Krister Martinez 3
Four different designs for a digital computer circuit are being
studied to compare the amount of noise present. The following data have
been obtained:
Dependent variable. Noise Present amount
The factor. Circuit Design
List the factor levels. Design 1, Design 2, Design 3, Design 4.
If you decided to conduct multiple t tests instead of ANOVA, list all
the t tests you would have to conduct. In other words, list each pair of
designs that you would need to compare using t tests. D1 vs D2, D1 vs
D3, D1 vs D4. D2 vs D3, D2 vs D4. D3 vs D4.
20 pigs are assigned at random among 4 experimental groups. Each
group is fed a different diet. The data are the pig’s weight, in
kilograms, after being raised on these diets for 10 months. We wish to
determine whether the mean pig weights are the same for all 4 diets or
not.
Download the CSV file “Pigs_Weights”. Then, read it into R.
Pigs_Weights_DF
NA
The dependent variable. The pigs Weight
The factor. The Diet Groups
The factor levels. Diet1, Diet2, Diet3, Diet4
levels(Pigs_Weights_DF$Diet)
[1] "D1" "D2" "D3" "D4"
str (Pigs_Weights_DF)
'data.frame': 20 obs. of 2 variables:
$ Diet : Factor w/ 4 levels "D1","D2","D3",..: 1 1 1 1 1 2 2 2 2 2 ...
$ Weight: num 80.8 77.1 85 78.7 81.8 88.3 87.7 79 86.3 79.9 ...
State the hypotheses (Ho and Ha).
Ho: All diets result in the same mean weight
Ha: At least 2 of the diets result in different mean weights
Compute the average weight for each diet.
sort(tapply(Pigs_Weights_DF$Weight, Pigs_Weights_DF$Diet, mean))
D1 D2 D4 D3
80.68 84.24 86.38 87.34
Run ANOVA and make the appropriate conclusion. Use a significance
level of 0.05.
anova_Pigs_weights = aov(Pigs_Weights_DF$Weight ~ Pigs_Weights_DF$Diet)
summary(anova_Pigs_weights)
Df Sum Sq Mean Sq F value Pr(>F)
Pigs_Weights_DF$Diet 3 130.8 43.60 3.134 0.0547 .
Residuals 16 222.5 13.91
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Because the P value is bigger than 0.05 we would fail to reject the
null hypothesis. We cannot conclude that there are significant
differences between group means. Support Ho, reject Ha.
- (20 points) For some extra credit, I plotted the data and the
results using boxplots to get an idea of the group distributions and
potential differences. :)
# Creating a boxplot
boxplot(Weight ~ Diet, data = Pigs_Weights_DF,
xlab = "Diet Type", ylab = "Weight (kg)",
main = "Boxplot of Weights Across Different Diets",
col = c("lightblue", "lightpink", "lightgreen", "lightyellow"),
notch = FALSE)

# Adding labels
text(x = 1:4, y = tapply(data$Weight, data$Diet, max) + 1,
labels = c("D1", "D2", "D3", "D4"),
col = "red", cex = 1)
Error in data$Diet : object of type 'closure' is not subsettable
Consider the data shown in the table from question 1. Enter this data
in R by following these steps:
Create a vector called “design” by using this code: design= rep
(c(“1”,“2”,“3”,“4”), each= 5)
design= rep (c("1","2","3","4"), each= 5)
design
[1] "1" "1" "1" "1" "1" "2" "2" "2" "2" "2" "3" "3" "3" "3" "3" "4" "4" "4" "4" "4"
Create a vector called “noise” and just enter all the values from
question 1’s table. Enter the values by row (i.e., all the values from
row 1 followed by all the values from row 2,…)
noise = c(21,20,29,30,24,30,31,33,26,30,27,26,25,35,39,35,41,33,28,38)
noise
[1] 21 20 29 30 24 30 31 33 26 30 27 26 25 35 39 35 41 33 28 38
ANOVA test:
State the hypotheses (Ho and Ha) Ho: states that there are no
significant differences among the group means Ha: posits that at least
one group mean is different from the others.
Run ANOVA and make the appropriate conclusion. Use a significance
level of 0.05.
anova_design_noise = aov(noise ~ design)
summary (anova_design_noise)
Df Sum Sq Mean Sq F value Pr(>F)
design 3 261 86.98 3.845 0.0301 *
Residuals 16 362 22.63
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Since the P value 0.0301 is smaller than our given significance level
of 0.05 we will reject the the null hypothesis Ho. At least 2 design
means make a different impact in the noise levels.
- (15 points) Conduct a post-hoc test and discuss which designs lead
to different average noise levels.
sort (tapply(noise,design, mean))
1 2 3 4
24.8 30.0 30.4 35.0
pairwise.t.test (noise, design, p.adjust.method = "bonfe")
Pairwise comparisons using t tests with pooled SD
data: noise and design
1 2 3
2 0.619 - -
3 0.487 1.000 -
4 0.022 0.696 0.875
P value adjustment method: bonferroni
post_hoc <- TukeyHSD(anova_design_noise)
print(post_hoc)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = noise ~ design)
$design
diff lwr upr p adj
2-1 5.2 -3.406868 13.806868 0.3419780
3-1 5.6 -3.006868 14.206868 0.2826091
4-1 10.2 1.593132 18.806868 0.0176270
3-2 0.4 -8.206868 9.006868 0.9991237
4-2 5.0 -3.606868 13.606868 0.3744075
4-3 4.6 -4.006868 13.206868 0.4442230
Both of our Post-Hoc test, Bonfe and Tukey, plus our box plot graph,
tell us that the 4-1 have a P-Value of less than our given significance
level of 0.05
I plotted the data and the results using box plots to get an idea of
the group distributions and potential differences.
# Creating a boxplot with labels
boxplot(noise ~ design,
main = "Boxplot of Noise Levels Across Different Designs",
xlab = "Design",
ylab = "Noise Level",
col = c("lightblue", "lightgreen", "lightpink", "lightyellow"),
names = c("Design 1", "Design 2", "Design 3", "Design 4"))

I was reading more details about the 2 different Post-Hoc tests, I
have learned that both test serve to investigate where the significant
differences lie following a significant ANOVA test. TukeyHSD is utilized
to identify pairs of means that are significant from each other, while,
the Bonferroni correction corrects the problem of inflated Type I errors
during multiple compararisons but that corrections could also create
more Type II errors. I like the TukeyHSD Post_Hoc test better. It is in
its name “Honest”.
The End
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpLcmlzdGVyIE1hcnRpbmV6DQozDQoNCg0KRm91ciBkaWZmZXJlbnQgZGVzaWducyBmb3IgYSBkaWdpdGFsIGNvbXB1dGVyIGNpcmN1aXQgYXJlIGJlaW5nIHN0dWRpZWQgdG8gY29tcGFyZSB0aGUgYW1vdW50IG9mIG5vaXNlIHByZXNlbnQuIFRoZSBmb2xsb3dpbmcgZGF0YSBoYXZlIGJlZW4gb2J0YWluZWQ6DQoNCkRlcGVuZGVudCB2YXJpYWJsZS4NCk5vaXNlIFByZXNlbnQgYW1vdW50DQoNClRoZSBmYWN0b3IuDQpDaXJjdWl0IERlc2lnbg0KDQpMaXN0IHRoZSBmYWN0b3IgbGV2ZWxzLg0KRGVzaWduIDEsIERlc2lnbiAyLCBEZXNpZ24gMywgRGVzaWduIDQuDQoNCklmIHlvdSBkZWNpZGVkIHRvIGNvbmR1Y3QgbXVsdGlwbGUgdCB0ZXN0cyBpbnN0ZWFkIG9mIEFOT1ZBLCBsaXN0IGFsbCB0aGUgdCB0ZXN0cyB5b3Ugd291bGQgaGF2ZSB0byBjb25kdWN0LiBJbiBvdGhlciB3b3JkcywgbGlzdCBlYWNoIHBhaXIgb2YgZGVzaWducyB0aGF0IHlvdSB3b3VsZCBuZWVkIHRvIGNvbXBhcmUgdXNpbmcgdCB0ZXN0cy4gDQpEMSB2cyBEMiwgRDEgdnMgRDMsIEQxIHZzIEQ0Lg0KRDIgdnMgRDMsIEQyIHZzIEQ0Lg0KRDMgdnMgRDQuDQoNCg0KMjAgcGlncyBhcmUgYXNzaWduZWQgYXQgcmFuZG9tIGFtb25nIDQgZXhwZXJpbWVudGFsIGdyb3Vwcy4gRWFjaCBncm91cCBpcyBmZWQgYSBkaWZmZXJlbnQgZGlldC4gVGhlIGRhdGEgYXJlIHRoZSBwaWcncyB3ZWlnaHQsIGluIGtpbG9ncmFtcywgYWZ0ZXIgYmVpbmcgcmFpc2VkIG9uIHRoZXNlIGRpZXRzIGZvciAxMCBtb250aHMuIFdlIHdpc2ggdG8gZGV0ZXJtaW5lIHdoZXRoZXIgdGhlIG1lYW4gcGlnIHdlaWdodHMgYXJlIHRoZSBzYW1lIGZvciBhbGwgNCBkaWV0cyBvciBub3QuDQoNCkRvd25sb2FkIHRoZSBDU1YgZmlsZSDigJxQaWdzX1dlaWdodHPigJ0uIFRoZW4sIHJlYWQgaXQgaW50byBSLg0KDQpgYGB7cn0NCg0KUGlnc19XZWlnaHRzX0RGDQoNCmBgYA0KDQoNCg0KVGhlIGRlcGVuZGVudCB2YXJpYWJsZS4NClRoZSBwaWdzIFdlaWdodA0KDQpUaGUgZmFjdG9yLg0KVGhlIERpZXQgR3JvdXBzDQoNClRoZSBmYWN0b3IgbGV2ZWxzLg0KRGlldDEsIERpZXQyLCBEaWV0MywgRGlldDQNCmBgYHtyfQ0KbGV2ZWxzKFBpZ3NfV2VpZ2h0c19ERiREaWV0KQ0KYGBgDQpgYGB7cn0NCnN0ciAoUGlnc19XZWlnaHRzX0RGKQ0KYGBgDQoNCg0KU3RhdGUgdGhlIGh5cG90aGVzZXMgKEhvIGFuZCBIYSkuDQoNCkhvOiBBbGwgZGlldHMgcmVzdWx0IGluIHRoZSBzYW1lIG1lYW4gd2VpZ2h0DQoNCkhhOiBBdCBsZWFzdCAyIG9mIHRoZSBkaWV0cyByZXN1bHQgaW4gZGlmZmVyZW50IG1lYW4gd2VpZ2h0cw0KDQpDb21wdXRlIHRoZSBhdmVyYWdlIHdlaWdodCBmb3IgZWFjaCBkaWV0Lg0KYGBge3J9DQpzb3J0KHRhcHBseShQaWdzX1dlaWdodHNfREYkV2VpZ2h0LCBQaWdzX1dlaWdodHNfREYkRGlldCwgbWVhbikpDQpgYGANCg0KDQpSdW4gQU5PVkEgYW5kIG1ha2UgdGhlIGFwcHJvcHJpYXRlIGNvbmNsdXNpb24uIFVzZSBhIHNpZ25pZmljYW5jZSBsZXZlbCBvZiAwLjA1Lg0KYGBge3J9DQphbm92YV9QaWdzX3dlaWdodHMgPSBhb3YoUGlnc19XZWlnaHRzX0RGJFdlaWdodCB+IFBpZ3NfV2VpZ2h0c19ERiREaWV0KQ0KDQpzdW1tYXJ5KGFub3ZhX1BpZ3Nfd2VpZ2h0cykNCg0KYGBgDQpCZWNhdXNlIHRoZSBQIHZhbHVlIGlzIGJpZ2dlciB0aGFuIDAuMDUgd2Ugd291bGQgZmFpbCB0byByZWplY3QgdGhlIG51bGwgaHlwb3RoZXNpcy4gV2UgY2Fubm90IGNvbmNsdWRlIHRoYXQgdGhlcmUgYXJlIHNpZ25pZmljYW50IGRpZmZlcmVuY2VzIGJldHdlZW4gZ3JvdXAgbWVhbnMuICBTdXBwb3J0IEhvLCByZWplY3QgSGEuDQoNCmUpICgyMCBwb2ludHMpIEZvciBzb21lIGV4dHJhIGNyZWRpdCwgSSBwbG90dGVkIHRoZSBkYXRhIGFuZCB0aGUgcmVzdWx0cyB1c2luZyBib3hwbG90cyB0byBnZXQgYW4gaWRlYSBvZiB0aGUgZ3JvdXAgZGlzdHJpYnV0aW9ucyBhbmQgcG90ZW50aWFsIGRpZmZlcmVuY2VzLiA6KQ0KDQpgYGB7cn0NCg0KIyBDcmVhdGluZyBhIGJveHBsb3QNCmJveHBsb3QoV2VpZ2h0IH4gRGlldCwgZGF0YSA9IFBpZ3NfV2VpZ2h0c19ERiwNCiAgICAgICAgeGxhYiA9ICJEaWV0IFR5cGUiLCB5bGFiID0gIldlaWdodCAoa2cpIiwNCiAgICAgICAgbWFpbiA9ICJCb3hwbG90IG9mIFdlaWdodHMgQWNyb3NzIERpZmZlcmVudCBEaWV0cyIsDQogICAgICAgIGNvbCA9IGMoImxpZ2h0Ymx1ZSIsICJsaWdodHBpbmsiLCAibGlnaHRncmVlbiIsICJsaWdodHllbGxvdyIpLA0KICAgICAgICBub3RjaCA9IEZBTFNFKQ0KDQojIEFkZGluZyBsYWJlbHMNCnRleHQoeCA9IDE6NCwgeSA9IHRhcHBseShkYXRhJFdlaWdodCwgZGF0YSREaWV0LCBtYXgpICsgMSwgDQogICAgIGxhYmVscyA9IGMoIkQxIiwgIkQyIiwgIkQzIiwgIkQ0IiksDQogICAgIGNvbCA9ICJyZWQiLCBjZXggPSAxKQ0KYGBgDQoNCg0KQ29uc2lkZXIgdGhlIGRhdGEgc2hvd24gaW4gdGhlIHRhYmxlIGZyb20gcXVlc3Rpb24gMS4gRW50ZXIgdGhpcyBkYXRhIGluIFIgYnkgZm9sbG93aW5nIHRoZXNlIHN0ZXBzOg0KDQpDcmVhdGUgYSB2ZWN0b3IgY2FsbGVkIOKAnGRlc2lnbuKAnSBieSB1c2luZyB0aGlzIGNvZGU6DQpkZXNpZ249IHJlcCAoYygiMSIsIjIiLCIzIiwiNCIpLCBlYWNoPSA1KQ0KDQoNCmBgYHtyfQ0KDQpkZXNpZ249IHJlcCAoYygiMSIsIjIiLCIzIiwiNCIpLCBlYWNoPSA1KQ0KZGVzaWduDQoNCmBgYA0KQ3JlYXRlIGEgdmVjdG9yIGNhbGxlZCDigJxub2lzZeKAnSBhbmQganVzdCBlbnRlciBhbGwgdGhlIHZhbHVlcyBmcm9tIHF1ZXN0aW9uIDHigJlzIHRhYmxlLiBFbnRlciB0aGUgdmFsdWVzIGJ5IHJvdyAoaS5lLiwgYWxsIHRoZSB2YWx1ZXMgZnJvbSByb3cgMSBmb2xsb3dlZCBieSBhbGwgdGhlIHZhbHVlcyBmcm9tIHJvdyAyLC4uLikNCg0KYGBge3J9DQoNCm5vaXNlID0gYygyMSwyMCwyOSwzMCwyNCwzMCwzMSwzMywyNiwzMCwyNywyNiwyNSwzNSwzOSwzNSw0MSwzMywyOCwzOCkNCm5vaXNlIA0KDQpgYGANCg0KDQpBTk9WQSB0ZXN0Og0KDQpTdGF0ZSB0aGUgaHlwb3RoZXNlcyAoSG8gYW5kIEhhKQ0KSG86IHN0YXRlcyB0aGF0IHRoZXJlIGFyZSBubyBzaWduaWZpY2FudCBkaWZmZXJlbmNlcyBhbW9uZyB0aGUgZ3JvdXAgbWVhbnMNCkhhOiBwb3NpdHMgdGhhdCBhdCBsZWFzdCBvbmUgZ3JvdXAgbWVhbiBpcyBkaWZmZXJlbnQgZnJvbSB0aGUgb3RoZXJzLg0KDQpSdW4gQU5PVkEgYW5kIG1ha2UgdGhlIGFwcHJvcHJpYXRlIGNvbmNsdXNpb24uIFVzZSBhIHNpZ25pZmljYW5jZSBsZXZlbCBvZiAwLjA1Lg0KYGBge3J9DQphbm92YV9kZXNpZ25fbm9pc2UgPSBhb3Yobm9pc2UgfiBkZXNpZ24pDQpzdW1tYXJ5IChhbm92YV9kZXNpZ25fbm9pc2UpDQpgYGANClNpbmNlIHRoZSBQIHZhbHVlIDAuMDMwMSBpcyBzbWFsbGVyIHRoYW4gb3VyIGdpdmVuIHNpZ25pZmljYW5jZSBsZXZlbCBvZiAwLjA1IHdlIHdpbGwgcmVqZWN0IHRoZSB0aGUgbnVsbCBoeXBvdGhlc2lzIEhvLiAgQXQgbGVhc3QgMiBkZXNpZ24gbWVhbnMgbWFrZSBhIGRpZmZlcmVudCBpbXBhY3QgaW4gdGhlIG5vaXNlIGxldmVscy4gDQoNCmMpICgxNSBwb2ludHMpIENvbmR1Y3QgYSBwb3N0LWhvYyB0ZXN0IGFuZCBkaXNjdXNzIHdoaWNoIGRlc2lnbnMgbGVhZCB0byBkaWZmZXJlbnQgYXZlcmFnZSBub2lzZSBsZXZlbHMuIA0KYGBge3J9DQpzb3J0ICh0YXBwbHkobm9pc2UsZGVzaWduLCBtZWFuKSkNCmBgYA0KDQoNCmBgYHtyfQ0KcGFpcndpc2UudC50ZXN0IChub2lzZSwgZGVzaWduLCBwLmFkanVzdC5tZXRob2QgPSAiYm9uZmUiKQ0KYGBgDQpgYGB7cn0NCnBvc3RfaG9jIDwtIFR1a2V5SFNEKGFub3ZhX2Rlc2lnbl9ub2lzZSkNCnByaW50KHBvc3RfaG9jKQ0KYGBgDQpCb3RoIG9mIG91ciBQb3N0LUhvYyB0ZXN0LCBCb25mZSBhbmQgVHVrZXksIHBsdXMgb3VyIGJveCBwbG90IGdyYXBoLCB0ZWxsIHVzIHRoYXQgdGhlIDQtMSBoYXZlIGEgUC1WYWx1ZSBvZiBsZXNzIHRoYW4gb3VyIGdpdmVuIHNpZ25pZmljYW5jZSBsZXZlbCBvZiAwLjA1IA0KDQpJIHBsb3R0ZWQgdGhlIGRhdGEgYW5kIHRoZSByZXN1bHRzIHVzaW5nIGJveCBwbG90cyB0byBnZXQgYW4gaWRlYSBvZiB0aGUgZ3JvdXAgZGlzdHJpYnV0aW9ucyBhbmQgcG90ZW50aWFsIGRpZmZlcmVuY2VzLg0KDQoNCmBgYHtyfQ0KIyBDcmVhdGluZyBhIGJveHBsb3Qgd2l0aCBsYWJlbHMNCmJveHBsb3Qobm9pc2UgfiBkZXNpZ24sDQogICAgICAgIG1haW4gPSAiQm94cGxvdCBvZiBOb2lzZSBMZXZlbHMgQWNyb3NzIERpZmZlcmVudCBEZXNpZ25zIiwNCiAgICAgICAgeGxhYiA9ICJEZXNpZ24iLA0KICAgICAgICB5bGFiID0gIk5vaXNlIExldmVsIiwNCiAgICAgICAgY29sID0gYygibGlnaHRibHVlIiwgImxpZ2h0Z3JlZW4iLCAibGlnaHRwaW5rIiwgImxpZ2h0eWVsbG93IiksDQogICAgICAgIG5hbWVzID0gYygiRGVzaWduIDEiLCAiRGVzaWduIDIiLCAiRGVzaWduIDMiLCAiRGVzaWduIDQiKSkNCg0KYGBgDQpJIHdhcyByZWFkaW5nIG1vcmUgZGV0YWlscyBhYm91dCB0aGUgMiBkaWZmZXJlbnQgUG9zdC1Ib2MgdGVzdHMsIEkgaGF2ZSBsZWFybmVkIHRoYXQgYm90aCB0ZXN0IHNlcnZlIHRvIGludmVzdGlnYXRlIHdoZXJlIHRoZSBzaWduaWZpY2FudCBkaWZmZXJlbmNlcyBsaWUgZm9sbG93aW5nIGEgc2lnbmlmaWNhbnQgQU5PVkEgdGVzdC4gIFR1a2V5SFNEIGlzIHV0aWxpemVkIHRvIGlkZW50aWZ5IHBhaXJzIG9mIG1lYW5zIHRoYXQgYXJlIHNpZ25pZmljYW50IGZyb20gZWFjaCBvdGhlciwgd2hpbGUsIHRoZSBCb25mZXJyb25pIGNvcnJlY3Rpb24gY29ycmVjdHMgdGhlIHByb2JsZW0gb2YgaW5mbGF0ZWQgVHlwZSBJIGVycm9ycyBkdXJpbmcgbXVsdGlwbGUgY29tcGFyYXJpc29ucyBidXQgdGhhdCBjb3JyZWN0aW9ucyBjb3VsZCBhbHNvIGNyZWF0ZSBtb3JlIFR5cGUgSUkgZXJyb3JzLiAgSSBsaWtlIHRoZSBUdWtleUhTRCBQb3N0X0hvYyB0ZXN0IGJldHRlci4gIEl0IGlzIGluIGl0cyBuYW1lICJIb25lc3QiLiAgDQoNCg0KVGhlIEVuZA0KDQoNCg==