# Example data 
data <- c(4, 8, 6, 5, 3, 7)

# Calculating mean
mean_data <- mean(data)
print(mean_data)
## [1] 5.5
# Sorting data
sorted_data <- sort(data)

# Calculating median
median_data <- median(sorted_data)
print(median_data)
## [1] 5.5
# Example data
data <- c(4, 4, 6, 5, 4, 7)

# Calculating mode
# R does not have a built-in mode function, so we create one
mode_data <- function(x) {
  uniqx <- unique(x)
  uniqx[which.max(tabulate(match(x, uniqx)))]
}

# Print mode
print(mode_data(data))
## [1] 4
# Example data
data <- c(4, 8, 6, 5, 3, 7)

# Calculating range
range_value <- max(data) - min(data)
print(range_value)
## [1] 5
# Calculating IQR
iqr_value <- IQR(data)
print(iqr_value)
## [1] 2.5
# Calculating variance
variance_data <- var(data)
print(variance_data)
## [1] 3.5
# Calculating standard deviation
std_deviation <- sd(data)
print(std_deviation)
## [1] 1.870829
# Install e1071 package if it's not already installed
if (!require(e1071)) install.packages("e1071")
## Loading required package: e1071
## Warning: package 'e1071' was built under R version 4.3.3
# Load the e1071 package
library(e1071)
# Generating example data
set.seed(123) # for reproducibility
data_normal <- rnorm(1000)  # normally distributed data
data_skewed <- rexp(1000, 2)  # positively skewed data

# Calculating skewness
skewness_normal <- skewness(data_normal)
skewness_skewed <- skewness(data_skewed)

# Calculating kurtosis
kurtosis_normal <- kurtosis(data_normal)
kurtosis_skewed <- kurtosis(data_skewed)

# Printing results
print(paste("Skewness (Normal Distribution):", skewness_normal))
## [1] "Skewness (Normal Distribution): 0.0651959979701102"
print(paste("Skewness (Skewed Distribution):", skewness_skewed))
## [1] "Skewness (Skewed Distribution): 1.6855398530975"
print(paste("Kurtosis (Normal Distribution):", kurtosis_normal))
## [1] "Kurtosis (Normal Distribution): -0.080102010098833"
print(paste("Kurtosis (Skewed Distribution):", kurtosis_skewed))
## [1] "Kurtosis (Skewed Distribution): 3.07459056618157"