# comaring ML models
library(mlbench)
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
data("PimaIndiansDiabetes")
traincontrol<-trainControl(method = "repeatedcv",number = 10, repeats = 3)
set.seed(7)
fit<-train(diabetes~., data=PimaIndiansDiabetes,trControl=traincontrol,method="rf")
#CART
set.seed(7)
fit.cart<-train(diabetes~., data=PimaIndiansDiabetes,trControl=traincontrol,method="rpart")
#LDA
set.seed(7)
fit.lda<-train(diabetes~., data=PimaIndiansDiabetes,trControl=traincontrol,method="lda")
#svm
set.seed(7)
fit.svm<-train(diabetes~., data=PimaIndiansDiabetes,trControl=traincontrol,method="svmRadial")
#KNN
set.seed(7)
fit.KNN<-train(diabetes~., data=PimaIndiansDiabetes,trControl=traincontrol,method="knn")
# to pu thtem all in a table
results<-resamples(list(CART=fit.cart, LDA=fit.lda, SVM=fit.svm, KNN=fit.KNN, RF= fit))
summary(results)
##
## Call:
## summary.resamples(object = results)
##
## Models: CART, LDA, SVM, KNN, RF
## Number of resamples: 30
##
## Accuracy
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## CART 0.6753247 0.7272727 0.7532468 0.7469697 0.7662338 0.7922078 0
## LDA 0.7142857 0.7508117 0.7662338 0.7791069 0.8000256 0.9078947 0
## SVM 0.7236842 0.7508117 0.7631579 0.7712919 0.7915243 0.8947368 0
## KNN 0.6753247 0.7036056 0.7272727 0.7369503 0.7662338 0.8311688 0
## RF 0.6842105 0.7305195 0.7662338 0.7638528 0.8019481 0.8421053 0
##
## Kappa
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## CART 0.2762566 0.3620724 0.4241878 0.4151867 0.4861107 0.5250000 0
## LDA 0.3011551 0.4192537 0.4662541 0.4862025 0.5308596 0.7812500 0
## SVM 0.3391908 0.3997116 0.4460612 0.4621585 0.5234605 0.7475083 0
## KNN 0.2553191 0.3406000 0.3841761 0.3984995 0.4539789 0.6195363 0
## RF 0.2951613 0.3682680 0.4685583 0.4620226 0.5447483 0.6426332 0
#box and whisker plot
#used to show how far our predictions are set form the mean
prop.table(table(PimaIndiansDiabetes$diabetes))
##
## neg pos
## 0.6510417 0.3489583
scales<-list(x=list(relation="free"), y = list(relation="free"))
bwplot(results, scales=scales)
densityplot(results, scales=scales, pch="|")
splom(results)
#diffrence in model prediction
diffs<-diff(results)
summary(diffs)
##
## Call:
## summary.diff.resamples(object = diffs)
##
## p-value adjustment: bonferroni
## Upper diagonal: estimates of the difference
## Lower diagonal: p-value for H0: difference = 0
##
## Accuracy
## CART LDA SVM KNN RF
## CART -0.032137 -0.024322 0.010019 -0.016883
## LDA 0.0011862 0.007815 0.042157 0.015254
## SVM 0.0116401 0.9156892 0.034342 0.007439
## KNN 1.0000000 6.68e-05 0.0002941 -0.026902
## RF 0.2521949 0.3914281 1.0000000 0.0101387
##
## Kappa
## CART LDA SVM KNN RF
## CART -0.0710158 -0.0469717 0.0166872 -0.0468359
## LDA 0.0008086 0.0240440 0.0877029 0.0241799
## SVM 0.0258079 0.3562734 0.0636589 0.0001359
## KNN 1.0000000 0.0003858 0.0040823 -0.0635230
## RF 0.0250500 1.0000000 1.0000000 0.0099222
You can also embed plots, for example:
Note that the echo = FALSE
parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.