punto 2.1

library(UsingR)
## Loading required package: MASS
## Loading required package: HistData
## Loading required package: Hmisc
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
## 
##     format.pval, units
data()
hist(bumpers, main = "Histograma de Bumpers Data", xlab = "Valores")

hist(firstchi, main = "Histograma de Firstchi Data", xlab = "Valores")

hist(math, main = "Histograma de Math Data", xlab = "Valores")

boxplot(bumpers, main = "Boxplot de Bumpers Data")

boxplot(firstchi, main = "Boxplot de Firstchi Data")

boxplot(math, main = "Boxplot de Math Data")

mean_bumpers <- mean(bumpers)
median_bumpers <- median(bumpers)
sd_bumpers <- sd(bumpers)
mean_firstchi <- mean(firstchi)
median_firstchi <- median(firstchi)
sd_firstchi <- sd(firstchi)
mean_math <- mean(math)
median_math <- median(math)
sd_math <- sd(math)
cat("Estimaciones visuales para 'bumpers':\n")
## Estimaciones visuales para 'bumpers':
cat("Media:", mean_bumpers, "\n")
## Media: 2122.478
cat("Mediana:", median_bumpers, "\n")
## Mediana: 2129
cat("Desviación Estándar:", sd_bumpers, "\n\n")
## Desviación Estándar: 798.4574
cat("Estimaciones visuales para 'firstchi':\n")
## Estimaciones visuales para 'firstchi':
cat("Media:", mean_firstchi, "\n")
## Media: 23.97701
cat("Mediana:", median_firstchi, "\n")
## Mediana: 23
cat("Desviación Estándar:", sd_firstchi, "\n\n")
## Desviación Estándar: 6.254258
cat("Estimaciones visuales para 'math':\n")
## Estimaciones visuales para 'math':
cat("Media:", mean_math, "\n")
## Media: 54.9
cat("Mediana:", median_math, "\n")
## Mediana: 54
cat("Desviación Estándar:", sd_math, "\n")
## Desviación Estándar: 9.746264

Un histograma sería el grafico que resulta de mayor ayuda ya que todas las distribuciones son aproximadas entre si, por ende el histogra permitiria visualizar la distribución de los datos y la frecuencia con la que ocurren ciertos valores dentro de un rango determinado.

punto 2.2 a)

library(UsingR)
data(brightness)

hist(brightness, main = "Histograma de Brightness Data", xlab = "Valores", col = "lightblue", prob = TRUE)
lines(density(brightness), col = "green", lwd = 2)

b)

outlier = boxplot(brightness)$out

min_outlier = sort(outlier, decreasing = FALSE)
min_outlier
##  [1]  2.07  2.28  3.88  4.37  4.55  4.61  4.78  4.89  4.99  5.01  5.04  5.13
## [13]  5.24  5.29  5.41  5.42  5.53  5.54  5.55 11.28 11.55 11.55 11.55 11.63
## [25] 11.65 11.67 11.71 11.73 11.79 11.80 11.99 12.04 12.04 12.14 12.17 12.19
## [37] 12.31 12.43
min_2 = min_outlier[2]
min_2
## [1] 2.28
#c)

quantile(brightness)
##      0%     25%     50%     75%    100% 
##  2.0700  7.7025  8.5000  9.1300 12.4300
brightness.sin= brightness[brightness >  7.7025 & brightness < 9.130]
boxplot(brightness.sin)

cat("La nueva variable brightness.sin contiene", length(brightness.sin), "valores.")
## La nueva variable brightness.sin contiene 479 valores.

punto 2.3 a)

data("UScereal")
str(UScereal)
## 'data.frame':    65 obs. of  11 variables:
##  $ mfr      : Factor w/ 6 levels "G","K","N","P",..: 3 2 2 1 2 1 6 4 5 1 ...
##  $ calories : num  212 212 100 147 110 ...
##  $ protein  : num  12.12 12.12 8 2.67 2 ...
##  $ fat      : num  3.03 3.03 0 2.67 0 ...
##  $ sodium   : num  394 788 280 240 125 ...
##  $ fibre    : num  30.3 27.3 28 2 1 ...
##  $ carbo    : num  15.2 21.2 16 14 11 ...
##  $ sugars   : num  18.2 15.2 0 13.3 14 ...
##  $ shelf    : int  3 3 3 1 2 3 1 3 2 1 ...
##  $ potassium: num  848.5 969.7 660 93.3 30 ...
##  $ vitamins : Factor w/ 3 levels "100%","enriched",..: 2 2 2 2 2 2 2 2 2 2 ...
table(UScereal$mfr,UScereal$shelf)
##    
##      1  2  3
##   G  6  7  9
##   K  4  7 10
##   N  2  0  1
##   P  2  1  6
##   Q  0  3  2
##   R  4  0  1
table(UScereal$fat, UScereal$vitamins)
##            
##             100% enriched none
##   0            1       18    3
##   0.6666667    0        1    0
##   1            3        7    0
##   1.1363636    0        1    0
##   1.3333333    1        8    0
##   1.4925373    0        4    0
##   1.6          0        1    0
##   2            0        2    0
##   2.6666667    0        3    0
##   2.9850746    0        4    0
##   3.030303     0        2    0
##   4            0        4    0
##   6            0        1    0
##   9.0909091    0        1    0
table(UScereal$fat, UScereal$shelf)
##            
##              1  2  3
##   0         10  3  9
##   0.6666667  0  1  0
##   1          2  5  3
##   1.1363636  0  0  1
##   1.3333333  2  4  3
##   1.4925373  2  1  1
##   1.6        1  0  0
##   2          0  1  1
##   2.6666667  1  1  1
##   2.9850746  0  1  3
##   3.030303   0  0  2
##   4          0  1  3
##   6          0  0  1
##   9.0909091  0  0  1
table(UScereal$carbo, UScereal$sugars)
##           
##            0 0.8 1.769912 2 3 4 4.477612 5.681818 6 6.666667 7.462687 8.270677
##   10.52632 0   0        0 0 0 0        0        0 0        0        0        1
##   11       0   0        0 0 0 0        0        0 0        0        0        0
##   12       0   0        0 0 0 0        0        0 0        0        0        0
##   12.5     0   0        0 0 0 0        0        0 0        0        0        0
##   13       1   0        0 0 0 0        0        0 0        0        0        0
##   13.6     0   1        0 0 0 0        0        0 0        0        0        0
##   14       0   0        0 1 0 0        0        0 0        0        0        0
##   14.66667 0   0        0 0 0 0        0        0 0        0        0        0
##   15       0   0        0 0 0 0        0        0 1        0        0        0
##   15.15152 0   0        0 0 0 0        0        0 0        0        0        0
##   15.33333 0   0        0 0 0 0        0        0 0        0        0        0
##   16       1   0        0 0 2 0        0        0 0        0        0        0
##   16.41791 0   0        0 0 0 0        0        0 0        0        0        0
##   17       0   0        0 0 1 0        0        0 0        0        0        0
##   17.04545 0   0        0 0 0 0        0        1 0        0        0        0
##   17.33333 0   0        0 0 0 0        0        0 0        0        0        0
##   17.5     0   0        0 0 0 0        0        0 0        0        0        0
##   17.91045 0   0        0 0 0 0        0        0 0        0        0        0
##   18.66667 0   0        0 0 0 0        0        0 0        0        0        0
##   19.40299 0   0        0 0 0 0        0        0 0        0        1        0
##   20       0   0        0 0 1 0        0        0 0        0        0        0
##   20.35398 0   0        1 0 0 0        0        0 0        0        0        0
##   20.89552 0   0        0 0 0 0        0        0 0        0        0        0
##   21       0   0        0 1 2 0        0        0 0        0        0        0
##   21.21212 0   0        0 0 0 0        0        0 0        0        0        0
##   21.33333 0   0        0 0 0 0        0        0 0        0        0        0
##   22       0   0        0 0 2 0        0        0 0        0        0        0
##   22.38806 0   0        0 0 0 0        0        0 0        0        0        0
##   24       0   0        0 0 0 0        0        0 0        1        0        0
##   25.37313 0   0        0 0 0 0        1        0 0        0        0        0
##   26       0   0        0 0 0 0        0        0 0        0        0        0
##   26.66667 0   0        0 0 0 0        0        0 0        0        0        0
##   27       0   0        0 0 0 0        0        0 0        0        0        0
##   28       0   0        0 0 0 1        0        0 0        0        0        0
##   28.35821 1   0        0 0 0 0        0        0 0        0        0        0
##   29.85075 1   0        0 0 0 0        0        0 0        0        0        0
##   30       0   0        0 0 0 0        0        0 0        0        0        0
##   31.34328 0   0        0 0 0 0        0        0 0        0        0        0
##   39.39394 0   0        0 0 0 0        0        0 0        0        0        0
##   68       0   0        0 0 0 0        0        0 0        0        0        0
##           
##            8.75 8.955224 10.447761 10.666667 11 12 12.121212 13 13.333333
##   10.52632    0        0         0         0  0  0         0  0         0
##   11          0        0         0         0  0  0         0  1         0
##   12          0        0         0         0  1  1         0  2         0
##   12.5        0        0         0         0  0  0         0  0         0
##   13          0        0         0         0  0  2         0  0         0
##   13.6        0        0         0         0  0  0         0  0         0
##   14          0        0         0         0  0  0         0  0         1
##   14.66667    0        0         0         0  0  0         0  0         1
##   15          0        0         0         0  0  0         0  0         0
##   15.15152    0        0         0         0  0  0         0  0         0
##   15.33333    0        0         0         0  0  0         0  0         1
##   16          0        0         0         0  0  0         0  0         0
##   16.41791    0        0         0         0  0  0         0  0         0
##   17          0        0         0         0  0  0         0  0         0
##   17.04545    0        0         0         0  0  0         0  0         0
##   17.33333    0        0         0         0  0  1         0  0         0
##   17.5        1        0         0         0  0  0         0  0         0
##   17.91045    0        1         0         0  0  0         0  0         0
##   18.66667    0        0         0         0  0  0         0  0         0
##   19.40299    0        0         0         0  0  0         0  0         0
##   20          0        0         0         0  0  1         0  0         0
##   20.35398    0        0         0         0  0  0         0  0         0
##   20.89552    0        0         0         0  0  0         0  0         0
##   21          0        0         0         0  0  0         0  0         0
##   21.21212    0        0         0         0  0  0         0  0         0
##   21.33333    0        0         0         1  0  0         0  0         0
##   22          0        0         0         0  0  0         0  0         0
##   22.38806    0        1         0         0  0  0         0  0         0
##   24          0        0         0         1  0  0         0  0         0
##   25.37313    0        0         0         0  0  0         0  0         0
##   26          0        0         0         0  0  0         0  0         0
##   26.66667    0        0         0         0  0  1         0  0         0
##   27          0        0         0         0  0  0         0  0         0
##   28          0        0         0         0  0  1         0  0         0
##   28.35821    0        0         0         0  0  0         0  0         0
##   29.85075    0        0         0         0  0  0         0  0         0
##   30          0        0         0         0  0  1         0  0         0
##   31.34328    0        0         1         0  0  0         0  0         0
##   39.39394    0        0         0         0  0  0         1  0         0
##   68          0        0         0         0  0  1         0  0         0
##           
##            13.432836 14 14.666667 14.925373 15.151515 16 17.045455 17.910448
##   10.52632         0  0         0         0         0  0         0         0
##   11               0  1         0         0         0  0         0         0
##   12               0  0         0         0         0  0         0         0
##   12.5             0  0         0         0         0  0         1         0
##   13               0  0         0         0         0  0         0         0
##   13.6             0  0         0         0         0  0         0         0
##   14               0  0         0         0         0  0         0         0
##   14.66667         0  0         0         0         0  0         0         0
##   15               0  1         0         0         0  0         0         0
##   15.15152         0  0         0         0         0  0         0         0
##   15.33333         0  0         0         0         0  0         0         0
##   16               0  0         0         0         0  1         0         0
##   16.41791         0  0         0         0         0  0         0         0
##   17               0  0         0         0         0  0         0         0
##   17.04545         0  0         0         0         0  0         0         0
##   17.33333         0  0         0         0         0  1         0         0
##   17.5             0  0         0         0         0  0         0         0
##   17.91045         0  0         0         1         0  0         0         0
##   18.66667         0  0         1         0         0  1         0         0
##   19.40299         0  0         0         0         0  0         0         0
##   20               0  1         0         0         0  0         0         0
##   20.35398         0  0         0         0         0  0         0         0
##   20.89552         0  0         0         0         0  0         0         1
##   21               0  0         0         0         0  1         0         0
##   21.21212         0  0         0         0         1  0         0         0
##   21.33333         0  0         0         0         0  0         0         0
##   22               0  0         0         0         0  0         0         0
##   22.38806         1  0         0         0         0  0         0         0
##   24               0  0         0         0         0  0         0         0
##   25.37313         0  0         0         0         0  0         0         0
##   26               0  1         0         0         0  0         0         0
##   26.66667         0  0         0         0         0  0         0         0
##   27               0  0         0         0         0  0         0         0
##   28               0  0         0         0         0  0         0         0
##   28.35821         0  0         0         0         0  0         0         0
##   29.85075         0  0         0         0         0  0         0         0
##   30               0  0         0         0         0  0         0         0
##   31.34328         0  0         0         0         0  0         0         0
##   39.39394         0  0         0         0         0  0         0         0
##   68               0  0         0         0         0  0         0         0
##           
##            18.181818 19.402985 20 20.895522
##   10.52632         0         0  0         0
##   11               0         0  0         0
##   12               0         0  1         0
##   12.5             0         0  0         0
##   13               0         0  0         0
##   13.6             0         0  0         0
##   14               0         0  0         0
##   14.66667         0         0  0         0
##   15               0         0  0         0
##   15.15152         1         0  0         0
##   15.33333         0         0  0         0
##   16               0         0  0         0
##   16.41791         0         0  0         1
##   17               0         0  0         0
##   17.04545         0         0  0         0
##   17.33333         0         0  0         0
##   17.5             0         0  0         0
##   17.91045         0         0  0         0
##   18.66667         0         0  0         0
##   19.40299         0         0  0         0
##   20               0         0  0         0
##   20.35398         0         0  0         0
##   20.89552         0         0  0         0
##   21               0         0  0         0
##   21.21212         0         0  0         0
##   21.33333         0         0  0         0
##   22               0         0  0         0
##   22.38806         0         0  0         0
##   24               0         0  0         0
##   25.37313         0         1  0         0
##   26               0         0  0         0
##   26.66667         0         0  0         0
##   27               0         0  1         0
##   28               0         0  0         0
##   28.35821         0         0  0         0
##   29.85075         0         0  0         0
##   30               0         0  0         0
##   31.34328         0         0  0         0
##   39.39394         0         0  0         0
##   68               0         0  0         0
table(UScereal$fibre, UScereal$mfr)
##            
##             G K N P Q R
##   0         9 2 0 3 2 2
##   1         0 7 0 0 1 0
##   1.333333  1 2 0 0 0 1
##   1.6       1 0 0 0 0 0
##   2         3 0 0 0 0 0
##   2.666667  2 1 0 0 0 0
##   2.985075  0 0 0 0 1 0
##   3         3 0 0 0 0 0
##   3.409091  0 0 0 1 0 0
##   3.75      0 1 0 0 0 0
##   4         2 1 0 0 1 0
##   4.477612  0 2 1 0 0 1
##   5         1 0 0 0 0 0
##   5.970149  0 0 1 0 0 1
##   6.666667  0 1 0 0 0 0
##   7.462687  0 1 0 2 0 0
##   8         0 1 0 0 0 0
##   8.955224  0 0 0 1 0 0
##   9.090909  0 0 0 1 0 0
##   12        0 0 0 1 0 0
##   27.272727 0 1 0 0 0 0
##   28        0 1 0 0 0 0
##   30.30303  0 0 1 0 0 0
table(UScereal$sodium, UScereal$sugars)
##            
##             0 0.8 1.769912 2 3 4 4.477612 5.681818 6 6.666667 7.462687 8.270677
##   0         3   0        0 0 0 0        0        0 0        0        0        0
##   51.13636  0   0        0 0 0 0        0        0 0        0        0        0
##   90        0   0        0 0 0 0        0        0 0        0        0        0
##   93.33333  0   0        0 0 0 0        0        0 0        0        0        0
##   125       0   0        0 0 0 0        0        0 0        0        0        0
##   135.33835 0   0        0 0 0 0        0        0 0        0        0        1
##   140       0   0        0 0 0 0        0        0 0        0        0        0
##   159.09091 0   0        0 0 0 0        0        1 0        0        0        0
##   173.33333 0   0        0 1 0 0        0        0 0        0        0        0
##   180       0   0        0 0 0 0        0        0 0        0        0        0
##   186.66667 0   0        0 0 0 0        0        0 0        0        0        0
##   190       0   0        0 0 0 0        0        0 0        0        0        0
##   200       0   0        0 0 3 0        0        0 0        0        0        0
##   212.38938 0   0        1 0 0 0        0        0 0        0        0        0
##   220       0   0        0 0 1 0        0        0 1        0        0        0
##   223.8806  0   0        0 0 0 0        0        0 0        0        0        0
##   226.66667 0   0        0 0 0 0        0        0 0        0        0        0
##   227.27273 0   0        0 0 0 0        0        0 0        0        0        0
##   230       0   0        0 0 1 0        0        0 0        0        0        0
##   232       0   1        0 0 0 0        0        0 0        0        0        0
##   238.80597 0   0        0 0 0 0        0        0 0        0        0        0
##   240       0   0        0 0 0 0        0        0 0        0        0        0
##   253.33333 0   0        0 0 0 0        0        0 0        1        0        0
##   266.66667 0   0        0 0 0 0        0        0 0        0        0        0
##   270       0   0        0 0 0 0        0        0 0        0        0        0
##   280       1   0        0 0 1 0        0        0 0        0        0        0
##   283.58209 0   0        0 0 0 0        0        0 0        0        0        0
##   290       0   0        0 1 1 0        0        0 0        0        0        0
##   293.33333 0   0        0 0 0 0        0        0 0        0        0        0
##   298.50746 0   0        0 0 0 0        0        0 0        0        0        0
##   313.43284 0   0        0 0 0 0        0        0 0        0        1        0
##   320       0   0        0 0 1 0        0        0 0        0        0        0
##   328.35821 0   0        0 0 0 0        0        0 0        0        0        0
##   333.33333 0   0        0 0 0 1        0        0 0        0        0        0
##   340       0   0        0 0 0 0        0        0 0        0        0        0
##   343.28358 0   0        0 0 0 0        1        0 0        0        0        0
##   358.20896 0   0        0 0 0 0        0        0 0        0        0        0
##   373.33333 0   0        0 0 0 0        0        0 0        0        0        0
##   393.93939 0   0        0 0 0 0        0        0 0        0        0        0
##   680       0   0        0 0 0 0        0        0 0        0        0        0
##   787.87879 0   0        0 0 0 0        0        0 0        0        0        0
##            
##             8.75 8.955224 10.447761 10.666667 11 12 12.121212 13 13.333333
##   0            1        0         0         0  0  1         0  0         0
##   51.13636     0        0         0         0  0  0         0  0         0
##   90           0        0         0         0  0  1         0  0         0
##   93.33333     0        0         0         0  0  0         0  0         0
##   125          0        0         0         0  0  0         0  1         0
##   135.33835    0        0         0         0  0  0         0  0         0
##   140          0        0         0         0  0  1         0  0         0
##   159.09091    0        0         0         0  0  0         0  0         0
##   173.33333    0        0         0         0  0  0         0  0         0
##   180          0        0         0         0  0  1         0  2         0
##   186.66667    0        0         0         0  0  0         0  0         1
##   190          0        0         0         0  0  0         0  0         0
##   200          0        0         0         0  0  0         0  0         0
##   212.38938    0        0         0         0  0  0         0  0         0
##   220          0        0         0         0  1  0         0  0         0
##   223.8806     0        1         0         0  0  0         0  0         0
##   226.66667    0        0         0         0  0  1         0  0         0
##   227.27273    0        0         0         0  0  0         1  0         0
##   230          0        0         0         0  0  0         0  0         0
##   232          0        0         0         0  0  0         0  0         0
##   238.80597    0        0         0         0  0  0         0  0         0
##   240          0        0         0         0  0  0         0  0         1
##   253.33333    0        0         0         0  0  0         0  0         0
##   266.66667    0        0         0         1  0  0         0  0         0
##   270          0        0         0         0  0  1         0  0         0
##   280          0        0         0         1  0  1         0  0         0
##   283.58209    0        0         0         0  0  0         0  0         0
##   290          0        0         0         0  0  0         0  0         0
##   293.33333    0        0         0         0  0  0         0  0         0
##   298.50746    0        1         0         0  0  0         0  0         0
##   313.43284    0        0         0         0  0  0         0  0         0
##   320          0        0         0         0  0  0         0  0         0
##   328.35821    0        0         1         0  0  0         0  0         0
##   333.33333    0        0         0         0  0  0         0  0         1
##   340          0        0         0         0  0  0         0  0         0
##   343.28358    0        0         0         0  0  0         0  0         0
##   358.20896    0        0         0         0  0  0         0  0         0
##   373.33333    0        0         0         0  0  1         0  0         0
##   393.93939    0        0         0         0  0  0         0  0         0
##   680          0        0         0         0  0  1         0  0         0
##   787.87879    0        0         0         0  0  0         0  0         0
##            
##             13.432836 14 14.666667 14.925373 15.151515 16 17.045455 17.910448
##   0                 0  0         0         0         0  0         0         0
##   51.13636          0  0         0         0         0  0         1         0
##   90                0  0         0         0         0  0         0         0
##   93.33333          0  0         0         0         0  0         0         0
##   125               0  1         0         0         0  0         0         0
##   135.33835         0  0         0         0         0  0         0         0
##   140               0  0         0         0         0  0         0         0
##   159.09091         0  0         0         0         0  0         0         0
##   173.33333         0  0         0         0         0  0         0         0
##   180               0  0         0         0         0  1         0         0
##   186.66667         0  0         0         0         0  0         0         0
##   190               0  1         0         0         0  0         0         0
##   200               0  0         0         0         0  0         0         0
##   212.38938         0  0         0         0         0  0         0         0
##   220               0  0         0         0         0  0         0         0
##   223.8806          0  0         0         0         0  0         0         0
##   226.66667         0  0         0         0         0  0         0         0
##   227.27273         0  0         0         0         0  0         0         0
##   230               0  0         0         0         0  0         0         0
##   232               0  0         0         0         0  0         0         0
##   238.80597         0  0         0         1         0  0         0         0
##   240               0  0         0         0         0  0         0         0
##   253.33333         0  0         0         0         0  0         0         0
##   266.66667         0  0         1         0         0  0         0         0
##   270               0  0         0         0         0  0         0         0
##   280               0  2         0         0         0  2         0         0
##   283.58209         1  0         0         0         0  0         0         0
##   290               0  0         0         0         0  0         0         0
##   293.33333         0  0         0         0         0  1         0         0
##   298.50746         0  0         0         0         0  0         0         0
##   313.43284         0  0         0         0         0  0         0         0
##   320               0  0         0         0         0  0         0         0
##   328.35821         0  0         0         0         0  0         0         0
##   333.33333         0  0         0         0         0  0         0         0
##   340               0  0         0         0         0  0         0         0
##   343.28358         0  0         0         0         0  0         0         0
##   358.20896         0  0         0         0         0  0         0         1
##   373.33333         0  0         0         0         0  0         0         0
##   393.93939         0  0         0         0         0  0         0         0
##   680               0  0         0         0         0  0         0         0
##   787.87879         0  0         0         0         1  0         0         0
##            
##             18.181818 19.402985 20 20.895522
##   0                 0         0  0         0
##   51.13636          0         0  0         0
##   90                0         0  0         0
##   93.33333          0         0  1         0
##   125               0         0  0         0
##   135.33835         0         0  0         0
##   140               0         0  0         0
##   159.09091         0         0  0         0
##   173.33333         0         0  0         0
##   180               0         0  0         0
##   186.66667         0         0  0         0
##   190               0         0  0         0
##   200               0         0  0         0
##   212.38938         0         0  0         0
##   220               0         0  0         0
##   223.8806          0         1  0         0
##   226.66667         0         0  0         0
##   227.27273         0         0  0         0
##   230               0         0  0         0
##   232               0         0  0         0
##   238.80597         0         0  0         0
##   240               0         0  0         0
##   253.33333         0         0  0         0
##   266.66667         0         0  0         0
##   270               0         0  0         0
##   280               0         0  0         0
##   283.58209         0         0  0         0
##   290               0         0  0         0
##   293.33333         0         0  0         0
##   298.50746         0         0  0         1
##   313.43284         0         0  0         0
##   320               0         0  0         0
##   328.35821         0         0  0         0
##   333.33333         0         0  0         0
##   340               0         0  1         0
##   343.28358         0         0  0         0
##   358.20896         0         0  0         0
##   373.33333         0         0  0         0
##   393.93939         1         0  0         0
##   680               0         0  0         0
##   787.87879         0         0  0         0

punto 2.4 a)

 attach(mammals)
 cor (mammals) 
##            body     brain
## body  1.0000000 0.9341638
## brain 0.9341638 1.0000000
 plot(mammals)

c)

cor(x=log(mammals$body), y=log(mammals$brain))
## [1] 0.9595748
plot(log(mammals$body),log(mammals$brain))

c)

# Punto c: Transformar los datos mediante la función log y repetir el estudio
mammals$log_body <- log(mammals$body)
mammals$log_brain <- log(mammals$brain)

# correlación lineal después de la transformación
correlation_log <- cor(mammals$log_brain, mammals$log_body)
cat("Correlación lineal después de la transformación:", correlation_log, "\n")
## Correlación lineal después de la transformación: 0.9595748
plot(mammals$log_body, mammals$log_brain, main = "Relación entre Log(Peso Corporal) y Log(Peso del Cerebro)", xlab = "Log(Peso Corporal)", ylab = "Log(Peso del Cerebro)")

punto 2.5

data("emissions")
head(emissions)
##                   GDP perCapita  CO2
## UnitedStates  8083000     29647 6750
## Japan         3080000     24409 1320
## Germany       1740000     21197 1740
## France        1320000     22381  550
## UnitedKingdom 1242000     21010  675
## Italy         1240000     21856  540
pairs(emissions)

cor(emissions)
##                 GDP perCapita       CO2
## GDP       1.0000000 0.4325303 0.9501753
## perCapita 0.4325303 1.0000000 0.2757962
## CO2       0.9501753 0.2757962 1.0000000
lineal_regre = lm(emissions$CO2 ~ emissions$GDP + emissions$perCapita, data = emissions)
summary(lineal_regre)
## 
## Call:
## lm(formula = emissions$CO2 ~ emissions$GDP + emissions$perCapita, 
##     data = emissions)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1037.3  -167.4    10.8   153.2  1052.0 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          5.100e+02  2.044e+02   2.495   0.0202 *  
## emissions$GDP        8.406e-04  5.198e-05  16.172 4.68e-14 ***
## emissions$perCapita -3.039e-02  1.155e-02  -2.631   0.0149 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 382.8 on 23 degrees of freedom
## Multiple R-squared:  0.9253, Adjusted R-squared:  0.9188 
## F-statistic: 142.5 on 2 and 23 DF,  p-value: 1.102e-13
plot(emissions$GDP+emissions$perCapita,emissions$CO2)
abline(lineal_regre,col = "red")
## Warning in abline(lineal_regre, col = "red"): only using the first two of 3
## regression coefficients

emissions$CO2
##  [1] 6750 1320 1740  550  675  540 2000  700  370  480  240  400  145   75   80
## [16]   54   75  125  420   75   56  160  150   76   85   63
prediccion_CO2 = predict(lineal_regre,emissions)
plot(emissions$GDP+emissions$perCapita,prediccion_CO2)

prediccion_CO2
##  UnitedStates         Japan       Germany        France UnitedKingdom 
##   6403.720110   2357.274571   1328.457202    939.412260    915.510264 
##         Italy        Russia        Canada         Spain     Australia 
##    888.117914    948.030553    418.174003    551.546727    203.695487 
##   Netherlands        Poland       Belgium        Sweden       Austria 
##    137.905405    524.997147      3.295727     57.168681      6.260516 
##   Switzerland      Portugal        Greece       Ukraine       Denmark 
##    -65.251059    177.533136    235.468677    538.782254    -82.034073 
##        Norway       Romania CzechRepublic       Finland       Hungary 
##   -213.820805    449.888660    273.235200     -5.729292    353.120804 
##       Ireland 
##     59.239930
cor(emissions$CO2,prediccion_CO2)
## [1] 0.9619321
boxplot(emissions)

boxplot(emissions$CO2)

quantile(emissions$CO2)
##     0%    25%    50%    75%   100% 
##   54.0   77.0  200.0  547.5 6750.0
CO2_sin = emissions$CO2[emissions$CO2 > 77.0 & emissions$CO2 < 547.5]
boxplot(CO2_sin, col = "#90EE90")

Punto 2.6 a)

MASS::anorexia
##    Treat Prewt Postwt
## 1   Cont  80.7   80.2
## 2   Cont  89.4   80.1
## 3   Cont  91.8   86.4
## 4   Cont  74.0   86.3
## 5   Cont  78.1   76.1
## 6   Cont  88.3   78.1
## 7   Cont  87.3   75.1
## 8   Cont  75.1   86.7
## 9   Cont  80.6   73.5
## 10  Cont  78.4   84.6
## 11  Cont  77.6   77.4
## 12  Cont  88.7   79.5
## 13  Cont  81.3   89.6
## 14  Cont  78.1   81.4
## 15  Cont  70.5   81.8
## 16  Cont  77.3   77.3
## 17  Cont  85.2   84.2
## 18  Cont  86.0   75.4
## 19  Cont  84.1   79.5
## 20  Cont  79.7   73.0
## 21  Cont  85.5   88.3
## 22  Cont  84.4   84.7
## 23  Cont  79.6   81.4
## 24  Cont  77.5   81.2
## 25  Cont  72.3   88.2
## 26  Cont  89.0   78.8
## 27   CBT  80.5   82.2
## 28   CBT  84.9   85.6
## 29   CBT  81.5   81.4
## 30   CBT  82.6   81.9
## 31   CBT  79.9   76.4
## 32   CBT  88.7  103.6
## 33   CBT  94.9   98.4
## 34   CBT  76.3   93.4
## 35   CBT  81.0   73.4
## 36   CBT  80.5   82.1
## 37   CBT  85.0   96.7
## 38   CBT  89.2   95.3
## 39   CBT  81.3   82.4
## 40   CBT  76.5   72.5
## 41   CBT  70.0   90.9
## 42   CBT  80.4   71.3
## 43   CBT  83.3   85.4
## 44   CBT  83.0   81.6
## 45   CBT  87.7   89.1
## 46   CBT  84.2   83.9
## 47   CBT  86.4   82.7
## 48   CBT  76.5   75.7
## 49   CBT  80.2   82.6
## 50   CBT  87.8  100.4
## 51   CBT  83.3   85.2
## 52   CBT  79.7   83.6
## 53   CBT  84.5   84.6
## 54   CBT  80.8   96.2
## 55   CBT  87.4   86.7
## 56    FT  83.8   95.2
## 57    FT  83.3   94.3
## 58    FT  86.0   91.5
## 59    FT  82.5   91.9
## 60    FT  86.7  100.3
## 61    FT  79.6   76.7
## 62    FT  76.9   76.8
## 63    FT  94.2  101.6
## 64    FT  73.4   94.9
## 65    FT  80.5   75.2
## 66    FT  81.6   77.8
## 67    FT  82.1   95.5
## 68    FT  77.6   90.7
## 69    FT  83.5   92.5
## 70    FT  89.9   93.8
## 71    FT  86.0   91.7
## 72    FT  87.3   98.0
data("anorexia")
anorexia[3,1:3]
##   Treat Prewt Postwt
## 3  Cont  91.8   86.4
pos_casos_exito <- which(anorexia$Postwt>anorexia$Prewt) #Arroja las posiciones en los casos donde se subió de peso
casos_exito = anorexia[c(pos_casos_exito),]
mejor_tratamiento = which.max(table(casos_exito$Treat))
mejor_tratamiento = c(paste(names(mejor_tratamiento),": ",max(table(casos_exito$Treat))," casos de éxito"))
table(casos_exito$Treat)
## 
##  CBT Cont   FT 
##   18   11   13
mejor_tratamiento
## [1] "CBT :  18  casos de éxito"
pos_casos_fracaso <- which(anorexia$Postwt<anorexia$Prewt) 
casos_fracaso = anorexia[c(pos_casos_fracaso),]

ganaron_peso = length(pos_casos_exito);ganaron_peso 
## [1] 42
perdieron_peso = nrow(casos_fracaso) 

barplot(c(ganaron_peso,perdieron_peso), main = "Pacientes que ganaron vs los que perdieron peso",
        ylab = "Cantidad de pacientes", col = c("#00FF00","#9370DB"))
legend("topright", legend = c(paste("Ganaron peso: ",ganaron_peso),paste("Perdieron peso: ",perdieron_peso)),
       fill = c("#00FF00","#9370DB"))

punto 2.7

MASS::Melanoma
##     time status sex age year thickness ulcer
## 1     10      3   1  76 1972      6.76     1
## 2     30      3   1  56 1968      0.65     0
## 3     35      2   1  41 1977      1.34     0
## 4     99      3   0  71 1968      2.90     0
## 5    185      1   1  52 1965     12.08     1
## 6    204      1   1  28 1971      4.84     1
## 7    210      1   1  77 1972      5.16     1
## 8    232      3   0  60 1974      3.22     1
## 9    232      1   1  49 1968     12.88     1
## 10   279      1   0  68 1971      7.41     1
## 11   295      1   0  53 1969      4.19     1
## 12   355      3   0  64 1972      0.16     1
## 13   386      1   0  68 1965      3.87     1
## 14   426      1   1  63 1970      4.84     1
## 15   469      1   0  14 1969      2.42     1
## 16   493      3   1  72 1971     12.56     1
## 17   529      1   1  46 1971      5.80     1
## 18   621      1   1  72 1972      7.06     1
## 19   629      1   1  95 1968      5.48     1
## 20   659      1   1  54 1972      7.73     1
## 21   667      1   0  89 1968     13.85     1
## 22   718      1   1  25 1967      2.34     1
## 23   752      1   1  37 1973      4.19     1
## 24   779      1   1  43 1967      4.04     1
## 25   793      1   1  68 1970      4.84     1
## 26   817      1   0  67 1966      0.32     0
## 27   826      3   0  86 1965      8.54     1
## 28   833      1   0  56 1971      2.58     1
## 29   858      1   0  16 1967      3.56     0
## 30   869      1   0  42 1965      3.54     0
## 31   872      1   0  65 1968      0.97     0
## 32   967      1   1  52 1970      4.83     1
## 33   977      1   1  58 1967      1.62     1
## 34   982      1   0  60 1970      6.44     1
## 35  1041      1   1  68 1967     14.66     0
## 36  1055      1   0  75 1967      2.58     1
## 37  1062      1   1  19 1966      3.87     1
## 38  1075      1   1  66 1971      3.54     1
## 39  1156      1   0  56 1970      1.34     1
## 40  1228      1   1  46 1973      2.24     1
## 41  1252      1   0  58 1971      3.87     1
## 42  1271      1   0  74 1971      3.54     1
## 43  1312      1   0  65 1970     17.42     1
## 44  1427      3   1  64 1972      1.29     0
## 45  1435      1   1  27 1969      3.22     0
## 46  1499      2   1  73 1973      1.29     0
## 47  1506      1   1  56 1970      4.51     1
## 48  1508      2   1  63 1973      8.38     1
## 49  1510      2   0  69 1973      1.94     0
## 50  1512      2   0  77 1973      0.16     0
## 51  1516      1   1  80 1968      2.58     1
## 52  1525      3   0  76 1970      1.29     1
## 53  1542      2   0  65 1973      0.16     0
## 54  1548      1   0  61 1972      1.62     0
## 55  1557      2   0  26 1973      1.29     0
## 56  1560      1   0  57 1973      2.10     0
## 57  1563      2   0  45 1973      0.32     0
## 58  1584      1   1  31 1970      0.81     0
## 59  1605      2   0  36 1973      1.13     0
## 60  1621      1   0  46 1972      5.16     1
## 61  1627      2   0  43 1973      1.62     0
## 62  1634      2   0  68 1973      1.37     0
## 63  1641      2   1  57 1973      0.24     0
## 64  1641      2   0  57 1973      0.81     0
## 65  1648      2   0  55 1973      1.29     0
## 66  1652      2   0  58 1973      1.29     0
## 67  1654      2   1  20 1973      0.97     0
## 68  1654      2   0  67 1973      1.13     0
## 69  1667      1   0  44 1971      5.80     1
## 70  1678      2   0  59 1973      1.29     0
## 71  1685      2   0  32 1973      0.48     0
## 72  1690      1   1  83 1971      1.62     0
## 73  1710      2   0  55 1973      2.26     0
## 74  1710      2   1  15 1973      0.58     0
## 75  1726      1   0  58 1970      0.97     1
## 76  1745      2   0  47 1973      2.58     1
## 77  1762      2   0  54 1973      0.81     0
## 78  1779      2   1  55 1973      3.54     1
## 79  1787      2   1  38 1973      0.97     0
## 80  1787      2   0  41 1973      1.78     1
## 81  1793      2   0  56 1973      1.94     0
## 82  1804      2   0  48 1973      1.29     0
## 83  1812      2   1  44 1973      3.22     1
## 84  1836      2   0  70 1972      1.53     0
## 85  1839      2   0  40 1972      1.29     0
## 86  1839      2   1  53 1972      1.62     1
## 87  1854      2   0  65 1972      1.62     1
## 88  1856      2   1  54 1972      0.32     0
## 89  1860      3   1  71 1969      4.84     1
## 90  1864      2   0  49 1972      1.29     0
## 91  1899      2   0  55 1972      0.97     0
## 92  1914      2   0  69 1972      3.06     0
## 93  1919      2   1  83 1972      3.54     0
## 94  1920      2   1  60 1972      1.62     1
## 95  1927      2   1  40 1972      2.58     1
## 96  1933      1   0  77 1972      1.94     0
## 97  1942      2   0  35 1972      0.81     0
## 98  1955      2   0  46 1972      7.73     1
## 99  1956      2   0  34 1972      0.97     0
## 100 1958      2   0  69 1972     12.88     0
## 101 1963      2   0  60 1972      2.58     0
## 102 1970      2   1  84 1972      4.09     1
## 103 2005      2   0  66 1972      0.64     0
## 104 2007      2   1  56 1972      0.97     0
## 105 2011      2   0  75 1972      3.22     1
## 106 2024      2   0  36 1972      1.62     0
## 107 2028      2   1  52 1972      3.87     1
## 108 2038      2   0  58 1972      0.32     1
## 109 2056      2   0  39 1972      0.32     0
## 110 2059      2   1  68 1972      3.22     1
## 111 2061      1   1  71 1968      2.26     0
## 112 2062      1   0  52 1965      3.06     0
## 113 2075      2   1  55 1972      2.58     1
## 114 2085      3   0  66 1970      0.65     0
## 115 2102      2   1  35 1972      1.13     0
## 116 2103      1   1  44 1966      0.81     0
## 117 2104      2   0  72 1972      0.97     0
## 118 2108      1   0  58 1969      1.76     1
## 119 2112      2   0  54 1972      1.94     1
## 120 2150      2   0  33 1972      0.65     0
## 121 2156      2   0  45 1972      0.97     0
## 122 2165      2   1  62 1972      5.64     0
## 123 2209      2   0  72 1971      9.66     0
## 124 2227      2   0  51 1971      0.10     0
## 125 2227      2   1  77 1971      5.48     1
## 126 2256      1   0  43 1971      2.26     1
## 127 2264      2   0  65 1971      4.83     1
## 128 2339      2   0  63 1971      0.97     0
## 129 2361      2   1  60 1971      0.97     0
## 130 2387      2   0  50 1971      5.16     1
## 131 2388      1   1  40 1966      0.81     0
## 132 2403      2   0  67 1971      2.90     1
## 133 2426      2   0  69 1971      3.87     0
## 134 2426      2   0  74 1971      1.94     1
## 135 2431      2   0  49 1971      0.16     0
## 136 2460      2   0  47 1971      0.64     0
## 137 2467      1   0  42 1965      2.26     1
## 138 2492      2   0  54 1971      1.45     0
## 139 2493      2   1  72 1971      4.82     1
## 140 2521      2   0  45 1971      1.29     1
## 141 2542      2   1  67 1971      7.89     1
## 142 2559      2   0  48 1970      0.81     1
## 143 2565      1   1  34 1970      3.54     1
## 144 2570      2   0  44 1970      1.29     0
## 145 2660      2   0  31 1970      0.64     0
## 146 2666      2   0  42 1970      3.22     1
## 147 2676      2   0  24 1970      1.45     1
## 148 2738      2   0  58 1970      0.48     0
## 149 2782      1   1  78 1969      1.94     0
## 150 2787      2   1  62 1970      0.16     0
## 151 2984      2   1  70 1969      0.16     0
## 152 3032      2   0  35 1969      1.29     0
## 153 3040      2   0  61 1969      1.94     0
## 154 3042      1   0  54 1967      3.54     1
## 155 3067      2   0  29 1969      0.81     0
## 156 3079      2   1  64 1969      0.65     0
## 157 3101      2   1  47 1969      7.09     0
## 158 3144      2   1  62 1969      0.16     0
## 159 3152      2   0  32 1969      1.62     0
## 160 3154      3   1  49 1969      1.62     0
## 161 3180      2   0  25 1969      1.29     0
## 162 3182      3   1  49 1966      6.12     0
## 163 3185      2   0  64 1969      0.48     0
## 164 3199      2   0  36 1969      0.64     0
## 165 3228      2   0  58 1969      3.22     1
## 166 3229      2   0  37 1969      1.94     0
## 167 3278      2   1  54 1969      2.58     0
## 168 3297      2   0  61 1968      2.58     1
## 169 3328      2   1  31 1968      0.81     0
## 170 3330      2   1  61 1968      0.81     1
## 171 3338      1   0  60 1967      3.22     1
## 172 3383      2   0  43 1968      0.32     0
## 173 3384      2   0  68 1968      3.22     1
## 174 3385      2   0   4 1968      2.74     0
## 175 3388      2   1  60 1968      4.84     1
## 176 3402      2   1  50 1968      1.62     0
## 177 3441      2   0  20 1968      0.65     0
## 178 3458      3   0  54 1967      1.45     0
## 179 3459      2   0  29 1968      0.65     0
## 180 3459      2   1  56 1968      1.29     1
## 181 3476      2   0  60 1968      1.62     0
## 182 3523      2   0  46 1968      3.54     0
## 183 3667      2   0  42 1967      3.22     0
## 184 3695      2   0  34 1967      0.65     0
## 185 3695      2   0  56 1967      1.03     0
## 186 3776      2   1  12 1967      7.09     1
## 187 3776      2   0  21 1967      1.29     1
## 188 3830      2   1  46 1967      0.65     0
## 189 3856      2   0  49 1967      1.78     0
## 190 3872      2   0  35 1967     12.24     1
## 191 3909      2   1  42 1967      8.06     1
## 192 3968      2   0  47 1967      0.81     0
## 193 4001      2   0  69 1967      2.10     0
## 194 4103      2   0  52 1966      3.87     0
## 195 4119      2   1  52 1966      0.65     0
## 196 4124      2   0  30 1966      1.94     1
## 197 4207      2   1  22 1966      0.65     0
## 198 4310      2   1  55 1966      2.10     0
## 199 4390      2   0  26 1965      1.94     1
## 200 4479      2   0  19 1965      1.13     1
## 201 4492      2   1  29 1965      7.06     1
## 202 4668      2   0  40 1965      6.12     0
## 203 4688      2   0  42 1965      0.48     0
## 204 4926      2   0  50 1964      2.26     0
## 205 5565      2   0  41 1962      2.90     0
Num_fallecidos = nrow(Melanoma[Melanoma$status==1,]) + nrow(Melanoma[Melanoma$status==3,])
Num_fallecidos
## [1] 71
Melanoma$ulcer
##   [1] 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1
##  [38] 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
##  [75] 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0
## [112] 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 1 0
## [149] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0
## [186] 1 1 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0 0 0 0
sum(Melanoma$ulcer=="0")
## [1] 115
sum(Melanoma$ulcer=="1")
## [1] 90
library(MASS)
data("Melanoma")
table(Melanoma$thickness, Melanoma$status)
##        
##          1  2  3
##   0.1    0  1  0
##   0.16   0  6  1
##   0.24   0  1  0
##   0.32   1  5  0
##   0.48   0  4  0
##   0.58   0  1  0
##   0.64   0  4  0
##   0.65   0  8  2
##   0.81   3  8  0
##   0.97   2  9  0
##   1.03   0  1  0
##   1.13   0  4  0
##   1.29   0 14  2
##   1.34   1  1  0
##   1.37   0  1  0
##   1.45   0  2  1
##   1.53   0  1  0
##   1.62   3  8  1
##   1.76   1  0  0
##   1.78   0  2  0
##   1.94   2  8  0
##   2.1    1  2  0
##   2.24   1  0  0
##   2.26   3  2  0
##   2.34   1  0  0
##   2.42   1  0  0
##   2.58   3  6  0
##   2.74   0  1  0
##   2.9    0  2  1
##   3.06   1  1  0
##   3.22   2  7  1
##   3.54   5  3  0
##   3.56   1  0  0
##   3.87   3  3  0
##   4.04   1  0  0
##   4.09   0  1  0
##   4.19   2  0  0
##   4.51   1  0  0
##   4.82   0  1  0
##   4.83   1  1  0
##   4.84   3  1  1
##   5.16   2  1  0
##   5.48   1  1  0
##   5.64   0  1  0
##   5.8    2  0  0
##   6.12   0  1  1
##   6.44   1  0  0
##   6.76   0  0  1
##   7.06   1  1  0
##   7.09   0  2  0
##   7.41   1  0  0
##   7.73   1  1  0
##   7.89   0  1  0
##   8.06   0  1  0
##   8.38   0  1  0
##   8.54   0  0  1
##   9.66   0  1  0
##   12.08  1  0  0
##   12.24  0  1  0
##   12.56  0  0  1
##   12.88  1  1  0
##   13.85  1  0  0
##   14.66  1  0  0
##   17.42  1  0  0
barplot(table(Melanoma$ulcer), main="Presencia y ausencia de Melanoma", xlab= "ulcera", ylab = "Cantidad", beside = TRUE, legend.text = c("Presencia","Ausencia"), col=c("#40E0D0","#FFA07A"))

2.8

UsingR::babyboom
##    clock.time gender   wt running.time
## 1           5   girl 3837            5
## 2         104   girl 3334           64
## 3         118    boy 3554           78
## 4         155    boy 3838          115
## 5         257    boy 3625          177
## 6         405   girl 2208          245
## 7         407   girl 1745          247
## 8         422    boy 2846          262
## 9         431    boy 3166          271
## 10        708    boy 3520          428
## 11        735    boy 3380          455
## 12        812    boy 3294          492
## 13        814   girl 2576          494
## 14        909   girl 3208          549
## 15       1035    boy 3521          635
## 16       1049   girl 3746          649
## 17       1053   girl 3523          653
## 18       1133    boy 2902          693
## 19       1209    boy 2635          729
## 20       1256    boy 3920          776
## 21       1305    boy 3690          785
## 22       1406   girl 3430          846
## 23       1407   girl 3480          847
## 24       1433   girl 3116          873
## 25       1446   girl 3428          886
## 26       1514    boy 3783          914
## 27       1631    boy 3345          991
## 28       1657    boy 3034         1017
## 29       1742   girl 2184         1062
## 30       1807    boy 3300         1087
## 31       1825   girl 2383         1105
## 32       1854    boy 3428         1134
## 33       1909    boy 4162         1149
## 34       1947    boy 3630         1187
## 35       1949    boy 3406         1189
## 36       1951    boy 3402         1191
## 37       2010   girl 3500         1210
## 38       2037    boy 3736         1237
## 39       2051    boy 3370         1251
## 40       2104    boy 2121         1264
## 41       2123    boy 3150         1283
## 42       2217   girl 3866         1337
## 43       2327   girl 3542         1407
## 44       2355   girl 3278         1435
attach(babyboom)
boy= nrow(babyboom[gender == "boy",])
boy
## [1] 26
girl= nrow(babyboom[gender == "girl",])
girl
## [1] 18
num_nacidos= nrow(babyboom[clock.time<=708,])
p12horas= nrow(babyboom[clock.time< 708,])
paste("Niños nacidos en las primeras 12 horas: ", p12horas)
## [1] "Niños nacidos en las primeras 12 horas:  9"
niños_menos3000gr= nrow(babyboom[wt<3000,])
paste("Niños con peso menor a los 3000gr: ", niños_menos3000gr)
## [1] "Niños con peso menor a los 3000gr:  9"
generoninos = babyboom[babyboom$wt < 3000,]
table(generoninos$gender,generoninos$wt)
##       
##        1745 2121 2184 2208 2383 2576 2635 2846 2902
##   girl    1    0    1    1    1    1    0    0    0
##   boy     0    1    0    0    0    0    1    1    1
promedioninos= aggregate(babyboom$wt, by = list(babyboom[,"gender"]), FUN = mean)
promedioninos
##   Group.1        x
## 1    girl 3132.444
## 2     boy 3375.308
barplot(c(mean(babyboom$wt[babyboom$gender=="girl"]), mean(babyboom$wt[babyboom$gender=="boy"])),names.arg=c("Niña", "Niño"), col = c("#FFFF99", "#B0C4DE"), main = "Promedio peso", ylab="peso", xlab="", las=1, ylim=c(0,3500))

2.9

data("Aids2")
head(Aids2)
##   state sex  diag death status T.categ age
## 1   NSW   M 10905 11081      D      hs  35
## 2   NSW   M 11029 11096      D      hs  53
## 3   NSW   M  9551  9983      D      hs  42
## 4   NSW   M  9577  9654      D    haem  44
## 5   NSW   M 10015 10290      D      hs  39
## 6   NSW   M  9971 10344      D      hs  36
  1. contagios por estado
aggregate(Aids2$state, by=list(Aids2[,"state"]), FUN=length)
##   Group.1    x
## 1     NSW 1780
## 2   Other  249
## 3     QLD  226
## 4     VIC  588
  1. numero de muertos
muertos_sida = Aids2[Aids2$status == "D",]
length(muertos_sida)
## [1] 7

c)relación entre sexo y tipo de transmisión

table(Aids2$sex, Aids2$T.categ)
##    
##       hs hsid   id  het haem blood mother other
##   F    1    0   20   20    0    37      4     7
##   M 2464   72   28   21   46    57      3    63
types = table(Aids2$T.categ)
barplot(types, main = "Tipos de contagio", col = c("#FFD700", "#FF69B4", "#00CED1", "#9370DB", "#FF4500", "#32CD32", "#800080", "#FF8C00"), ylab = "No. Personas", ylim = c(0,2500))

UsingR::crime
##                 y1983  y1993
## Alabama         416.0  871.7
## Alaska          613.8  660.5
## Arizona         494.2  670.8
## Arkansas        297.7  576.5
## California      772.6 1119.7
## Colorado        476.4  578.8
## Connecticut     375.0  495.3
## Delaware        453.1  621.2
## DC             1985.4 2832.8
## Florida         826.7 1207.2
## Georgia         456.7  733.2
## Hawaii          252.1  258.4
## Idaho           238.7  281.4
## Illinois        553.0  977.3
## Indiana         283.8  508.3
## Iowa            181.1  278.0
## Kansas          326.6  510.8
## Kentucky        322.2  535.5
## Louisiana       640.9  984.6
## Maine           159.6  130.9
## Maryland        807.1 1000.1
## Massachusetts   576.8  779.0
## Michigan        716.7  770.1
## Minnesota       190.9  338.0
## Mississippi     280.4  411.7
## Missour         477.2  740.4
## Montana         212.6  169.9
## Nebraska        217.7  348.6
## Nevada          655.2  696.8
## New Hampshire   125.1  125.7
## New Jersey      553.1  625.8
## New Mexico      686.8  934.9
## New York        914.1 1122.1
## North Carolina  409.6  681.0
## North Dakota     53.7   83.3
## Ohio            397.9  525.9
## Oklahoma        423.4  622.8
## Oregon          487.8  510.2
## Pennsylvania    342.8  427.0
## Rhode Island    355.2  394.5
## South Carolina  616.8  944.5
## South Dakota    120.0  194.5
## Tennessee       402.0  746.2
## Texas           512.2  806.3
## Utah            256.0  290.5
## Vermont         132.6  109.5
## Virginia        292.5  374.9
## Washington      371.8  534.5
## West Virginia   171.8  211.5
## Wisconsin       190.9  275.7
## Wyoming         237.2  319.5
total83 = round(sum(crime$y1983))
total93 = round(sum(crime$y1993))
crimen83 =round(max(crime$y1983))  
crimen93 = round(max(crime$y1993))
crime["acumulado"] <- crime$y1983 + crime$y1993
crime[crime$acumulado == max(crime$acumulado),]
##     y1983  y1993 acumulado
## DC 1985.4 2832.8    4818.2
anos = c("1983","1993")
datos = c(total83,total93)

pie(datos, anos,
    main = "Mayor tasa de crímenes por año",
    sub = "Año 1983: 1985 - Año 1993: 2833")