About

In this project, we will explore predictive analytics using the babies data set provided. This data is collected to understand different factors effecting baby weights at birth. Below are the explanations of the variables:

Count: number of observation bwt: Baby weights in ounces gestation: Length of pregnancy in days parity: = 0 if the baby is first born, =1 otherwise height: Mother’s height in inches weight: Mother’s pregnancy weight in pounds smoke: =1 if mother is smoker, = 0 Nonsmoker age: Mother’s age in years

Read this worksheet carefully and follow the instructions to complete the tasks and answer any questions. Knit your final worksheet and submit your work as an HTML or PDF or Word document in Sakai.

If you are submitting as a team project only one submission from one of the team members will be sufficient but in this case you need to input the names of the team members in the above Title section.

Task 1: Reading the babies file & understanding the relatioships (0.25 points)

#Read File and check the first 6 observations
myData = read.csv(file="babies.csv")
View(myData)
head(myData)
##   Count bwt gestation parity height weight smoke age
## 1     1 120       284      0     62    100     0  27
## 2     2 113       282      0     64    135     0  33
## 3     3 128       279      0     64    115     1  28
## 4     4 108       282      0     67    125     1  23
## 5     5 136       286      0     62     93     0  25
## 6     6 138       244      0     62    178     0  33

How can you describe the relationship between baby weights and other variables? You are expected to explain each relationship.

Gestation & Weight = as pregnancy length increases so does weight, positive linear relationship. Parity & Weight = First-born babies weigh less than the next born, negative relationship. Height & Weight = Taller mother’s babies way slightly more, weak positive relationship. Weight & Weight = The more a mother weighs, the more the baby weighs, positive relationship. Smoke & Weight = Mothers who smoke tend to have babies that weigh less, negative relationship. Age & Weight = The older the mother is, the more the baby weighs, positive linear relationship.

Task 2: Multiple Linear regression model(2.0 points)

Extract all the variables and create a multiple linear regression model.

bwt = myData$bwt
gestation = myData$gestation
parity = myData$parity
height = myData$height
weight = myData$weight
smoke = myData$smoke
age = myData$age
#Multiple Linear Regression Model
mlr1 <-lm(bwt ~ gestation + parity + weight + smoke + age)

#Summary of the model
summary(mlr1)
## 
## Call:
## lm(formula = bwt ~ gestation + parity + weight + smoke + age)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -53.091 -10.698  -0.472   9.782  51.403 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -17.04294    9.00924  -1.892   0.0588 .  
## gestation     0.45396    0.02942  15.429  < 2e-16 ***
## parity       -2.87792    1.14082  -2.523   0.0118 *  
## weight        0.11338    0.02290   4.951 8.48e-07 ***
## smoke        -8.12808    0.96502  -8.423  < 2e-16 ***
## age          -0.03042    0.08685  -0.350   0.7262    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 16.04 on 1168 degrees of freedom
## Multiple R-squared:  0.2378, Adjusted R-squared:  0.2345 
## F-statistic: 72.88 on 5 and 1168 DF,  p-value: < 2.2e-16

Interpret the value for the intercept (0.25 point):

-80.41085 is the estimated birth weight when all variables are equal to 0.

Interpret the value for the slope of gestation (0.25 point):

For every day of gestation, the birth weight should increase by 0.44398 units.

Interpret the value for the slope of weight(0.25 point):

For every unit of weight (for the mother), birth weight should increase by 0.05017 units.

Interpret the value for the slope of smoke (0.25 point):

If a mother is a smoker, the bay is expected to weight 8.40073 units less.

Interpret the value for R-squared (0.25 point):

0.258 accounts for the variance in weight from the variables. In other words 25.8% of the model is explained, and the 74.2% of variability is unexplained by the model.

Task 3 Evaluating significance/insignificance of the variables (0.5 points)

Do you think the model has insignificant variables, if so which variable(s) is/are insignificant?

Yes, age is an insignificant variable as the p-value is high compared to the other variables meaning it does not have a significant effect on the babies’ weight. ####Is removing insignificant variables improving your model’s predictivity? No, as the coefficents are barely changed when age is removed from the model.

#Multiple Linear Regression Model
mlr2 <- lm(bwt ~ gestation + parity + height + weight + smoke)

#Summary of Multiple Linear Regression Model
summary(mlr2)
## 
## Call:
## lm(formula = bwt ~ gestation + parity + height + weight + smoke)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -57.716 -10.150  -0.159   9.689  51.620 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -80.71321   14.04465  -5.747 1.16e-08 ***
## gestation     0.44408    0.02907  15.276  < 2e-16 ***
## parity       -3.28762    1.06281  -3.093  0.00203 ** 
## height        1.15497    0.20473   5.641 2.11e-08 ***
## weight        0.04983    0.02503   1.991  0.04672 *  
## smoke        -8.39390    0.95117  -8.825  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.82 on 1168 degrees of freedom
## Multiple R-squared:  0.2579, Adjusted R-squared:  0.2548 
## F-statistic:  81.2 on 5 and 1168 DF,  p-value: < 2.2e-16

###Task 4: Estimating baby weight (0.25 points)

Use your best predicting model and full model to estimated a first born babies weight, whose mother is 25 years old, newer smoked, the gestation was 286 days, mother’s height is 62 inches and mother’s weight is 93 pounds

# bwt predicted
bwt_predicted = coef(mlr1)[1] + coef(mlr1)[2]*(age) + coef(mlr1)[3]*(gestation) + coef(mlr1)[4]*(height) + coef(mlr1)[5]*(weight)
print(bwt_predicted)
##    [1] -1627.895 -1903.672 -1734.746 -1826.590 -1577.662 -2144.045 -1842.255
##    [8] -1846.395 -1961.860 -1982.598 -1814.717 -1842.794 -1607.161 -2033.679
##   [15] -1869.509 -1748.205 -1762.408 -2127.265 -1973.070 -1533.658 -2208.155
##   [22] -2002.747 -2269.332 -1836.968 -1658.900 -1666.060 -2188.536 -1851.511
##   [29] -1858.307 -1628.812 -1981.455 -1766.979 -1644.677 -1782.845 -1870.563
##   [36] -1736.675 -1576.085 -1586.758 -2140.233 -2238.192 -1742.151 -1763.253
##   [43] -1680.283 -2060.355 -1513.214 -1984.014 -1802.815 -1797.366 -2013.009
##   [50] -1703.080 -1842.939 -1837.140 -1848.333 -1975.938 -1872.251 -1726.060
##   [57] -1556.914 -1565.201 -1787.415 -1821.061 -1761.201 -1827.652 -1739.635
##   [64] -1920.285 -1899.515 -2163.275 -2168.731 -1885.674 -1797.565 -1831.552
##   [71] -1763.040 -1987.469 -1683.121 -1690.888 -1843.153 -1818.967 -1617.744
##   [78] -1779.874 -1650.485 -1935.629 -1985.973 -2000.477 -1792.242 -2007.285
##   [85] -2469.990 -1755.055 -1678.931 -1623.221 -1636.941 -1624.182 -1544.095
##   [92] -2179.099 -1841.162 -1784.422 -1758.727 -1750.135 -1662.738 -1933.636
##   [99] -1982.859 -2004.572 -1885.551 -2036.784 -1882.106 -1840.111 -1981.086
##  [106] -1717.530 -1680.603 -2560.088 -1933.377 -2073.078 -1665.266 -1896.122
##  [113] -1879.051 -2070.968 -2008.666 -2032.443 -1690.506 -1740.170 -2028.191
##  [120] -1847.225 -1635.920 -1659.984 -1860.558 -1626.606 -1995.980 -1713.588
##  [127] -1895.679 -1992.865 -1619.622 -2129.979 -1624.664 -1838.133 -1752.913
##  [134] -1825.733 -1701.613 -2053.279 -1769.031 -2281.620 -1927.799 -2835.905
##  [141] -1979.042 -1837.419 -1890.718 -2150.902 -1908.212 -1670.630 -1818.349
##  [148] -1730.973 -1897.842 -2291.569 -1847.901 -1847.643 -2131.899 -1833.285
##  [155] -1717.347 -1847.974 -1668.783 -1737.015 -1759.472 -1653.197 -1863.661
##  [162] -2054.723 -2146.121 -1803.897 -1840.339 -1808.406 -2242.195 -2357.009
##  [169] -1722.121 -2582.098 -2100.337 -1692.041 -1526.427 -1492.025 -1857.584
##  [176] -1899.153 -1685.431 -1693.803 -2106.711 -2004.045 -2200.029 -1988.708
##  [183] -1871.494 -1726.257 -1910.490 -1862.774 -1600.819 -1724.257 -1661.831
##  [190] -1714.437 -2028.317 -1814.252 -1998.743 -1831.033 -1994.916 -1552.626
##  [197] -1743.380 -1850.748 -1724.551 -2004.264 -1721.899 -1844.888 -1929.192
##  [204] -1773.932 -2286.849 -1970.709 -1862.721 -1976.815 -1808.527 -1705.822
##  [211] -1673.632 -1649.587 -1662.168 -1773.818 -1868.026 -2007.958 -1889.395
##  [218] -2068.812 -1769.136 -2046.842 -1733.602 -2490.859 -1936.319 -1839.391
##  [225] -1737.634 -1816.553 -1832.613 -1755.983 -2183.659 -1803.567 -1641.208
##  [232] -1675.994 -1706.257 -1956.478 -1793.511 -1953.143 -2131.032 -1860.062
##  [239] -1520.073 -1935.873 -1677.169 -1831.666 -1890.159 -1647.720 -1853.748
##  [246] -1882.093 -1628.926 -1935.946 -1682.080 -1761.462 -2169.403 -1724.215
##  [253] -2049.790 -2081.976 -1793.294 -1883.899 -2178.409 -2056.357 -1947.314
##  [260] -1943.517 -1794.500 -1685.639 -1989.595 -1835.740 -1937.599 -2335.884
##  [267] -2091.156 -1689.929 -1965.884 -1791.343 -2075.221 -2028.328 -1956.691
##  [274] -1566.478 -1694.477 -1637.559 -1672.330 -1805.578 -1780.203 -1837.988
##  [281] -1707.579 -1856.504 -1929.646 -1878.021 -1792.672 -1786.890 -2029.402
##  [288] -1755.396 -2267.065 -1846.899 -1709.073 -1605.934 -1662.262 -1872.882
##  [295] -1740.284 -1898.330 -1815.296 -1863.002 -1846.332 -1924.292 -1921.638
##  [302] -1821.361 -1775.800 -1811.137 -1671.816 -1859.555 -1838.946 -1846.682
##  [309] -1727.919 -1679.562 -1899.237 -1775.787 -1785.854 -1674.869 -1614.598
##  [316] -2068.667 -1946.189 -1850.912 -1746.754 -1852.614 -1850.417 -1757.497
##  [323] -1636.723 -1736.666 -1802.424 -1874.607 -1689.753 -1722.089 -1836.430
##  [330] -1908.326 -1616.404 -2090.039 -1750.952 -1757.842 -1718.047 -1562.783
##  [337] -1841.143 -2001.004 -2064.896 -1872.800 -1743.040 -2223.370 -1772.486
##  [344] -1857.226 -1835.946 -1913.008 -2060.604 -1894.544 -1895.937 -1777.945
##  [351] -1658.158 -1850.521 -1654.446 -1779.408 -1682.337 -1527.963 -2010.327
##  [358] -1952.153 -2043.995 -1745.423 -2060.437 -1700.099 -1885.520 -2038.417
##  [365] -1848.036 -2011.227 -1762.689 -1708.517 -1968.697 -1849.160 -1804.772
##  [372] -1791.851 -1892.182 -1675.199 -1594.896 -1726.548 -1758.687 -1839.482
##  [379] -1843.432 -1771.219 -1960.817 -1928.953 -1784.227 -2252.508 -1837.659
##  [386] -1965.964 -1970.854 -1654.538 -1923.478 -2004.046 -1701.152 -1690.125
##  [393] -1836.976 -1880.104 -1901.053 -2066.007 -1844.712 -1720.027 -2426.445
##  [400] -1936.174 -1657.065 -1984.076 -1643.997 -2019.983 -1644.313 -1925.075
##  [407] -1892.038 -1771.560 -2000.322 -1772.268 -1718.367 -1691.176 -1853.498
##  [414] -1867.911 -1804.806 -1942.529 -1836.637 -1946.542 -1822.554 -1749.776
##  [421] -1899.505 -1850.386 -1823.010 -1742.544 -1765.286 -2116.271 -1846.886
##  [428] -1744.514 -2069.570 -2027.595 -1847.895 -1847.767 -1900.225 -1523.209
##  [435] -1807.125 -1733.011 -1720.482 -1951.144 -2043.161 -1602.613 -1805.877
##  [442] -2025.468 -1954.330 -1660.673 -1868.115 -1933.432 -2103.679 -1844.071
##  [449] -1691.795 -1749.576 -1981.023 -1877.884 -1864.248 -1804.351 -2057.291
##  [456] -1888.964 -1869.150 -1830.150 -1794.760 -1841.083 -1808.909 -1775.686
##  [463] -1843.898 -1812.356 -2034.976 -1501.152 -1651.958 -1667.358 -1874.462
##  [470] -1768.415 -1602.707 -1825.216 -1835.781 -2199.408 -2021.995 -1849.146
##  [477] -2216.571 -1655.549 -1765.743 -1696.756 -1986.210 -1761.288 -1785.382
##  [484] -1999.312 -1957.608 -1705.998 -2433.927 -1826.504 -1874.162 -1774.325
##  [491] -1848.365 -2306.767 -1885.538 -1788.106 -1667.493 -1774.532 -1897.731
##  [498] -1704.782 -1862.125 -2098.272 -2093.393 -1615.166 -1874.802 -1835.790
##  [505] -1610.113 -1808.238 -1761.378 -1655.683 -1834.090 -1524.056 -1741.918
##  [512] -1923.508 -1854.688 -1632.734 -1970.636 -1971.080 -1676.685 -1801.710
##  [519] -1919.650 -2061.199 -1609.275 -1664.637 -1744.453 -1760.685 -1898.307
##  [526] -2250.026 -2348.838 -2189.546 -2030.618 -1861.247 -2106.583 -1914.882
##  [533] -1868.270 -1842.988 -1884.961 -1901.549 -1672.848 -1640.560 -1915.019
##  [540] -1805.556 -1691.279 -2074.020 -1835.129 -2032.443 -1861.806 -1672.476
##  [547] -1841.815 -1719.243 -1605.615 -1920.776 -1984.740 -1781.381 -1829.518
##  [554] -1986.324 -1842.206 -1731.577 -1986.120 -1920.787 -1669.906 -1701.697
##  [561] -1889.873 -1651.968 -1625.150 -1737.428 -1843.012 -1726.185 -1762.114
##  [568] -1932.647 -1742.772 -1926.943 -2532.216 -1942.982 -1599.683 -2073.288
##  [575] -1662.563 -1696.252 -1910.563 -1724.091 -2171.632 -1685.142 -1577.404
##  [582] -1667.215 -1674.641 -1724.142 -2350.517 -1941.879 -1682.109 -1642.901
##  [589] -1743.660 -1846.149 -1796.376 -1828.735 -1581.650 -1851.438 -2306.994
##  [596] -2014.381 -1896.805 -1465.919 -1580.033 -1762.535 -1794.810 -1966.510
##  [603] -1753.075 -1845.135 -1729.291 -1862.454 -2088.957 -1721.375 -1791.488
##  [610] -2130.506 -1846.220 -1855.047 -1783.640 -1610.536 -1788.756 -1720.770
##  [617] -1743.947 -1857.285 -1931.720 -1897.473 -1687.585 -1866.468 -1764.166
##  [624] -1665.843 -1509.663 -1651.536 -1970.255 -1827.870 -1850.685 -1706.298
##  [631] -1695.014 -1802.532 -1724.596 -1744.741 -1808.353 -1537.649 -1809.066
##  [638] -1571.628 -1992.298 -1857.866 -1661.136 -1800.135 -1596.102 -1929.242
##  [645] -1743.162 -1532.472 -2086.801 -1689.702 -1833.926 -1797.203 -1800.564
##  [652] -2237.697 -2223.586 -1708.505 -1851.971 -1864.798 -2148.670 -1874.966
##  [659] -1784.174 -1778.313 -1951.153 -1796.376 -1963.963 -1995.961 -1778.477
##  [666] -1885.623 -1779.957 -1701.449 -1671.908 -2102.461 -1981.199 -2063.573
##  [673] -1794.347 -1769.373 -1838.493 -2157.914 -1830.385 -2409.078 -1745.576
##  [680] -1813.571 -1591.254 -2167.692 -2006.674 -1778.986 -1955.743 -2025.542
##  [687] -1810.219 -2341.742 -1855.193 -1584.427 -1780.958 -1888.210 -1781.103
##  [694] -1770.375 -1584.726 -1928.481 -1827.106 -1741.378 -1595.115 -1800.661
##  [701] -2306.931 -1819.895 -1606.810 -1841.897 -1929.128 -1805.650 -1577.785
##  [708] -1913.667 -1677.015 -1814.097 -1862.578 -1827.612 -1768.496 -2000.718
##  [715] -1949.811 -1660.202 -1759.811 -2013.629 -1694.231 -1868.788 -1810.430
##  [722] -1676.386 -1831.942 -1755.644 -1723.401 -1656.911 -1903.496 -1957.032
##  [729] -1843.724 -1800.424 -1765.350 -1618.939 -1723.865 -2115.662 -1865.725
##  [736] -1624.880 -1945.383 -1786.630 -1559.713 -1779.531 -1778.316 -2000.445
##  [743] -1807.518 -1879.650 -1839.555 -1634.105 -2140.748 -1921.199 -2085.657
##  [750] -1985.499 -1923.384 -1838.492 -1890.469 -1832.664 -1722.544 -1916.895
##  [757] -1667.554 -1848.830 -1849.437 -1675.299 -1707.564 -2136.511 -1841.835
##  [764] -1840.472 -1869.479 -1986.542 -1803.359 -1858.524 -1710.806 -1704.091
##  [771] -1724.978 -1713.724 -1926.736 -2087.841 -2106.244 -1834.625 -1771.212
##  [778] -1768.713 -1569.926 -1521.597 -1525.103 -1513.046 -1694.878 -1827.879
##  [785] -1735.093 -1741.750 -1955.132 -1778.635 -1719.189 -1976.845 -1826.023
##  [792] -1728.845 -1867.871 -1838.999 -1800.062 -1710.992 -1671.218 -1670.329
##  [799] -1731.764 -2522.375 -1890.107 -2233.707 -1774.388 -1819.504 -2017.259
##  [806] -1873.368 -1757.593 -1699.263 -2380.887 -2326.694 -1987.645 -1729.972
##  [813] -1850.840 -1705.690 -1955.897 -2490.327 -1743.205 -1796.242 -1902.901
##  [820] -1599.469 -2116.869 -1826.971 -1980.435 -1864.538 -2063.492 -1693.479
##  [827] -1822.906 -1998.176 -1860.463 -1670.032 -1809.550 -1766.970 -1682.707
##  [834] -1908.026 -1842.042 -2330.883 -1760.274 -1766.981 -1850.767 -1879.310
##  [841] -1680.243 -1707.247 -1968.657 -1777.502 -2063.923 -1753.314 -2024.674
##  [848] -1716.572 -1731.703 -1731.745 -1846.507 -1877.759 -1921.022 -2078.829
##  [855] -1840.154 -1569.894 -1718.499 -1897.290 -2224.288 -1967.424 -1631.360
##  [862] -2099.066 -1838.101 -1865.269 -1897.535 -1926.365 -1783.008 -1686.410
##  [869] -1919.887 -2050.060 -2592.208 -1854.296 -1874.843 -1774.433 -2076.899
##  [876] -1709.979 -1653.599 -1621.127 -1954.845 -1953.545 -1820.824 -2245.908
##  [883] -1700.860 -1847.940 -1794.159 -1702.163 -1711.682 -1748.589 -2167.328
##  [890] -2067.459 -1663.708 -1742.173 -1803.826 -1915.627 -1644.006 -1878.970
##  [897] -1801.071 -1755.138 -1887.306 -1833.789 -1682.058 -1760.040 -1841.679
##  [904] -2024.254 -2013.423 -1860.569 -1692.094 -1797.802 -1835.704 -1736.942
##  [911] -1894.307 -1803.154 -1795.468 -1825.589 -1859.406 -1994.332 -1772.572
##  [918] -1905.220 -1885.209 -1704.090 -1743.938 -2082.189 -1718.813 -2006.666
##  [925] -1708.682 -1863.619 -2086.265 -2025.098 -1864.786 -1818.338 -1759.741
##  [932] -1847.806 -1858.474 -1784.887 -1653.537 -1557.867 -1874.730 -1866.849
##  [939] -1986.128 -1795.250 -1696.682 -2063.603 -1700.769 -1850.087 -1951.430
##  [946] -2079.662 -2265.479 -1719.201 -1841.670 -1939.846 -1903.396 -1721.532
##  [953] -2320.980 -1781.203 -1745.433 -1733.827 -1705.587 -1814.365 -1675.899
##  [960] -1760.347 -1975.143 -1849.608 -1824.784 -1679.661 -2350.027 -1830.352
##  [967] -1916.926 -1887.785 -1890.862 -2120.257 -1759.401 -1708.650 -1886.423
##  [974] -1837.534 -1919.157 -1687.401 -1653.247 -1812.800 -1734.093 -1768.776
##  [981] -1517.000 -1899.569 -1842.496 -1724.030 -1797.902 -1923.551 -1918.156
##  [988] -1738.832 -1767.827 -1945.724 -1780.699 -1927.262 -1771.675 -1824.093
##  [995] -1781.330 -1772.014 -1835.501 -1740.697 -1806.145 -1880.878 -1953.234
## [1002] -1562.878 -1960.413 -1661.656 -1700.429 -1972.265 -1842.247 -1682.354
## [1009] -1681.027 -1774.230 -1764.164 -1833.830 -1835.799 -1555.194 -1824.156
## [1016] -1880.949 -2063.071 -1902.136 -2173.602 -1799.255 -1787.808 -1931.099
## [1023] -1668.165 -1700.614 -2020.890 -1728.147 -1812.384 -1934.153 -1659.518
## [1030] -1880.835 -1648.690 -1757.151 -1717.583 -1803.144 -1815.667 -1791.043
## [1037] -1790.508 -1862.424 -1787.476 -1742.658 -1641.851 -2134.177 -1984.407
## [1044] -1707.999 -1752.403 -1915.924 -1820.618 -1853.637 -1910.263 -1794.821
## [1051] -1866.745 -1813.262 -1887.499 -2038.426 -2049.193 -1761.410 -1702.480
## [1058] -1960.417 -1737.170 -1683.265 -1766.856 -1711.795 -1778.314 -1764.977
## [1065] -1965.593 -1831.160 -1647.504 -1771.623 -1634.073 -2057.124 -1776.820
## [1072] -1771.465 -1767.929 -1943.681 -1658.985 -1739.172 -1668.471 -1756.220
## [1079] -1645.214 -1825.011 -1666.577 -1483.442 -1784.344 -1774.539 -1788.349
## [1086] -1968.326 -1877.885 -1815.686 -1563.671 -1836.164 -2389.355 -1677.331
## [1093] -1724.792 -1677.548 -1599.680 -1576.258 -2254.212 -2015.167 -1781.884
## [1100] -1856.658 -1835.820 -1835.400 -1912.615 -1818.306 -1725.917 -1780.699
## [1107] -1594.288 -1607.481 -1985.089 -2227.742 -1735.572 -1911.066 -1996.392
## [1114] -1846.467 -1948.734 -1570.327 -2010.205 -1895.329 -1630.051 -1719.787
## [1121] -1605.202 -1706.030 -1832.168 -1888.303 -1767.198 -1824.290 -1979.228
## [1128] -1683.121 -2041.263 -1878.955 -1522.540 -1994.322 -2136.747 -2063.241
## [1135] -2037.623 -1821.380 -1906.809 -2077.055 -2355.674 -1603.488 -1997.900
## [1142] -1907.334 -1681.541 -1757.097 -1680.623 -1796.158 -1728.246 -2074.433
## [1149] -1950.595 -1836.903 -1599.983 -1795.079 -1998.773 -1680.791 -1650.607
## [1156] -2093.479 -2040.696 -2383.717 -1591.113 -1810.108 -1771.953 -1858.781
## [1163] -1902.950 -2000.478 -1531.645 -1503.828 -1731.517 -1815.512 -1798.594
## [1170] -1602.221 -1736.571 -2052.743 -1702.926 -1895.689
predict(mlr1, data.frame(parity = 1, age = 25, smoke = 0, gestation = 286, height = 62, weight = 93), interval = "confidence")
##        fit      lwr      upr
## 1 119.6945 117.2246 122.1644

Compare your calculated baby weight estimate to the actual value as obtained from the data file.

The data says that a mother at the age of 25 should birth a baby weighing 136 units, while the model predicts it to weigh 119 units.