library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidyquant)
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## 
## ######################### Warning from 'xts' package ##########################
## #                                                                             #
## # The dplyr lag() function breaks how base R's lag() function is supposed to  #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or       #
## # source() into this session won't work correctly.                            #
## #                                                                             #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop           #
## # dplyr from breaking base R's lag() function.                                #
## #                                                                             #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning.  #
## #                                                                             #
## ###############################################################################
## 
## Attaching package: 'xts'
## 
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## 
## Attaching package: 'PerformanceAnalytics'
## 
## The following object is masked from 'package:graphics':
## 
##     legend
## 
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library(timetk)
library(umap)
library(h2o)
## 
## ----------------------------------------------------------------------
## 
## Your next step is to start H2O:
##     > h2o.init()
## 
## For H2O package documentation, ask for help:
##     > ??h2o
## 
## After starting H2O, you can use the Web UI at http://localhost:54321
## For more information visit https://docs.h2o.ai
## 
## ----------------------------------------------------------------------
## 
## 
## Attaching package: 'h2o'
## 
## The following objects are masked from 'package:lubridate':
## 
##     day, hour, month, week, year
## 
## The following objects are masked from 'package:stats':
## 
##     cor, sd, var
## 
## The following objects are masked from 'package:base':
## 
##     &&, %*%, %in%, ||, apply, as.factor, as.numeric, colnames,
##     colnames<-, ifelse, is.character, is.factor, is.numeric, log,
##     log10, log1p, log2, round, signif, trunc
library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.1.1 ──
## ✔ broom        1.0.5     ✔ rsample      1.2.0
## ✔ dials        1.2.0     ✔ tune         1.1.2
## ✔ infer        1.0.6     ✔ workflows    1.1.3
## ✔ modeldata    1.3.0     ✔ workflowsets 1.0.1
## ✔ parsnip      1.1.1     ✔ yardstick    1.3.0
## ✔ recipes      1.0.9     
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter()   masks stats::filter()
## ✖ xts::first()      masks dplyr::first()
## ✖ recipes::fixed()  masks stringr::fixed()
## ✖ dplyr::lag()      masks stats::lag()
## ✖ xts::last()       masks dplyr::last()
## ✖ dials::momentum() masks TTR::momentum()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step()   masks stats::step()
## • Use tidymodels_prefer() to resolve common conflicts.
start_date <- "1989-01-01"

symbols_txt <- c("CTICLAIMS", # Connecticut
                 "MEICLAIMS", # Maine
                 "MAICLAIMS", # Massachusetts
                 "NHICLAIMS", # New Hampshire
                 "RIICLAIMS", # Rhode Island
                 "VTICLAIMS") # Vermont

claims_tbl <- tq_get(symbols_txt, get = "economic.data", from = start_date) %>%
    mutate(symbol = fct_recode(symbol,
                               "Connecticut"   = "CTICLAIMS",
                               "Maine"         = "MEICLAIMS",
                               "Massachusetts" = "MAICLAIMS",
                               "New Hampshire" = "NHICLAIMS",
                               "Rhode Island"  = "RIICLAIMS",
                               "Vermont"       = "VTICLAIMS")) %>%
    rename(claims = price)

I have a dataset called claims_tbl that looks like this.

claims_tbl looks like this :

symbol date claims 1 Connecticut 1989-01-07 8345 2 Connecticut 1989-01-14 6503 3 Connecticut 1989-01-21 3821 4 Connecticut 1989-01-28 4663 5 Connecticut 1989-02-04 4162 6 Connecticut 1989-02-11 4337 7 Connecticut 1989-02-18 4079 8 Connecticut 1989-02-25 3556 9 Connecticut 1989-03-04 3826 10 Connecticut 1989-03-11 3515 # ℹ 11,048 more rows

The goal is to help predict claims by each state.

Please write R code to create a predictive model that predicts the probability of claims for each state.

Load necessary libraries

library(tidyverse)
library(tidymodels)
library(h2o)

Split data into training and testing sets

set.seed(123) # for reproducibility
claims_split <- initial_split(claims_tbl, prop = 0.8)
claims_train <- training(claims_split)
claims_test <- testing(claims_split)

Define recipe for pre-processing

claims_recipe <- recipe(claims ~ ., data = claims_train) %>%
  step_dummy(all_nominal(), -all_outcomes())

Pre-process training data

claims_prep <- claims_recipe %>%
  prep() %>%
  bake(new_data = claims_train)

Convert data to H2O frame

h2o.init()
##  Connection successful!
## 
## R is connected to the H2O cluster: 
##     H2O cluster uptime:         15 days 21 hours 
##     H2O cluster timezone:       America/New_York 
##     H2O data parsing timezone:  UTC 
##     H2O cluster version:        3.44.0.3 
##     H2O cluster version age:    4 months and 12 days 
##     H2O cluster name:           H2O_started_from_R_spencer_qns693 
##     H2O cluster total nodes:    1 
##     H2O cluster total memory:   2.85 GB 
##     H2O cluster total cores:    8 
##     H2O cluster allowed cores:  8 
##     H2O cluster healthy:        TRUE 
##     H2O Connection ip:          localhost 
##     H2O Connection port:        54321 
##     H2O Connection proxy:       NA 
##     H2O Internal Security:      FALSE 
##     R Version:                  R version 4.2.2 (2022-10-31)
## Warning in h2o.clusterInfo(): 
## Your H2O cluster version is (4 months and 12 days) old. There may be a newer version available.
## Please download and install the latest version from: https://h2o-release.s3.amazonaws.com/h2o/latest_stable.html
claims_h2o_train <- as.h2o(claims_prep)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

Train a Random Forest model with H2O

rf_model <- h2o.randomForest(y = "claims", training_frame = claims_h2o_train)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

Pre-process testing data

claims_test_prep <- claims_recipe %>%
  prep() %>%
  bake(new_data = claims_test)

Convert testing data to H2O frame

claims_h2o_test <- as.h2o(claims_test_prep)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

Make predictions on testing data

predictions <- h2o.predict(rf_model, newdata = claims_h2o_test)
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

Convert predictions to data frame

predictions_df <- as.data.frame(predictions)

Bind predictions with original testing data

claims_predictions <- bind_cols(claims_test, predictions_df)

View predicted probabilities

claims_predictions %>%
  select(symbol, predict) %>%
  rename(probability_of_claim = predict)
## # A tibble: 2,212 × 2
##    symbol      probability_of_claim
##    <fct>                      <dbl>
##  1 Connecticut                4749.
##  2 Connecticut                4749.
##  3 Connecticut                4749.
##  4 Connecticut                4749.
##  5 Connecticut                4749.
##  6 Connecticut                4749.
##  7 Connecticut                4749.
##  8 Connecticut                4749.
##  9 Connecticut                4749.
## 10 Connecticut                4749.
## # ℹ 2,202 more rows