punto 2.1
library(UsingR)
## Loading required package: MASS
## Loading required package: HistData
## Loading required package: Hmisc
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
## format.pval, units
data()
hist(bumpers, main = "Histograma de Bumpers Data", xlab = "Valores")
hist(firstchi, main = "Histograma de Firstchi Data", xlab = "Valores")
hist(math, main = "Histograma de Math Data", xlab = "Valores")
boxplot(bumpers, main = "Boxplot de Bumpers Data")
boxplot(firstchi, main = "Boxplot de Firstchi Data")
boxplot(math, main = "Boxplot de Math Data")
mean_bumpers <- mean(bumpers)
median_bumpers <- median(bumpers)
sd_bumpers <- sd(bumpers)
mean_firstchi <- mean(firstchi)
median_firstchi <- median(firstchi)
sd_firstchi <- sd(firstchi)
mean_math <- mean(math)
median_math <- median(math)
sd_math <- sd(math)
cat("Estimaciones visuales para 'bumpers':\n")
## Estimaciones visuales para 'bumpers':
cat("Media:", mean_bumpers, "\n")
## Media: 2122.478
cat("Mediana:", median_bumpers, "\n")
## Mediana: 2129
cat("Desviación Estándar:", sd_bumpers, "\n\n")
## Desviación Estándar: 798.4574
cat("Estimaciones visuales para 'firstchi':\n")
## Estimaciones visuales para 'firstchi':
cat("Media:", mean_firstchi, "\n")
## Media: 23.97701
cat("Mediana:", median_firstchi, "\n")
## Mediana: 23
cat("Desviación Estándar:", sd_firstchi, "\n\n")
## Desviación Estándar: 6.254258
cat("Estimaciones visuales para 'math':\n")
## Estimaciones visuales para 'math':
cat("Media:", mean_math, "\n")
## Media: 54.9
cat("Mediana:", median_math, "\n")
## Mediana: 54
cat("Desviación Estándar:", sd_math, "\n")
## Desviación Estándar: 9.746264
Un histograma sería el grafico que resulta de mayor ayuda ya que todas las distribuciones son aproximadas entre si, por ende el histogra permitiria visualizar la distribución de los datos y la frecuencia con la que ocurren ciertos valores dentro de un rango determinado.
punto 2.2 a)
library(UsingR)
data(brightness)
hist(brightness, main = "Histograma de Brightness Data", xlab = "Valores", col = "lightblue", prob = TRUE)
lines(density(brightness), col = "green", lwd = 2)
b)
outlier = boxplot(brightness)$out
min_outlier = sort(outlier, decreasing = FALSE)
min_outlier
## [1] 2.07 2.28 3.88 4.37 4.55 4.61 4.78 4.89 4.99 5.01 5.04 5.13
## [13] 5.24 5.29 5.41 5.42 5.53 5.54 5.55 11.28 11.55 11.55 11.55 11.63
## [25] 11.65 11.67 11.71 11.73 11.79 11.80 11.99 12.04 12.04 12.14 12.17 12.19
## [37] 12.31 12.43
min_2 = min_outlier[2]
min_2
## [1] 2.28
#c)
quantile(brightness)
## 0% 25% 50% 75% 100%
## 2.0700 7.7025 8.5000 9.1300 12.4300
brightness.sin= brightness[brightness > 7.7025 & brightness < 9.130]
boxplot(brightness.sin)
cat("La nueva variable brightness.sin contiene", length(brightness.sin), "valores.")
## La nueva variable brightness.sin contiene 479 valores.
punto 2.3 a)
data("UScereal")
str(UScereal)
## 'data.frame': 65 obs. of 11 variables:
## $ mfr : Factor w/ 6 levels "G","K","N","P",..: 3 2 2 1 2 1 6 4 5 1 ...
## $ calories : num 212 212 100 147 110 ...
## $ protein : num 12.12 12.12 8 2.67 2 ...
## $ fat : num 3.03 3.03 0 2.67 0 ...
## $ sodium : num 394 788 280 240 125 ...
## $ fibre : num 30.3 27.3 28 2 1 ...
## $ carbo : num 15.2 21.2 16 14 11 ...
## $ sugars : num 18.2 15.2 0 13.3 14 ...
## $ shelf : int 3 3 3 1 2 3 1 3 2 1 ...
## $ potassium: num 848.5 969.7 660 93.3 30 ...
## $ vitamins : Factor w/ 3 levels "100%","enriched",..: 2 2 2 2 2 2 2 2 2 2 ...
table(UScereal$mfr,UScereal$shelf)
##
## 1 2 3
## G 6 7 9
## K 4 7 10
## N 2 0 1
## P 2 1 6
## Q 0 3 2
## R 4 0 1
table(UScereal$fat, UScereal$vitamins)
##
## 100% enriched none
## 0 1 18 3
## 0.6666667 0 1 0
## 1 3 7 0
## 1.1363636 0 1 0
## 1.3333333 1 8 0
## 1.4925373 0 4 0
## 1.6 0 1 0
## 2 0 2 0
## 2.6666667 0 3 0
## 2.9850746 0 4 0
## 3.030303 0 2 0
## 4 0 4 0
## 6 0 1 0
## 9.0909091 0 1 0
table(UScereal$fat, UScereal$shelf)
##
## 1 2 3
## 0 10 3 9
## 0.6666667 0 1 0
## 1 2 5 3
## 1.1363636 0 0 1
## 1.3333333 2 4 3
## 1.4925373 2 1 1
## 1.6 1 0 0
## 2 0 1 1
## 2.6666667 1 1 1
## 2.9850746 0 1 3
## 3.030303 0 0 2
## 4 0 1 3
## 6 0 0 1
## 9.0909091 0 0 1
table(UScereal$carbo, UScereal$sugars)
##
## 0 0.8 1.769912 2 3 4 4.477612 5.681818 6 6.666667 7.462687 8.270677
## 10.52632 0 0 0 0 0 0 0 0 0 0 0 1
## 11 0 0 0 0 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0 0 0 0 0
## 12.5 0 0 0 0 0 0 0 0 0 0 0 0
## 13 1 0 0 0 0 0 0 0 0 0 0 0
## 13.6 0 1 0 0 0 0 0 0 0 0 0 0
## 14 0 0 0 1 0 0 0 0 0 0 0 0
## 14.66667 0 0 0 0 0 0 0 0 0 0 0 0
## 15 0 0 0 0 0 0 0 0 1 0 0 0
## 15.15152 0 0 0 0 0 0 0 0 0 0 0 0
## 15.33333 0 0 0 0 0 0 0 0 0 0 0 0
## 16 1 0 0 0 2 0 0 0 0 0 0 0
## 16.41791 0 0 0 0 0 0 0 0 0 0 0 0
## 17 0 0 0 0 1 0 0 0 0 0 0 0
## 17.04545 0 0 0 0 0 0 0 1 0 0 0 0
## 17.33333 0 0 0 0 0 0 0 0 0 0 0 0
## 17.5 0 0 0 0 0 0 0 0 0 0 0 0
## 17.91045 0 0 0 0 0 0 0 0 0 0 0 0
## 18.66667 0 0 0 0 0 0 0 0 0 0 0 0
## 19.40299 0 0 0 0 0 0 0 0 0 0 1 0
## 20 0 0 0 0 1 0 0 0 0 0 0 0
## 20.35398 0 0 1 0 0 0 0 0 0 0 0 0
## 20.89552 0 0 0 0 0 0 0 0 0 0 0 0
## 21 0 0 0 1 2 0 0 0 0 0 0 0
## 21.21212 0 0 0 0 0 0 0 0 0 0 0 0
## 21.33333 0 0 0 0 0 0 0 0 0 0 0 0
## 22 0 0 0 0 2 0 0 0 0 0 0 0
## 22.38806 0 0 0 0 0 0 0 0 0 0 0 0
## 24 0 0 0 0 0 0 0 0 0 1 0 0
## 25.37313 0 0 0 0 0 0 1 0 0 0 0 0
## 26 0 0 0 0 0 0 0 0 0 0 0 0
## 26.66667 0 0 0 0 0 0 0 0 0 0 0 0
## 27 0 0 0 0 0 0 0 0 0 0 0 0
## 28 0 0 0 0 0 1 0 0 0 0 0 0
## 28.35821 1 0 0 0 0 0 0 0 0 0 0 0
## 29.85075 1 0 0 0 0 0 0 0 0 0 0 0
## 30 0 0 0 0 0 0 0 0 0 0 0 0
## 31.34328 0 0 0 0 0 0 0 0 0 0 0 0
## 39.39394 0 0 0 0 0 0 0 0 0 0 0 0
## 68 0 0 0 0 0 0 0 0 0 0 0 0
##
## 8.75 8.955224 10.447761 10.666667 11 12 12.121212 13 13.333333
## 10.52632 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 1 0
## 12 0 0 0 0 1 1 0 2 0
## 12.5 0 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 2 0 0 0
## 13.6 0 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0 1
## 14.66667 0 0 0 0 0 0 0 0 1
## 15 0 0 0 0 0 0 0 0 0
## 15.15152 0 0 0 0 0 0 0 0 0
## 15.33333 0 0 0 0 0 0 0 0 1
## 16 0 0 0 0 0 0 0 0 0
## 16.41791 0 0 0 0 0 0 0 0 0
## 17 0 0 0 0 0 0 0 0 0
## 17.04545 0 0 0 0 0 0 0 0 0
## 17.33333 0 0 0 0 0 1 0 0 0
## 17.5 1 0 0 0 0 0 0 0 0
## 17.91045 0 1 0 0 0 0 0 0 0
## 18.66667 0 0 0 0 0 0 0 0 0
## 19.40299 0 0 0 0 0 0 0 0 0
## 20 0 0 0 0 0 1 0 0 0
## 20.35398 0 0 0 0 0 0 0 0 0
## 20.89552 0 0 0 0 0 0 0 0 0
## 21 0 0 0 0 0 0 0 0 0
## 21.21212 0 0 0 0 0 0 0 0 0
## 21.33333 0 0 0 1 0 0 0 0 0
## 22 0 0 0 0 0 0 0 0 0
## 22.38806 0 1 0 0 0 0 0 0 0
## 24 0 0 0 1 0 0 0 0 0
## 25.37313 0 0 0 0 0 0 0 0 0
## 26 0 0 0 0 0 0 0 0 0
## 26.66667 0 0 0 0 0 1 0 0 0
## 27 0 0 0 0 0 0 0 0 0
## 28 0 0 0 0 0 1 0 0 0
## 28.35821 0 0 0 0 0 0 0 0 0
## 29.85075 0 0 0 0 0 0 0 0 0
## 30 0 0 0 0 0 1 0 0 0
## 31.34328 0 0 1 0 0 0 0 0 0
## 39.39394 0 0 0 0 0 0 1 0 0
## 68 0 0 0 0 0 1 0 0 0
##
## 13.432836 14 14.666667 14.925373 15.151515 16 17.045455 17.910448
## 10.52632 0 0 0 0 0 0 0 0
## 11 0 1 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0
## 12.5 0 0 0 0 0 0 1 0
## 13 0 0 0 0 0 0 0 0
## 13.6 0 0 0 0 0 0 0 0
## 14 0 0 0 0 0 0 0 0
## 14.66667 0 0 0 0 0 0 0 0
## 15 0 1 0 0 0 0 0 0
## 15.15152 0 0 0 0 0 0 0 0
## 15.33333 0 0 0 0 0 0 0 0
## 16 0 0 0 0 0 1 0 0
## 16.41791 0 0 0 0 0 0 0 0
## 17 0 0 0 0 0 0 0 0
## 17.04545 0 0 0 0 0 0 0 0
## 17.33333 0 0 0 0 0 1 0 0
## 17.5 0 0 0 0 0 0 0 0
## 17.91045 0 0 0 1 0 0 0 0
## 18.66667 0 0 1 0 0 1 0 0
## 19.40299 0 0 0 0 0 0 0 0
## 20 0 1 0 0 0 0 0 0
## 20.35398 0 0 0 0 0 0 0 0
## 20.89552 0 0 0 0 0 0 0 1
## 21 0 0 0 0 0 1 0 0
## 21.21212 0 0 0 0 1 0 0 0
## 21.33333 0 0 0 0 0 0 0 0
## 22 0 0 0 0 0 0 0 0
## 22.38806 1 0 0 0 0 0 0 0
## 24 0 0 0 0 0 0 0 0
## 25.37313 0 0 0 0 0 0 0 0
## 26 0 1 0 0 0 0 0 0
## 26.66667 0 0 0 0 0 0 0 0
## 27 0 0 0 0 0 0 0 0
## 28 0 0 0 0 0 0 0 0
## 28.35821 0 0 0 0 0 0 0 0
## 29.85075 0 0 0 0 0 0 0 0
## 30 0 0 0 0 0 0 0 0
## 31.34328 0 0 0 0 0 0 0 0
## 39.39394 0 0 0 0 0 0 0 0
## 68 0 0 0 0 0 0 0 0
##
## 18.181818 19.402985 20 20.895522
## 10.52632 0 0 0 0
## 11 0 0 0 0
## 12 0 0 1 0
## 12.5 0 0 0 0
## 13 0 0 0 0
## 13.6 0 0 0 0
## 14 0 0 0 0
## 14.66667 0 0 0 0
## 15 0 0 0 0
## 15.15152 1 0 0 0
## 15.33333 0 0 0 0
## 16 0 0 0 0
## 16.41791 0 0 0 1
## 17 0 0 0 0
## 17.04545 0 0 0 0
## 17.33333 0 0 0 0
## 17.5 0 0 0 0
## 17.91045 0 0 0 0
## 18.66667 0 0 0 0
## 19.40299 0 0 0 0
## 20 0 0 0 0
## 20.35398 0 0 0 0
## 20.89552 0 0 0 0
## 21 0 0 0 0
## 21.21212 0 0 0 0
## 21.33333 0 0 0 0
## 22 0 0 0 0
## 22.38806 0 0 0 0
## 24 0 0 0 0
## 25.37313 0 1 0 0
## 26 0 0 0 0
## 26.66667 0 0 0 0
## 27 0 0 1 0
## 28 0 0 0 0
## 28.35821 0 0 0 0
## 29.85075 0 0 0 0
## 30 0 0 0 0
## 31.34328 0 0 0 0
## 39.39394 0 0 0 0
## 68 0 0 0 0
table(UScereal$fibre, UScereal$mfr)
##
## G K N P Q R
## 0 9 2 0 3 2 2
## 1 0 7 0 0 1 0
## 1.333333 1 2 0 0 0 1
## 1.6 1 0 0 0 0 0
## 2 3 0 0 0 0 0
## 2.666667 2 1 0 0 0 0
## 2.985075 0 0 0 0 1 0
## 3 3 0 0 0 0 0
## 3.409091 0 0 0 1 0 0
## 3.75 0 1 0 0 0 0
## 4 2 1 0 0 1 0
## 4.477612 0 2 1 0 0 1
## 5 1 0 0 0 0 0
## 5.970149 0 0 1 0 0 1
## 6.666667 0 1 0 0 0 0
## 7.462687 0 1 0 2 0 0
## 8 0 1 0 0 0 0
## 8.955224 0 0 0 1 0 0
## 9.090909 0 0 0 1 0 0
## 12 0 0 0 1 0 0
## 27.272727 0 1 0 0 0 0
## 28 0 1 0 0 0 0
## 30.30303 0 0 1 0 0 0
table(UScereal$sodium, UScereal$sugars)
##
## 0 0.8 1.769912 2 3 4 4.477612 5.681818 6 6.666667 7.462687 8.270677
## 0 3 0 0 0 0 0 0 0 0 0 0 0
## 51.13636 0 0 0 0 0 0 0 0 0 0 0 0
## 90 0 0 0 0 0 0 0 0 0 0 0 0
## 93.33333 0 0 0 0 0 0 0 0 0 0 0 0
## 125 0 0 0 0 0 0 0 0 0 0 0 0
## 135.33835 0 0 0 0 0 0 0 0 0 0 0 1
## 140 0 0 0 0 0 0 0 0 0 0 0 0
## 159.09091 0 0 0 0 0 0 0 1 0 0 0 0
## 173.33333 0 0 0 1 0 0 0 0 0 0 0 0
## 180 0 0 0 0 0 0 0 0 0 0 0 0
## 186.66667 0 0 0 0 0 0 0 0 0 0 0 0
## 190 0 0 0 0 0 0 0 0 0 0 0 0
## 200 0 0 0 0 3 0 0 0 0 0 0 0
## 212.38938 0 0 1 0 0 0 0 0 0 0 0 0
## 220 0 0 0 0 1 0 0 0 1 0 0 0
## 223.8806 0 0 0 0 0 0 0 0 0 0 0 0
## 226.66667 0 0 0 0 0 0 0 0 0 0 0 0
## 227.27273 0 0 0 0 0 0 0 0 0 0 0 0
## 230 0 0 0 0 1 0 0 0 0 0 0 0
## 232 0 1 0 0 0 0 0 0 0 0 0 0
## 238.80597 0 0 0 0 0 0 0 0 0 0 0 0
## 240 0 0 0 0 0 0 0 0 0 0 0 0
## 253.33333 0 0 0 0 0 0 0 0 0 1 0 0
## 266.66667 0 0 0 0 0 0 0 0 0 0 0 0
## 270 0 0 0 0 0 0 0 0 0 0 0 0
## 280 1 0 0 0 1 0 0 0 0 0 0 0
## 283.58209 0 0 0 0 0 0 0 0 0 0 0 0
## 290 0 0 0 1 1 0 0 0 0 0 0 0
## 293.33333 0 0 0 0 0 0 0 0 0 0 0 0
## 298.50746 0 0 0 0 0 0 0 0 0 0 0 0
## 313.43284 0 0 0 0 0 0 0 0 0 0 1 0
## 320 0 0 0 0 1 0 0 0 0 0 0 0
## 328.35821 0 0 0 0 0 0 0 0 0 0 0 0
## 333.33333 0 0 0 0 0 1 0 0 0 0 0 0
## 340 0 0 0 0 0 0 0 0 0 0 0 0
## 343.28358 0 0 0 0 0 0 1 0 0 0 0 0
## 358.20896 0 0 0 0 0 0 0 0 0 0 0 0
## 373.33333 0 0 0 0 0 0 0 0 0 0 0 0
## 393.93939 0 0 0 0 0 0 0 0 0 0 0 0
## 680 0 0 0 0 0 0 0 0 0 0 0 0
## 787.87879 0 0 0 0 0 0 0 0 0 0 0 0
##
## 8.75 8.955224 10.447761 10.666667 11 12 12.121212 13 13.333333
## 0 1 0 0 0 0 1 0 0 0
## 51.13636 0 0 0 0 0 0 0 0 0
## 90 0 0 0 0 0 1 0 0 0
## 93.33333 0 0 0 0 0 0 0 0 0
## 125 0 0 0 0 0 0 0 1 0
## 135.33835 0 0 0 0 0 0 0 0 0
## 140 0 0 0 0 0 1 0 0 0
## 159.09091 0 0 0 0 0 0 0 0 0
## 173.33333 0 0 0 0 0 0 0 0 0
## 180 0 0 0 0 0 1 0 2 0
## 186.66667 0 0 0 0 0 0 0 0 1
## 190 0 0 0 0 0 0 0 0 0
## 200 0 0 0 0 0 0 0 0 0
## 212.38938 0 0 0 0 0 0 0 0 0
## 220 0 0 0 0 1 0 0 0 0
## 223.8806 0 1 0 0 0 0 0 0 0
## 226.66667 0 0 0 0 0 1 0 0 0
## 227.27273 0 0 0 0 0 0 1 0 0
## 230 0 0 0 0 0 0 0 0 0
## 232 0 0 0 0 0 0 0 0 0
## 238.80597 0 0 0 0 0 0 0 0 0
## 240 0 0 0 0 0 0 0 0 1
## 253.33333 0 0 0 0 0 0 0 0 0
## 266.66667 0 0 0 1 0 0 0 0 0
## 270 0 0 0 0 0 1 0 0 0
## 280 0 0 0 1 0 1 0 0 0
## 283.58209 0 0 0 0 0 0 0 0 0
## 290 0 0 0 0 0 0 0 0 0
## 293.33333 0 0 0 0 0 0 0 0 0
## 298.50746 0 1 0 0 0 0 0 0 0
## 313.43284 0 0 0 0 0 0 0 0 0
## 320 0 0 0 0 0 0 0 0 0
## 328.35821 0 0 1 0 0 0 0 0 0
## 333.33333 0 0 0 0 0 0 0 0 1
## 340 0 0 0 0 0 0 0 0 0
## 343.28358 0 0 0 0 0 0 0 0 0
## 358.20896 0 0 0 0 0 0 0 0 0
## 373.33333 0 0 0 0 0 1 0 0 0
## 393.93939 0 0 0 0 0 0 0 0 0
## 680 0 0 0 0 0 1 0 0 0
## 787.87879 0 0 0 0 0 0 0 0 0
##
## 13.432836 14 14.666667 14.925373 15.151515 16 17.045455 17.910448
## 0 0 0 0 0 0 0 0 0
## 51.13636 0 0 0 0 0 0 1 0
## 90 0 0 0 0 0 0 0 0
## 93.33333 0 0 0 0 0 0 0 0
## 125 0 1 0 0 0 0 0 0
## 135.33835 0 0 0 0 0 0 0 0
## 140 0 0 0 0 0 0 0 0
## 159.09091 0 0 0 0 0 0 0 0
## 173.33333 0 0 0 0 0 0 0 0
## 180 0 0 0 0 0 1 0 0
## 186.66667 0 0 0 0 0 0 0 0
## 190 0 1 0 0 0 0 0 0
## 200 0 0 0 0 0 0 0 0
## 212.38938 0 0 0 0 0 0 0 0
## 220 0 0 0 0 0 0 0 0
## 223.8806 0 0 0 0 0 0 0 0
## 226.66667 0 0 0 0 0 0 0 0
## 227.27273 0 0 0 0 0 0 0 0
## 230 0 0 0 0 0 0 0 0
## 232 0 0 0 0 0 0 0 0
## 238.80597 0 0 0 1 0 0 0 0
## 240 0 0 0 0 0 0 0 0
## 253.33333 0 0 0 0 0 0 0 0
## 266.66667 0 0 1 0 0 0 0 0
## 270 0 0 0 0 0 0 0 0
## 280 0 2 0 0 0 2 0 0
## 283.58209 1 0 0 0 0 0 0 0
## 290 0 0 0 0 0 0 0 0
## 293.33333 0 0 0 0 0 1 0 0
## 298.50746 0 0 0 0 0 0 0 0
## 313.43284 0 0 0 0 0 0 0 0
## 320 0 0 0 0 0 0 0 0
## 328.35821 0 0 0 0 0 0 0 0
## 333.33333 0 0 0 0 0 0 0 0
## 340 0 0 0 0 0 0 0 0
## 343.28358 0 0 0 0 0 0 0 0
## 358.20896 0 0 0 0 0 0 0 1
## 373.33333 0 0 0 0 0 0 0 0
## 393.93939 0 0 0 0 0 0 0 0
## 680 0 0 0 0 0 0 0 0
## 787.87879 0 0 0 0 1 0 0 0
##
## 18.181818 19.402985 20 20.895522
## 0 0 0 0 0
## 51.13636 0 0 0 0
## 90 0 0 0 0
## 93.33333 0 0 1 0
## 125 0 0 0 0
## 135.33835 0 0 0 0
## 140 0 0 0 0
## 159.09091 0 0 0 0
## 173.33333 0 0 0 0
## 180 0 0 0 0
## 186.66667 0 0 0 0
## 190 0 0 0 0
## 200 0 0 0 0
## 212.38938 0 0 0 0
## 220 0 0 0 0
## 223.8806 0 1 0 0
## 226.66667 0 0 0 0
## 227.27273 0 0 0 0
## 230 0 0 0 0
## 232 0 0 0 0
## 238.80597 0 0 0 0
## 240 0 0 0 0
## 253.33333 0 0 0 0
## 266.66667 0 0 0 0
## 270 0 0 0 0
## 280 0 0 0 0
## 283.58209 0 0 0 0
## 290 0 0 0 0
## 293.33333 0 0 0 0
## 298.50746 0 0 0 1
## 313.43284 0 0 0 0
## 320 0 0 0 0
## 328.35821 0 0 0 0
## 333.33333 0 0 0 0
## 340 0 0 1 0
## 343.28358 0 0 0 0
## 358.20896 0 0 0 0
## 373.33333 0 0 0 0
## 393.93939 1 0 0 0
## 680 0 0 0 0
## 787.87879 0 0 0 0
punto 2.4 a)
attach(mammals)
cor (mammals)
## body brain
## body 1.0000000 0.9341638
## brain 0.9341638 1.0000000
plot(mammals)
c)
cor(x=log(mammals$body), y=log(mammals$brain))
## [1] 0.9595748
plot(log(mammals$body),log(mammals$brain))
c)
# Punto c: Transformar los datos mediante la función log y repetir el estudio
mammals$log_body <- log(mammals$body)
mammals$log_brain <- log(mammals$brain)
# correlación lineal después de la transformación
correlation_log <- cor(mammals$log_brain, mammals$log_body)
cat("Correlación lineal después de la transformación:", correlation_log, "\n")
## Correlación lineal después de la transformación: 0.9595748
plot(mammals$log_body, mammals$log_brain, main = "Relación entre Log(Peso Corporal) y Log(Peso del Cerebro)", xlab = "Log(Peso Corporal)", ylab = "Log(Peso del Cerebro)")
punto 2.5
data("emissions")
head(emissions)
## GDP perCapita CO2
## UnitedStates 8083000 29647 6750
## Japan 3080000 24409 1320
## Germany 1740000 21197 1740
## France 1320000 22381 550
## UnitedKingdom 1242000 21010 675
## Italy 1240000 21856 540
pairs(emissions)
cor(emissions)
## GDP perCapita CO2
## GDP 1.0000000 0.4325303 0.9501753
## perCapita 0.4325303 1.0000000 0.2757962
## CO2 0.9501753 0.2757962 1.0000000
lineal_regre = lm(emissions$CO2 ~ emissions$GDP + emissions$perCapita, data = emissions)
summary(lineal_regre)
##
## Call:
## lm(formula = emissions$CO2 ~ emissions$GDP + emissions$perCapita,
## data = emissions)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1037.3 -167.4 10.8 153.2 1052.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.100e+02 2.044e+02 2.495 0.0202 *
## emissions$GDP 8.406e-04 5.198e-05 16.172 4.68e-14 ***
## emissions$perCapita -3.039e-02 1.155e-02 -2.631 0.0149 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 382.8 on 23 degrees of freedom
## Multiple R-squared: 0.9253, Adjusted R-squared: 0.9188
## F-statistic: 142.5 on 2 and 23 DF, p-value: 1.102e-13
plot(emissions$GDP+emissions$perCapita,emissions$CO2)
abline(lineal_regre,col = "red")
## Warning in abline(lineal_regre, col = "red"): only using the first two of 3
## regression coefficients
emissions$CO2
## [1] 6750 1320 1740 550 675 540 2000 700 370 480 240 400 145 75 80
## [16] 54 75 125 420 75 56 160 150 76 85 63
prediccion_CO2 = predict(lineal_regre,emissions)
plot(emissions$GDP+emissions$perCapita,prediccion_CO2)
prediccion_CO2
## UnitedStates Japan Germany France UnitedKingdom
## 6403.720110 2357.274571 1328.457202 939.412260 915.510264
## Italy Russia Canada Spain Australia
## 888.117914 948.030553 418.174003 551.546727 203.695487
## Netherlands Poland Belgium Sweden Austria
## 137.905405 524.997147 3.295727 57.168681 6.260516
## Switzerland Portugal Greece Ukraine Denmark
## -65.251059 177.533136 235.468677 538.782254 -82.034073
## Norway Romania CzechRepublic Finland Hungary
## -213.820805 449.888660 273.235200 -5.729292 353.120804
## Ireland
## 59.239930
cor(emissions$CO2,prediccion_CO2)
## [1] 0.9619321
boxplot(emissions)
boxplot(emissions$CO2)
quantile(emissions$CO2)
## 0% 25% 50% 75% 100%
## 54.0 77.0 200.0 547.5 6750.0
CO2_sin = emissions$CO2[emissions$CO2 > 77.0 & emissions$CO2 < 547.5]
boxplot(CO2_sin, col = "#90EE90")
Punto 2.6 a)
MASS::anorexia
## Treat Prewt Postwt
## 1 Cont 80.7 80.2
## 2 Cont 89.4 80.1
## 3 Cont 91.8 86.4
## 4 Cont 74.0 86.3
## 5 Cont 78.1 76.1
## 6 Cont 88.3 78.1
## 7 Cont 87.3 75.1
## 8 Cont 75.1 86.7
## 9 Cont 80.6 73.5
## 10 Cont 78.4 84.6
## 11 Cont 77.6 77.4
## 12 Cont 88.7 79.5
## 13 Cont 81.3 89.6
## 14 Cont 78.1 81.4
## 15 Cont 70.5 81.8
## 16 Cont 77.3 77.3
## 17 Cont 85.2 84.2
## 18 Cont 86.0 75.4
## 19 Cont 84.1 79.5
## 20 Cont 79.7 73.0
## 21 Cont 85.5 88.3
## 22 Cont 84.4 84.7
## 23 Cont 79.6 81.4
## 24 Cont 77.5 81.2
## 25 Cont 72.3 88.2
## 26 Cont 89.0 78.8
## 27 CBT 80.5 82.2
## 28 CBT 84.9 85.6
## 29 CBT 81.5 81.4
## 30 CBT 82.6 81.9
## 31 CBT 79.9 76.4
## 32 CBT 88.7 103.6
## 33 CBT 94.9 98.4
## 34 CBT 76.3 93.4
## 35 CBT 81.0 73.4
## 36 CBT 80.5 82.1
## 37 CBT 85.0 96.7
## 38 CBT 89.2 95.3
## 39 CBT 81.3 82.4
## 40 CBT 76.5 72.5
## 41 CBT 70.0 90.9
## 42 CBT 80.4 71.3
## 43 CBT 83.3 85.4
## 44 CBT 83.0 81.6
## 45 CBT 87.7 89.1
## 46 CBT 84.2 83.9
## 47 CBT 86.4 82.7
## 48 CBT 76.5 75.7
## 49 CBT 80.2 82.6
## 50 CBT 87.8 100.4
## 51 CBT 83.3 85.2
## 52 CBT 79.7 83.6
## 53 CBT 84.5 84.6
## 54 CBT 80.8 96.2
## 55 CBT 87.4 86.7
## 56 FT 83.8 95.2
## 57 FT 83.3 94.3
## 58 FT 86.0 91.5
## 59 FT 82.5 91.9
## 60 FT 86.7 100.3
## 61 FT 79.6 76.7
## 62 FT 76.9 76.8
## 63 FT 94.2 101.6
## 64 FT 73.4 94.9
## 65 FT 80.5 75.2
## 66 FT 81.6 77.8
## 67 FT 82.1 95.5
## 68 FT 77.6 90.7
## 69 FT 83.5 92.5
## 70 FT 89.9 93.8
## 71 FT 86.0 91.7
## 72 FT 87.3 98.0
data("anorexia")
anorexia[3,1:3]
## Treat Prewt Postwt
## 3 Cont 91.8 86.4
pos_casos_exito <- which(anorexia$Postwt>anorexia$Prewt) #Arroja las posiciones en los casos donde se subió de peso
casos_exito = anorexia[c(pos_casos_exito),]
mejor_tratamiento = which.max(table(casos_exito$Treat))
mejor_tratamiento = c(paste(names(mejor_tratamiento),": ",max(table(casos_exito$Treat))," casos de éxito"))
table(casos_exito$Treat)
##
## CBT Cont FT
## 18 11 13
mejor_tratamiento
## [1] "CBT : 18 casos de éxito"
pos_casos_fracaso <- which(anorexia$Postwt<anorexia$Prewt)
casos_fracaso = anorexia[c(pos_casos_fracaso),]
ganaron_peso = length(pos_casos_exito);ganaron_peso
## [1] 42
perdieron_peso = nrow(casos_fracaso)
barplot(c(ganaron_peso,perdieron_peso), main = "Pacientes que ganaron vs los que perdieron peso",
ylab = "Cantidad de pacientes", col = c("#00FF00","#9370DB"))
legend("topright", legend = c(paste("Ganaron peso: ",ganaron_peso),paste("Perdieron peso: ",perdieron_peso)),
fill = c("#00FF00","#9370DB"))
punto 2.7
MASS::Melanoma
## time status sex age year thickness ulcer
## 1 10 3 1 76 1972 6.76 1
## 2 30 3 1 56 1968 0.65 0
## 3 35 2 1 41 1977 1.34 0
## 4 99 3 0 71 1968 2.90 0
## 5 185 1 1 52 1965 12.08 1
## 6 204 1 1 28 1971 4.84 1
## 7 210 1 1 77 1972 5.16 1
## 8 232 3 0 60 1974 3.22 1
## 9 232 1 1 49 1968 12.88 1
## 10 279 1 0 68 1971 7.41 1
## 11 295 1 0 53 1969 4.19 1
## 12 355 3 0 64 1972 0.16 1
## 13 386 1 0 68 1965 3.87 1
## 14 426 1 1 63 1970 4.84 1
## 15 469 1 0 14 1969 2.42 1
## 16 493 3 1 72 1971 12.56 1
## 17 529 1 1 46 1971 5.80 1
## 18 621 1 1 72 1972 7.06 1
## 19 629 1 1 95 1968 5.48 1
## 20 659 1 1 54 1972 7.73 1
## 21 667 1 0 89 1968 13.85 1
## 22 718 1 1 25 1967 2.34 1
## 23 752 1 1 37 1973 4.19 1
## 24 779 1 1 43 1967 4.04 1
## 25 793 1 1 68 1970 4.84 1
## 26 817 1 0 67 1966 0.32 0
## 27 826 3 0 86 1965 8.54 1
## 28 833 1 0 56 1971 2.58 1
## 29 858 1 0 16 1967 3.56 0
## 30 869 1 0 42 1965 3.54 0
## 31 872 1 0 65 1968 0.97 0
## 32 967 1 1 52 1970 4.83 1
## 33 977 1 1 58 1967 1.62 1
## 34 982 1 0 60 1970 6.44 1
## 35 1041 1 1 68 1967 14.66 0
## 36 1055 1 0 75 1967 2.58 1
## 37 1062 1 1 19 1966 3.87 1
## 38 1075 1 1 66 1971 3.54 1
## 39 1156 1 0 56 1970 1.34 1
## 40 1228 1 1 46 1973 2.24 1
## 41 1252 1 0 58 1971 3.87 1
## 42 1271 1 0 74 1971 3.54 1
## 43 1312 1 0 65 1970 17.42 1
## 44 1427 3 1 64 1972 1.29 0
## 45 1435 1 1 27 1969 3.22 0
## 46 1499 2 1 73 1973 1.29 0
## 47 1506 1 1 56 1970 4.51 1
## 48 1508 2 1 63 1973 8.38 1
## 49 1510 2 0 69 1973 1.94 0
## 50 1512 2 0 77 1973 0.16 0
## 51 1516 1 1 80 1968 2.58 1
## 52 1525 3 0 76 1970 1.29 1
## 53 1542 2 0 65 1973 0.16 0
## 54 1548 1 0 61 1972 1.62 0
## 55 1557 2 0 26 1973 1.29 0
## 56 1560 1 0 57 1973 2.10 0
## 57 1563 2 0 45 1973 0.32 0
## 58 1584 1 1 31 1970 0.81 0
## 59 1605 2 0 36 1973 1.13 0
## 60 1621 1 0 46 1972 5.16 1
## 61 1627 2 0 43 1973 1.62 0
## 62 1634 2 0 68 1973 1.37 0
## 63 1641 2 1 57 1973 0.24 0
## 64 1641 2 0 57 1973 0.81 0
## 65 1648 2 0 55 1973 1.29 0
## 66 1652 2 0 58 1973 1.29 0
## 67 1654 2 1 20 1973 0.97 0
## 68 1654 2 0 67 1973 1.13 0
## 69 1667 1 0 44 1971 5.80 1
## 70 1678 2 0 59 1973 1.29 0
## 71 1685 2 0 32 1973 0.48 0
## 72 1690 1 1 83 1971 1.62 0
## 73 1710 2 0 55 1973 2.26 0
## 74 1710 2 1 15 1973 0.58 0
## 75 1726 1 0 58 1970 0.97 1
## 76 1745 2 0 47 1973 2.58 1
## 77 1762 2 0 54 1973 0.81 0
## 78 1779 2 1 55 1973 3.54 1
## 79 1787 2 1 38 1973 0.97 0
## 80 1787 2 0 41 1973 1.78 1
## 81 1793 2 0 56 1973 1.94 0
## 82 1804 2 0 48 1973 1.29 0
## 83 1812 2 1 44 1973 3.22 1
## 84 1836 2 0 70 1972 1.53 0
## 85 1839 2 0 40 1972 1.29 0
## 86 1839 2 1 53 1972 1.62 1
## 87 1854 2 0 65 1972 1.62 1
## 88 1856 2 1 54 1972 0.32 0
## 89 1860 3 1 71 1969 4.84 1
## 90 1864 2 0 49 1972 1.29 0
## 91 1899 2 0 55 1972 0.97 0
## 92 1914 2 0 69 1972 3.06 0
## 93 1919 2 1 83 1972 3.54 0
## 94 1920 2 1 60 1972 1.62 1
## 95 1927 2 1 40 1972 2.58 1
## 96 1933 1 0 77 1972 1.94 0
## 97 1942 2 0 35 1972 0.81 0
## 98 1955 2 0 46 1972 7.73 1
## 99 1956 2 0 34 1972 0.97 0
## 100 1958 2 0 69 1972 12.88 0
## 101 1963 2 0 60 1972 2.58 0
## 102 1970 2 1 84 1972 4.09 1
## 103 2005 2 0 66 1972 0.64 0
## 104 2007 2 1 56 1972 0.97 0
## 105 2011 2 0 75 1972 3.22 1
## 106 2024 2 0 36 1972 1.62 0
## 107 2028 2 1 52 1972 3.87 1
## 108 2038 2 0 58 1972 0.32 1
## 109 2056 2 0 39 1972 0.32 0
## 110 2059 2 1 68 1972 3.22 1
## 111 2061 1 1 71 1968 2.26 0
## 112 2062 1 0 52 1965 3.06 0
## 113 2075 2 1 55 1972 2.58 1
## 114 2085 3 0 66 1970 0.65 0
## 115 2102 2 1 35 1972 1.13 0
## 116 2103 1 1 44 1966 0.81 0
## 117 2104 2 0 72 1972 0.97 0
## 118 2108 1 0 58 1969 1.76 1
## 119 2112 2 0 54 1972 1.94 1
## 120 2150 2 0 33 1972 0.65 0
## 121 2156 2 0 45 1972 0.97 0
## 122 2165 2 1 62 1972 5.64 0
## 123 2209 2 0 72 1971 9.66 0
## 124 2227 2 0 51 1971 0.10 0
## 125 2227 2 1 77 1971 5.48 1
## 126 2256 1 0 43 1971 2.26 1
## 127 2264 2 0 65 1971 4.83 1
## 128 2339 2 0 63 1971 0.97 0
## 129 2361 2 1 60 1971 0.97 0
## 130 2387 2 0 50 1971 5.16 1
## 131 2388 1 1 40 1966 0.81 0
## 132 2403 2 0 67 1971 2.90 1
## 133 2426 2 0 69 1971 3.87 0
## 134 2426 2 0 74 1971 1.94 1
## 135 2431 2 0 49 1971 0.16 0
## 136 2460 2 0 47 1971 0.64 0
## 137 2467 1 0 42 1965 2.26 1
## 138 2492 2 0 54 1971 1.45 0
## 139 2493 2 1 72 1971 4.82 1
## 140 2521 2 0 45 1971 1.29 1
## 141 2542 2 1 67 1971 7.89 1
## 142 2559 2 0 48 1970 0.81 1
## 143 2565 1 1 34 1970 3.54 1
## 144 2570 2 0 44 1970 1.29 0
## 145 2660 2 0 31 1970 0.64 0
## 146 2666 2 0 42 1970 3.22 1
## 147 2676 2 0 24 1970 1.45 1
## 148 2738 2 0 58 1970 0.48 0
## 149 2782 1 1 78 1969 1.94 0
## 150 2787 2 1 62 1970 0.16 0
## 151 2984 2 1 70 1969 0.16 0
## 152 3032 2 0 35 1969 1.29 0
## 153 3040 2 0 61 1969 1.94 0
## 154 3042 1 0 54 1967 3.54 1
## 155 3067 2 0 29 1969 0.81 0
## 156 3079 2 1 64 1969 0.65 0
## 157 3101 2 1 47 1969 7.09 0
## 158 3144 2 1 62 1969 0.16 0
## 159 3152 2 0 32 1969 1.62 0
## 160 3154 3 1 49 1969 1.62 0
## 161 3180 2 0 25 1969 1.29 0
## 162 3182 3 1 49 1966 6.12 0
## 163 3185 2 0 64 1969 0.48 0
## 164 3199 2 0 36 1969 0.64 0
## 165 3228 2 0 58 1969 3.22 1
## 166 3229 2 0 37 1969 1.94 0
## 167 3278 2 1 54 1969 2.58 0
## 168 3297 2 0 61 1968 2.58 1
## 169 3328 2 1 31 1968 0.81 0
## 170 3330 2 1 61 1968 0.81 1
## 171 3338 1 0 60 1967 3.22 1
## 172 3383 2 0 43 1968 0.32 0
## 173 3384 2 0 68 1968 3.22 1
## 174 3385 2 0 4 1968 2.74 0
## 175 3388 2 1 60 1968 4.84 1
## 176 3402 2 1 50 1968 1.62 0
## 177 3441 2 0 20 1968 0.65 0
## 178 3458 3 0 54 1967 1.45 0
## 179 3459 2 0 29 1968 0.65 0
## 180 3459 2 1 56 1968 1.29 1
## 181 3476 2 0 60 1968 1.62 0
## 182 3523 2 0 46 1968 3.54 0
## 183 3667 2 0 42 1967 3.22 0
## 184 3695 2 0 34 1967 0.65 0
## 185 3695 2 0 56 1967 1.03 0
## 186 3776 2 1 12 1967 7.09 1
## 187 3776 2 0 21 1967 1.29 1
## 188 3830 2 1 46 1967 0.65 0
## 189 3856 2 0 49 1967 1.78 0
## 190 3872 2 0 35 1967 12.24 1
## 191 3909 2 1 42 1967 8.06 1
## 192 3968 2 0 47 1967 0.81 0
## 193 4001 2 0 69 1967 2.10 0
## 194 4103 2 0 52 1966 3.87 0
## 195 4119 2 1 52 1966 0.65 0
## 196 4124 2 0 30 1966 1.94 1
## 197 4207 2 1 22 1966 0.65 0
## 198 4310 2 1 55 1966 2.10 0
## 199 4390 2 0 26 1965 1.94 1
## 200 4479 2 0 19 1965 1.13 1
## 201 4492 2 1 29 1965 7.06 1
## 202 4668 2 0 40 1965 6.12 0
## 203 4688 2 0 42 1965 0.48 0
## 204 4926 2 0 50 1964 2.26 0
## 205 5565 2 0 41 1962 2.90 0
Num_fallecidos = nrow(Melanoma[Melanoma$status==1,]) + nrow(Melanoma[Melanoma$status==3,])
Num_fallecidos
## [1] 71
Melanoma$ulcer
## [1] 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1
## [38] 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
## [75] 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0
## [112] 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 1 0
## [149] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0
## [186] 1 1 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0 0 0 0
sum(Melanoma$ulcer=="0")
## [1] 115
sum(Melanoma$ulcer=="1")
## [1] 90
library(MASS)
data("Melanoma")
table(Melanoma$thickness, Melanoma$status)
##
## 1 2 3
## 0.1 0 1 0
## 0.16 0 6 1
## 0.24 0 1 0
## 0.32 1 5 0
## 0.48 0 4 0
## 0.58 0 1 0
## 0.64 0 4 0
## 0.65 0 8 2
## 0.81 3 8 0
## 0.97 2 9 0
## 1.03 0 1 0
## 1.13 0 4 0
## 1.29 0 14 2
## 1.34 1 1 0
## 1.37 0 1 0
## 1.45 0 2 1
## 1.53 0 1 0
## 1.62 3 8 1
## 1.76 1 0 0
## 1.78 0 2 0
## 1.94 2 8 0
## 2.1 1 2 0
## 2.24 1 0 0
## 2.26 3 2 0
## 2.34 1 0 0
## 2.42 1 0 0
## 2.58 3 6 0
## 2.74 0 1 0
## 2.9 0 2 1
## 3.06 1 1 0
## 3.22 2 7 1
## 3.54 5 3 0
## 3.56 1 0 0
## 3.87 3 3 0
## 4.04 1 0 0
## 4.09 0 1 0
## 4.19 2 0 0
## 4.51 1 0 0
## 4.82 0 1 0
## 4.83 1 1 0
## 4.84 3 1 1
## 5.16 2 1 0
## 5.48 1 1 0
## 5.64 0 1 0
## 5.8 2 0 0
## 6.12 0 1 1
## 6.44 1 0 0
## 6.76 0 0 1
## 7.06 1 1 0
## 7.09 0 2 0
## 7.41 1 0 0
## 7.73 1 1 0
## 7.89 0 1 0
## 8.06 0 1 0
## 8.38 0 1 0
## 8.54 0 0 1
## 9.66 0 1 0
## 12.08 1 0 0
## 12.24 0 1 0
## 12.56 0 0 1
## 12.88 1 1 0
## 13.85 1 0 0
## 14.66 1 0 0
## 17.42 1 0 0
barplot(table(Melanoma$ulcer), main="Presencia y ausencia de Melanoma", xlab= "ulcera", ylab = "Cantidad", beside = TRUE, legend.text = c("Presencia","Ausencia"), col=c("#40E0D0","#FFA07A"))
2.8
UsingR::babyboom
## clock.time gender wt running.time
## 1 5 girl 3837 5
## 2 104 girl 3334 64
## 3 118 boy 3554 78
## 4 155 boy 3838 115
## 5 257 boy 3625 177
## 6 405 girl 2208 245
## 7 407 girl 1745 247
## 8 422 boy 2846 262
## 9 431 boy 3166 271
## 10 708 boy 3520 428
## 11 735 boy 3380 455
## 12 812 boy 3294 492
## 13 814 girl 2576 494
## 14 909 girl 3208 549
## 15 1035 boy 3521 635
## 16 1049 girl 3746 649
## 17 1053 girl 3523 653
## 18 1133 boy 2902 693
## 19 1209 boy 2635 729
## 20 1256 boy 3920 776
## 21 1305 boy 3690 785
## 22 1406 girl 3430 846
## 23 1407 girl 3480 847
## 24 1433 girl 3116 873
## 25 1446 girl 3428 886
## 26 1514 boy 3783 914
## 27 1631 boy 3345 991
## 28 1657 boy 3034 1017
## 29 1742 girl 2184 1062
## 30 1807 boy 3300 1087
## 31 1825 girl 2383 1105
## 32 1854 boy 3428 1134
## 33 1909 boy 4162 1149
## 34 1947 boy 3630 1187
## 35 1949 boy 3406 1189
## 36 1951 boy 3402 1191
## 37 2010 girl 3500 1210
## 38 2037 boy 3736 1237
## 39 2051 boy 3370 1251
## 40 2104 boy 2121 1264
## 41 2123 boy 3150 1283
## 42 2217 girl 3866 1337
## 43 2327 girl 3542 1407
## 44 2355 girl 3278 1435
attach(babyboom)
boy= nrow(babyboom[gender == "boy",])
boy
## [1] 26
girl= nrow(babyboom[gender == "girl",])
girl
## [1] 18
num_nacidos= nrow(babyboom[clock.time<=708,])
p12horas= nrow(babyboom[clock.time< 708,])
paste("Niños nacidos en las primeras 12 horas: ", p12horas)
## [1] "Niños nacidos en las primeras 12 horas: 9"
niños_menos3000gr= nrow(babyboom[wt<3000,])
paste("Niños con peso menor a los 3000gr: ", niños_menos3000gr)
## [1] "Niños con peso menor a los 3000gr: 9"
generoninos = babyboom[babyboom$wt < 3000,]
table(generoninos$gender,generoninos$wt)
##
## 1745 2121 2184 2208 2383 2576 2635 2846 2902
## girl 1 0 1 1 1 1 0 0 0
## boy 0 1 0 0 0 0 1 1 1
promedioninos= aggregate(babyboom$wt, by = list(babyboom[,"gender"]), FUN = mean)
promedioninos
## Group.1 x
## 1 girl 3132.444
## 2 boy 3375.308
barplot(c(mean(babyboom$wt[babyboom$gender=="girl"]), mean(babyboom$wt[babyboom$gender=="boy"])),names.arg=c("Niña", "Niño"), col = c("#FFFF99", "#B0C4DE"), main = "Promedio peso", ylab="peso", xlab="", las=1, ylim=c(0,3500))
2.9
data("Aids2")
head(Aids2)
## state sex diag death status T.categ age
## 1 NSW M 10905 11081 D hs 35
## 2 NSW M 11029 11096 D hs 53
## 3 NSW M 9551 9983 D hs 42
## 4 NSW M 9577 9654 D haem 44
## 5 NSW M 10015 10290 D hs 39
## 6 NSW M 9971 10344 D hs 36
aggregate(Aids2$state, by=list(Aids2[,"state"]), FUN=length)
## Group.1 x
## 1 NSW 1780
## 2 Other 249
## 3 QLD 226
## 4 VIC 588
muertos_sida = Aids2[Aids2$status == "D",]
length(muertos_sida)
## [1] 7
c)relación entre sexo y tipo de transmisión
table(Aids2$sex, Aids2$T.categ)
##
## hs hsid id het haem blood mother other
## F 1 0 20 20 0 37 4 7
## M 2464 72 28 21 46 57 3 63
types = table(Aids2$T.categ)
barplot(types, main = "Tipos de contagio", col = c("#FFD700", "#FF69B4", "#00CED1", "#9370DB", "#FF4500", "#32CD32", "#800080", "#FF8C00"), ylab = "No. Personas", ylim = c(0,2500))
UsingR::crime
## y1983 y1993
## Alabama 416.0 871.7
## Alaska 613.8 660.5
## Arizona 494.2 670.8
## Arkansas 297.7 576.5
## California 772.6 1119.7
## Colorado 476.4 578.8
## Connecticut 375.0 495.3
## Delaware 453.1 621.2
## DC 1985.4 2832.8
## Florida 826.7 1207.2
## Georgia 456.7 733.2
## Hawaii 252.1 258.4
## Idaho 238.7 281.4
## Illinois 553.0 977.3
## Indiana 283.8 508.3
## Iowa 181.1 278.0
## Kansas 326.6 510.8
## Kentucky 322.2 535.5
## Louisiana 640.9 984.6
## Maine 159.6 130.9
## Maryland 807.1 1000.1
## Massachusetts 576.8 779.0
## Michigan 716.7 770.1
## Minnesota 190.9 338.0
## Mississippi 280.4 411.7
## Missour 477.2 740.4
## Montana 212.6 169.9
## Nebraska 217.7 348.6
## Nevada 655.2 696.8
## New Hampshire 125.1 125.7
## New Jersey 553.1 625.8
## New Mexico 686.8 934.9
## New York 914.1 1122.1
## North Carolina 409.6 681.0
## North Dakota 53.7 83.3
## Ohio 397.9 525.9
## Oklahoma 423.4 622.8
## Oregon 487.8 510.2
## Pennsylvania 342.8 427.0
## Rhode Island 355.2 394.5
## South Carolina 616.8 944.5
## South Dakota 120.0 194.5
## Tennessee 402.0 746.2
## Texas 512.2 806.3
## Utah 256.0 290.5
## Vermont 132.6 109.5
## Virginia 292.5 374.9
## Washington 371.8 534.5
## West Virginia 171.8 211.5
## Wisconsin 190.9 275.7
## Wyoming 237.2 319.5
total83 = round(sum(crime$y1983))
total93 = round(sum(crime$y1993))
crimen83 =round(max(crime$y1983))
crimen93 = round(max(crime$y1993))
crime["acumulado"] <- crime$y1983 + crime$y1993
crime[crime$acumulado == max(crime$acumulado),]
## y1983 y1993 acumulado
## DC 1985.4 2832.8 4818.2
anos = c("1983","1993")
datos = c(total83,total93)
pie(datos, anos,
main = "Mayor tasa de crímenes por año",
sub = "Año 1983: 1985 - Año 1993: 2833")