calculate the approximation using the Maclaurin series with 4 terms
approximation <- maclaurin_ln(x_value, terms = 4)
# Calculate the actual value of ln(1 + x)
actual_value <- log(1 + x_value)
# Print the results
cat("ln(1 +", x_value, ") approximated using Maclaurin series with 4 terms is:", approximation, "\n")
## ln(1 + 0.5 ) approximated using Maclaurin series with 4 terms is: 0.4010417
cat("Actual value of ln(1 +", x_value, ") is:", actual_value)
## Actual value of ln(1 + 0.5 ) is: 0.4054651
Taylor series expansion around a specific point, typically around x=c (where c is the center).
The Taylor series expansion of f(x)= sqrt(x) around x=c involves calculating the derivatives of the function at x=a to determine the coefficients of the series.
Starting with f(x)=sqrt(x):
\[ \sqrt[4]{4ac} = \sqrt{4ac}\sqrt{4ac} \]
Now starting with
\[f(x)=\sqrt{x}\]
\[f^1(x)=\frac{1}{2\sqrt{x}}= \frac{1}{2x^{1/2}}\]
\[f^2(x)=\frac{1}{4x^{3/2}}\]
\[f^3(x)=\frac{3}{8x^{5/2}}\]
\[f^4(x)=\frac{15}{16x^{7/2}}\]
Calculate these derivatives at a specific point, say x=1(which simplifies the calculations):
\[f(1) = 1\]
\[f^1(1) = \frac{1}{2}\]
\[f^2(1) = \frac{1}{4}\]
\[f^3(1) = \frac{3}{8}\]
\[f^4(1) = \frac{15}{16}\]
The Taylor series expansion for f(x)=sqrt(x) around x=1 (for instance) is:
\[\sqrt{x}= 1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2 - \frac{1}{16}(x-1)^3-...=\sum_{n=0}^{\infty}\frac{f^n(1)}{n!}(x-1)^n\]
Taylor series expansion around x=1 for sqrt(x) would be valid for x close to 1 (within the convergence radius of the series).
# Function of sqrt(x) around x = 1
taylor_sqrt <- function(x, terms = 4) {
result <- 1 # The term for n = 0
for (n in 1:terms) {
result <- result + ((-1)^(n-1) * factorial(2*n-2) * (x-1)^n) / (2^n * factorial(n))
}
return(result)
}
# Value of x
x_value <- 1.5
# Calculate the approximation
approximation <- taylor_sqrt(x_value, terms = 4)
# Calculate the actual value
actual_value <- sqrt(x_value)
# Print the results
cat("sqrt(", x_value, ") approximation around x = 1 with 4 terms is:", approximation, "\n")
## sqrt( 1.5 ) approximation around x = 1 with 4 terms is: 1.132812
cat("Actual value of sqrt(", x_value, ") is:", actual_value)
## Actual value of sqrt( 1.5 ) is: 1.224745