Data Prep

Load Libraries

# if you haven't run this code before, you'll need to download the below packages first
# instructions on how to do this are included in the video
# but as a reminder, you use the packages tab to the right

library(naniar) # for the gg_miss-upset() command
## Warning: package 'naniar' was built under R version 4.3.3

Import Data

# for the lab, you'll import the CSV file you downloaded
df <- read.csv(file="Data/arc_data_final.csv", header=T)

Viewing Data

# these are commands useful for viewing a dataframe
# you can also click the object in the environment tab to view it in a new window
names(df)
##  [1] "X"                    "gender"               "trans"               
##  [4] "sexual_orientation"   "ethnicity"            "relationship_status" 
##  [7] "age"                  "urban_rural"          "income"              
## [10] "education"            "employment"           "treatment"           
## [13] "health"               "mhealth"              "sleep_hours"         
## [16] "exercise"             "pet"                  "covid_pos"           
## [19] "covid_neg"            "big5_open"            "big5_con"            
## [22] "big5_agr"             "big5_neu"             "big5_ext"            
## [25] "pswq"                 "iou"                  "mfq_26"              
## [28] "mfq_state"            "rse"                  "school_covid_support"
## [31] "school_att"           "pas_covid"            "pss"                 
## [34] "phq"                  "gad"                  "edeq12"              
## [37] "brs"                  "swemws"               "isolation_a"         
## [40] "isolation_c"          "support"
head(df)
##    X gender trans    sexual_orientation                     ethnicity
## 1  1 female    no Heterosexual/Straight White - British, Irish, other
## 2 20   male    no Heterosexual/Straight White - British, Irish, other
## 3 30 female    no Heterosexual/Straight White - British, Irish, other
## 4 31 female    no Heterosexual/Straight White - British, Irish, other
## 5 32   <NA>  <NA>                  <NA>                          <NA>
## 6 33 female    no Heterosexual/Straight White - British, Irish, other
##                        relationship_status                 age urban_rural
## 1 In a relationship/married and cohabiting                <NA>        city
## 2                        Prefer not to say          1 under 18        city
## 3                        Prefer not to say          1 under 18        city
## 4 In a relationship/married and cohabiting 4 between 36 and 45        town
## 5                                     <NA>                <NA>        <NA>
## 6 In a relationship/married and cohabiting 4 between 36 and 45        city
##     income                              education               employment
## 1   3 high            6 graduate degree or higher               3 employed
## 2     <NA>                      prefer not to say 1 high school equivalent
## 3     <NA> 2 equivalent to high school completion 1 high school equivalent
## 4 2 middle                 5 undergraduate degree               3 employed
## 5     <NA>                                   <NA>                     <NA>
## 6 2 middle            6 graduate degree or higher               3 employed
##                    treatment                           health          mhealth
## 1 no psychological disorders something else or not applicable       none or NA
## 2               in treatment something else or not applicable anxiety disorder
## 3           not in treatment something else or not applicable       none or NA
## 4 no psychological disorders                   two conditions       none or NA
## 5                       <NA>                             <NA>       none or NA
## 6           not in treatment something else or not applicable       none or NA
##   sleep_hours exercise                   pet covid_pos covid_neg big5_open
## 1 3 7-8 hours      0.0                   cat         0         0  5.333333
## 2 2 5-6 hours      2.0                   cat         0         0  5.333333
## 3 3 7-8 hours      3.0                   dog         0         0  5.000000
## 4 2 5-6 hours      1.5               no pets         0         0  6.000000
## 5        <NA>       NA                  <NA>         0         0        NA
## 6 3 7-8 hours      1.0 multiple types of pet         0         0  5.000000
##   big5_con big5_agr big5_neu big5_ext     pswq      iou mfq_26 mfq_state rse
## 1 6.000000 4.333333 6.000000 2.000000 4.937500 3.185185   4.20     3.625 2.3
## 2 3.333333 4.333333 6.666667 1.666667 3.357143 4.000000   3.35     3.000 1.6
## 3 5.333333 6.666667 4.000000 6.000000 1.857143 1.592593   4.65     5.875 3.9
## 4 5.666667 4.666667 4.000000 5.000000 3.937500 3.370370   4.65     4.000 1.7
## 5       NA       NA       NA       NA       NA       NA     NA        NA  NA
## 6 6.000000 6.333333 2.666667       NA 2.625000 1.703704   4.50     4.625 3.9
##   school_covid_support school_att pas_covid  pss      phq      gad   edeq12 brs
## 1                   NA         NA  3.222222 3.25 1.333333 1.857143 1.583333  NA
## 2                   NA         NA  4.555556 3.75 3.333333 3.857143 1.833333  NA
## 3                   NA         NA  3.333333 1.00 1.000000 1.142857 1.000000  NA
## 4                   NA         NA  4.222222 3.25 2.333333 2.000000 1.666667  NA
## 5                   NA         NA        NA   NA       NA       NA       NA  NA
## 6                   NA         NA  3.222222 2.00 1.111111 1.428571 1.416667  NA
##     swemws isolation_a isolation_c  support
## 1 2.857143        2.25          NA 2.500000
## 2 2.285714          NA         3.5 2.166667
## 3 4.285714          NA         1.0 5.000000
## 4 3.285714        2.50          NA 2.500000
## 5       NA          NA          NA       NA
## 6 4.000000        1.75          NA 3.666667
str(df)
## 'data.frame':    2073 obs. of  41 variables:
##  $ X                   : int  1 20 30 31 32 33 48 49 57 58 ...
##  $ gender              : chr  "female" "male" "female" "female" ...
##  $ trans               : chr  "no" "no" "no" "no" ...
##  $ sexual_orientation  : chr  "Heterosexual/Straight" "Heterosexual/Straight" "Heterosexual/Straight" "Heterosexual/Straight" ...
##  $ ethnicity           : chr  "White - British, Irish, other" "White - British, Irish, other" "White - British, Irish, other" "White - British, Irish, other" ...
##  $ relationship_status : chr  "In a relationship/married and cohabiting" "Prefer not to say" "Prefer not to say" "In a relationship/married and cohabiting" ...
##  $ age                 : chr  NA "1 under 18" "1 under 18" "4 between 36 and 45" ...
##  $ urban_rural         : chr  "city" "city" "city" "town" ...
##  $ income              : chr  "3 high" NA NA "2 middle" ...
##  $ education           : chr  "6 graduate degree or higher" "prefer not to say" "2 equivalent to high school completion" "5 undergraduate degree" ...
##  $ employment          : chr  "3 employed" "1 high school equivalent" "1 high school equivalent" "3 employed" ...
##  $ treatment           : chr  "no psychological disorders" "in treatment" "not in treatment" "no psychological disorders" ...
##  $ health              : chr  "something else or not applicable" "something else or not applicable" "something else or not applicable" "two conditions" ...
##  $ mhealth             : chr  "none or NA" "anxiety disorder" "none or NA" "none or NA" ...
##  $ sleep_hours         : chr  "3 7-8 hours" "2 5-6 hours" "3 7-8 hours" "2 5-6 hours" ...
##  $ exercise            : num  0 2 3 1.5 NA 1 NA 2 2 1.7 ...
##  $ pet                 : chr  "cat" "cat" "dog" "no pets" ...
##  $ covid_pos           : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ covid_neg           : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ big5_open           : num  5.33 5.33 5 6 NA ...
##  $ big5_con            : num  6 3.33 5.33 5.67 NA ...
##  $ big5_agr            : num  4.33 4.33 6.67 4.67 NA ...
##  $ big5_neu            : num  6 6.67 4 4 NA ...
##  $ big5_ext            : num  2 1.67 6 5 NA ...
##  $ pswq                : num  4.94 3.36 1.86 3.94 NA ...
##  $ iou                 : num  3.19 4 1.59 3.37 NA ...
##  $ mfq_26              : num  4.2 3.35 4.65 4.65 NA 4.5 NA 4.3 5.25 4.45 ...
##  $ mfq_state           : num  3.62 3 5.88 4 NA ...
##  $ rse                 : num  2.3 1.6 3.9 1.7 NA 3.9 NA 2.4 1.8 NA ...
##  $ school_covid_support: num  NA NA NA NA NA NA NA NA NA NA ...
##  $ school_att          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ pas_covid           : num  3.22 4.56 3.33 4.22 NA ...
##  $ pss                 : num  3.25 3.75 1 3.25 NA 2 NA 2 4 1.25 ...
##  $ phq                 : num  1.33 3.33 1 2.33 NA ...
##  $ gad                 : num  1.86 3.86 1.14 2 NA ...
##  $ edeq12              : num  1.58 1.83 1 1.67 NA ...
##  $ brs                 : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ swemws              : num  2.86 2.29 4.29 3.29 NA ...
##  $ isolation_a         : num  2.25 NA NA 2.5 NA 1.75 NA 2 1.25 NA ...
##  $ isolation_c         : num  NA 3.5 1 NA NA NA NA NA NA 1 ...
##  $ support             : num  2.5 2.17 5 2.5 NA ...

Subsetting Data

# use the codebook you created in the codebook activity to get the names of your variables (first column)
# enter this list of names in the select=c() argument to subset those columns from the dataframe
d <- subset(df, select=c(age, pet, pswq, rse, phq))

Missing Data

We looked at the missing data in our dataset, and found that about 54% of the participants in our sample skipped at least one item. We dropped these participants from our analysis, which is not advisable and runs the risk of dropping vulnerable groups or skewing results. However, we will proceed for the sake of this class using the reduced dataset.

# use the gg_miss_upset() command for a visualization of your missing data
gg_miss_upset(d, nsets = 6)

# use the na.omit() command to create a new dataframe in which any participants with missing data are dropped from the dataframe
d2 <- na.omit(d)
2073-957
## [1] 1116
1116/2073
## [1] 0.5383502

Exporting Data

# last step is to export the data after you've dropped NAs
write.csv(d2, file="Data/mydata.csv", row.names = F)