# librarias
library(nortest)
library(corrplot)
library(car)
library(ellipse)
library(mvnormalTest)
library(ACSWR)
library(Hotelling)
library(psych)
library(biotools)
Numa experiência clássica realizada de 1918 a 1934, macieiras de
diferentes porta-enxertos foram comparados (Andrews e Herzberg 1985,
pp. 357–360). Os dados para oito árvores de cada um dos seis
porta-enxertos estão contidos no objeto rootstock. As
variáveis medidas estão listadas a seguir:
\(y_1\): circunferência do
tronco aos 4 anos (mm \(\times\)
100)
\(y_2\): crescimento da extensão
em 4 anos (m)
\(y_3\): circunferência do
tronco aos 15 anos (mm \(\times\)
100)
\(y_4\): peso da árvore acima do
solo em 15 anos (lb \(\times\)
1000)
colnames(rootstock) <- c("grupo","y_1","y_2","y_3","y_4")
rootstock
- Faça uma analise descritiva dos dados e verifique se a suposição de
normalidade multivariada é adequada.
- Faça um teste de hipóteses para verificar se as matrizes de
covariâncias dos 6 grupos são iguais.
- Calcule as matrizes de somas de quadradas envolvidas na MANOVA.
(verifique a decomposição \(\mathbf{T} =
\mathbf{B} + \mathbf{W}\)).
- Teste a igualdade dos vetores de médias \(\boldsymbol{\mu}_1 = \cdots \boldsymbol{\mu}_6 =
\boldsymbol{0}\).
- Em caso de rejeição de \(H_0\),
determine quais variáveis são responsáveis pela rejeição.
- Proponha e realize um teste de hipóteses para \(H_0: \boldsymbol{\mu}_2 = \frac{\boldsymbol{\mu}_1
+ \boldsymbol{\mu}_3}{2}\).
LS0tCnRpdGxlOiAiQXVsYSBQcsOhdGljYSAzIChHRVQwMDEyNikgLSBNQU5PVkEiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCmBgYHtyIHNldHVwLCB3YXJuaW5nPUZBTFNFLCBtZXNzYWdlPUZBTFNFfQojIGxpYnJhcmlhcwpsaWJyYXJ5KG5vcnRlc3QpCmxpYnJhcnkoY29ycnBsb3QpCmxpYnJhcnkoY2FyKQpsaWJyYXJ5KGVsbGlwc2UpCmxpYnJhcnkobXZub3JtYWxUZXN0KQpsaWJyYXJ5KEFDU1dSKQpsaWJyYXJ5KEhvdGVsbGluZykKbGlicmFyeShwc3ljaCkKbGlicmFyeShiaW90b29scykKYGBgCgpOdW1hIGV4cGVyacOqbmNpYSBjbMOhc3NpY2EgcmVhbGl6YWRhIGRlIDE5MTggYSAxOTM0LCBtYWNpZWlyYXMKZGUgZGlmZXJlbnRlcyBwb3J0YS1lbnhlcnRvcyBmb3JhbSBjb21wYXJhZG9zIChBbmRyZXdzIGUgSGVyemJlcmcgMTk4NSwgcHAuIDM1N+KAkzM2MCkuIE9zIGRhZG9zIHBhcmEgb2l0byDDoXJ2b3JlcyBkZSBjYWRhIHVtIGRvcyBzZWlzIHBvcnRhLWVueGVydG9zIGVzdMOjbyBjb250aWRvcyBubyBvYmpldG8gYHJvb3RzdG9ja2AuIEFzIHZhcmnDoXZlaXMgbWVkaWRhcyBlc3TDo28gbGlzdGFkYXMgYSBzZWd1aXI6CgotICR5XzEkOiBjaXJjdW5mZXLDqm5jaWEgZG8gdHJvbmNvIGFvcyA0IGFub3MgKG1tICRcdGltZXMkIDEwMCkKCi0gJHlfMiQ6IGNyZXNjaW1lbnRvIGRhIGV4dGVuc8OjbyBlbSA0IGFub3MgKG0pCgotICR5XzMkOiBjaXJjdW5mZXLDqm5jaWEgZG8gdHJvbmNvIGFvcyAxNSBhbm9zIChtbSAkXHRpbWVzJCAxMDApCgotICR5XzQkOiBwZXNvIGRhIMOhcnZvcmUgYWNpbWEgZG8gc29sbyBlbQoxNSBhbm9zIChsYiAkXHRpbWVzJCAxMDAwKQoKCmBgYHtyLCBlY2hvPWZhbHNlfQpyb290c3RvY2sgPC0gcmVhZC50YWJsZSgifi9Eb2N1bWVudHMvQ3Vyc29zX0dFVF9VRkYvMjAyNDFHRVQwMDEyNkExL0RhdGFzZXRzL3Jvb3RzdG9jay5kYXQiLCBxdW90ZT0iXCIiLCBjb21tZW50LmNoYXI9IiIpCiNjb2xuYW1lcyhyb290c3RvY2spIDwtIGMoImdydXBvIiwieV8xIiwieV8yIiwieV8zIiwieV80IikKYGBgCgpgYGB7cn0KY29sbmFtZXMocm9vdHN0b2NrKSA8LSBjKCJncnVwbyIsInlfMSIsInlfMiIsInlfMyIsInlfNCIpCnJvb3RzdG9jawpgYGAKCgooYSkgRmHDp2EgdW1hIGFuYWxpc2UgZGVzY3JpdGl2YSBkb3MgZGFkb3MgZSB2ZXJpZmlxdWUgc2UgYSBzdXBvc2nDp8OjbyBkZSBub3JtYWxpZGFkZSBtdWx0aXZhcmlhZGEgw6kgYWRlcXVhZGEuCihiKSBGYcOnYSB1bSB0ZXN0ZSBkZSBoaXDDs3Rlc2VzIHBhcmEgdmVyaWZpY2FyIHNlIGFzIG1hdHJpemVzIGRlIGNvdmFyacOibmNpYXMgZG9zIDYgZ3J1cG9zIHPDo28gaWd1YWlzLgooYykgQ2FsY3VsZSBhcyBtYXRyaXplcyBkZSBzb21hcyBkZSBxdWFkcmFkYXMgZW52b2x2aWRhcyBuYSBNQU5PVkEuICh2ZXJpZmlxdWUgYSBkZWNvbXBvc2nDp8OjbyAkXG1hdGhiZntUfSA9IFxtYXRoYmZ7Qn0gKyBcbWF0aGJme1d9JCkuCihkKSBUZXN0ZSBhIGlndWFsZGFkZSBkb3MgdmV0b3JlcyBkZSBtw6lkaWFzICRcYm9sZHN5bWJvbHtcbXV9XzEgPSBcY2RvdHMgXGJvbGRzeW1ib2x7XG11fV82ID0gXGJvbGRzeW1ib2x7MH0kLiAKKGUpIEVtIGNhc28gZGUgcmVqZWnDp8OjbyBkZSAkSF8wJCwgZGV0ZXJtaW5lIHF1YWlzIHZhcmnDoXZlaXMgc8OjbyByZXNwb25zw6F2ZWlzIHBlbGEgcmVqZWnDp8Ojby4KKGYpIFByb3BvbmhhIGUgcmVhbGl6ZSB1bSB0ZXN0ZSBkZSBoaXDDs3Rlc2VzIHBhcmEgJEhfMDogXGJvbGRzeW1ib2x7XG11fV8yID0gXGZyYWN7XGJvbGRzeW1ib2x7XG11fV8xICsgXGJvbGRzeW1ib2x7XG11fV8zfXsyfSQuCgo=