library(mlbench)
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(randomForest)
## Warning: package 'randomForest' was built under R version 4.3.3
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
## 
##     margin
data("PimaIndiansDiabetes")

View(PimaIndiansDiabetes)

trainControl <- trainControl (method="repeatedcv", number = 10, repeats = 3)
#CART

set.seed(7)
fit.cart <- train(diabetes ~ . , data=PimaIndiansDiabetes, method="rpart", trControl=trainControl)
print(fit.cart)
## CART 
## 
## 768 samples
##   8 predictor
##   2 classes: 'neg', 'pos' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 3 times) 
## Summary of sample sizes: 691, 691, 691, 691, 691, 691, ... 
## Resampling results across tuning parameters:
## 
##   cp          Accuracy   Kappa    
##   0.01741294  0.7469697  0.4151867
##   0.10447761  0.7178742  0.3614570
##   0.24253731  0.6991684  0.2776661
## 
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.01741294.
#LDA

set.seed(7)

fit.lda <- train(diabetes ~ . , data=PimaIndiansDiabetes, method="lda", trControl=trainControl)
print(fit.lda)
## Linear Discriminant Analysis 
## 
## 768 samples
##   8 predictor
##   2 classes: 'neg', 'pos' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 3 times) 
## Summary of sample sizes: 691, 691, 691, 691, 691, 691, ... 
## Resampling results:
## 
##   Accuracy   Kappa    
##   0.7791069  0.4862025
#SVM
set.seed(7)
fit.svm <- train(diabetes ~ . , data=PimaIndiansDiabetes, method="svmRadial", trControl=trainControl)
print(fit.svm)
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 768 samples
##   8 predictor
##   2 classes: 'neg', 'pos' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 3 times) 
## Summary of sample sizes: 691, 691, 691, 691, 691, 691, ... 
## Resampling results across tuning parameters:
## 
##   C     Accuracy   Kappa    
##   0.25  0.7712919  0.4621585
##   0.50  0.7625769  0.4485309
##   1.00  0.7560549  0.4339951
## 
## Tuning parameter 'sigma' was held constant at a value of 0.124824
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were sigma = 0.124824 and C = 0.25.
#RF - Random Forest
set.seed(7)
fit.rf <- train(diabetes ~ . , data=PimaIndiansDiabetes, method="rf", trControl=trainControl)
print(fit.rf)
## Random Forest 
## 
## 768 samples
##   8 predictor
##   2 classes: 'neg', 'pos' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 3 times) 
## Summary of sample sizes: 691, 691, 691, 691, 691, 691, ... 
## Resampling results across tuning parameters:
## 
##   mtry  Accuracy   Kappa    
##   2     0.7638528  0.4630809
##   5     0.7634256  0.4664261
##   8     0.7599738  0.4596437
## 
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 2.
#knn - K Nearest Neighbour
set.seed(7)
fit.knn <- train(diabetes ~ . , data=PimaIndiansDiabetes, method="knn", trControl=trainControl)
print(fit.knn)
## k-Nearest Neighbors 
## 
## 768 samples
##   8 predictor
##   2 classes: 'neg', 'pos' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 3 times) 
## Summary of sample sizes: 691, 691, 691, 691, 691, 691, ... 
## Resampling results across tuning parameters:
## 
##   k  Accuracy   Kappa    
##   5  0.7191900  0.3580128
##   7  0.7261734  0.3779733
##   9  0.7369503  0.3984995
## 
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was k = 9.
results <- resamples(list(CART=fit.cart, LDA=fit.lda, SVM=fit.svm, KNN=fit.knn, RF=fit.rf))
summary(results)
## 
## Call:
## summary.resamples(object = results)
## 
## Models: CART, LDA, SVM, KNN, RF 
## Number of resamples: 30 
## 
## Accuracy 
##           Min.   1st Qu.    Median      Mean   3rd Qu.      Max. NA's
## CART 0.6753247 0.7272727 0.7532468 0.7469697 0.7662338 0.7922078    0
## LDA  0.7142857 0.7508117 0.7662338 0.7791069 0.8000256 0.9078947    0
## SVM  0.7236842 0.7508117 0.7631579 0.7712919 0.7915243 0.8947368    0
## KNN  0.6753247 0.7036056 0.7272727 0.7369503 0.7662338 0.8311688    0
## RF   0.6842105 0.7305195 0.7597403 0.7638528 0.8019481 0.8421053    0
## 
## Kappa 
##           Min.   1st Qu.    Median      Mean   3rd Qu.      Max. NA's
## CART 0.2762566 0.3620724 0.4241878 0.4151867 0.4861107 0.5250000    0
## LDA  0.3011551 0.4192537 0.4662541 0.4862025 0.5308596 0.7812500    0
## SVM  0.3391908 0.3997116 0.4460612 0.4621585 0.5234605 0.7475083    0
## KNN  0.2553191 0.3406000 0.3841761 0.3984995 0.4539789 0.6195363    0
## RF   0.2951613 0.3778304 0.4640696 0.4630809 0.5447483 0.6426332    0
table(PimaIndiansDiabetes$diabetes)
## 
## neg pos 
## 500 268
prop.table(table(PimaIndiansDiabetes$diabetes))
## 
##       neg       pos 
## 0.6510417 0.3489583
scales <- list (x=list(relation ="free"), y=list(relation="free"))
bwplot(results, scales=scales)

densityplot(results,scales=scales, pch="|")

dotplot(results,scales=scales)

####SPLOM IS USED FOR scatter plots
splom(results)

diff <- diff (results)
summary(diff)
## 
## Call:
## summary.diff.resamples(object = diff)
## 
## p-value adjustment: bonferroni 
## Upper diagonal: estimates of the difference
## Lower diagonal: p-value for H0: difference = 0
## 
## Accuracy 
##      CART      LDA       SVM       KNN       RF       
## CART           -0.032137 -0.024322  0.010019 -0.016883
## LDA  0.0011862            0.007815  0.042157  0.015254
## SVM  0.0116401 0.9156892            0.034342  0.007439
## KNN  1.0000000 6.68e-05  0.0002941           -0.026902
## RF   0.2727542 0.4490617 1.0000000 0.0183793          
## 
## Kappa 
##      CART      LDA        SVM        KNN        RF        
## CART           -0.0710158 -0.0469717  0.0166872 -0.0478942
## LDA  0.0008086             0.0240440  0.0877029  0.0231215
## SVM  0.0258079 0.3562734              0.0636589 -0.0009225
## KNN  1.0000000 0.0003858  0.0040823             -0.0645814
## RF   0.0211763 1.0000000  1.0000000  0.0158974